首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adaptation of plant growth and development to changes in the light environment is dependent upon photoperception by information transducing photoreceptors. The red/far-red light-absorbing phytochromes are perhaps the best characterized of these regulatory photoreceptors. Higher plants possess multiple, discrete phytochromes, the apoprotein components of which are the products of a small, divergent gene family. Different phytochromes have different biochemical and physiological properties, and are differentially expressed in the growing plant. This has led to the proposal that different phytochromes have different physiological roles. Mutations that disrupt the normal perception of light signals have proved to be a valuable resource in assigning physiological roles to different phytochromes as well as in identifying residues/domains critical for phytochrome function and in attempting to elucidate the signal transduction pathway(s) downstream of phytochromes. This article reviews some recent progress in these areas from the study of conventional and transgenic photomorphogenic mutants.  相似文献   

2.
The family of phytochrome photoreceptors plays an essential role in regulating plant growth and development in response to the light environment. An antisense PHYB transgene has been introduced into wild-type Arabidopsis and shown to inhibit expression of the PHYB sense mRNA and the phyB phytochrome protein 4- to 5-fold. This inhibition is specific to phyB in that the levels of the four other phytochromes, notably the closely related phyD and phyE phytochromes, are unaffected in the antisense lines. Antisense-induced reduction in phyB causes alterations of red light effects on seedling hypocotyl elongation, rosette leaf morphology, and chlorophyll content, similar to the phenotypic changes caused by phyB null mutations. However, unlike the phyB mutants, the antisense lines do not flower early compared to the wild type. Furthermore, unlike the phyB mutants, the antisense lines do not show a reduction in phyC level compared to the wild type, making it possible to unequivocally associate several of the photomorphogenic effects seen in phyB mutants with phytochrome B alone. These results indicate that an antisense transgene approach can be used to specifically inhibit the expression and activity of a single member of the phytochrome family and to alter aspects of shade avoidance responses in a targeted manner.  相似文献   

3.
The expression of the Arabidopsis ATHB-2 gene is light-regulated both in seedlings and in adult plants. The gene is expressed at high levels in rapidly elongating etiolated seedlings and is down-regulated by a pulse of red light (R) through the action of a phytochrome other than phytochrome A or B, or by a pulse of far-red light (FR) through the action of phytochrome A. In green plants, the expression of the ATHB-2 gene is rapidly and strongly enhanced by lowering the R:FR ratio perceived by a phytochrome other than A or B. Returning the plant to a high R:FR ratio results in an equally rapid decrease of the ATHB-2 mRNA. Consistently, plants overproducing ATHB-2 show developmental phenotypes characteristic of plants grown in low R:FR: elongated petioles, reduced leaf area, early flowering, and reduced number of rosette leaves. Taken together, the data strongly suggest a direct involvement of ATHB-2 in light-regulated growth phenomena throughout Arabidopsis development.  相似文献   

4.
The phytochromes, photoreceptors sensitive to red and far-red light, are critical for sensing foliage shade, canopy breaks, and neighbor proximity. A combination of molecular genetic, evolutionary, and ecological techniques are being used to understand how phytochromes function in the natural environment. We discuss studies on the adaptive value of phytochrome mediated plasticity, as well as the role that variation in phytochrome expression and function might play in allowing plants to adapt to unique light environments. Continued study of phytochrome signaling variation may reveal how natural selection acts at the molecular level.  相似文献   

5.
In an attempt to identify domains directly involved in the signal transduction of phytochrome B (phyB), we over-expressed the achromophoric C-terminal half of phyB under control of the CaMV-35S promoter in transgenicArabidopsis. In three independent transgenic lines, we detected accumulation of the introduced protein of predicted size at levels higher than that of the endogenous phyB by immunoblot analysis. Although these transgenic plants did not show any phenotype in the dark, enhancement of the phyB-dependent inhibition of hypocotyl elongation and reduction of the phytochrome A (phyA)-dependent inhibition were observed.  相似文献   

6.
The effects of blue light (B) on stem extension-growth were compared in light-grown seedlings, of tobacco overexpressing Avena phytochrome A and its isogenic wild type (WT). Under natural radiation, lowering the levels of B reaching the whole shoot promoted stem extension growth in WT but not in transgenic seedlings. Under controlled conditions, the seedlings were exposed to white light (WL) or WL minus B, each one provided at two different irradiances. In WT seedlings stem extension growth was promoted by lowering B at both irradiance levels. In transgenic seedlings a reduction of B was promotive only at low irradiance levels. The seedlings were also grown under WL, WL minus B, WL minus red light (R) and far-red light (FR) or WL minus R, FR and B. In the WT, lowering B promoted stem extension growth irrespective of R+FR levels. In the transgenics, B was effective only at very low levels of R+FR (i.e. at low phytochrome cycling rates). Lowering the Pfr levels at the end of the day promoted extension growth in wild type and transgenic seedlings. Responses to B were not observed in transgenic seedlings having low Pfr levels at the end of the day. The results suggest that the overexpressed phytochrome A acts mainly via irradiance-dependent reactions. When these reactions are highly expressed, B responses are not observed.  相似文献   

7.
8.
Abstract. Spectral photon distributions, red:far-red ratios (i.e. R:FR) and phytochrome photoequilibria (i.e. Pfr/Ptotal) were measured at various distances from artificial canopies composed of mustard or tobacco plants. Measurements were compared for radiation propagated predominantly vertically downwards and radiation propagated predominantly horizontally. Reflection signals from the artificial canopies were computed and shown to consist of a depletion of radiation over the 400–690 nm wavelength range, and an enhancement of radiation over the 690–800 nm range. R:FR and Pfr/Ptotal increased gradually with distance from the canopies, with significant depressions of both parameters evident at least as far as 30 cm from the vegetation stands. It is concluded that, in principle at least, detection of spectral quality differences by phytochrome would allow not only the presence but also the proximity of neighbouring plants to be perceived. Proximity perception is proposed as an ecologically valuable mechanism through which plants may be able to gauge their anticipatory responses to incipient shading according to the challenge posed by the nearness of neighbouring plants.  相似文献   

9.
Regulation of type I phytochrome mRNA abundance   总被引:1,自引:0,他引:1  
  相似文献   

10.
Abstract Predicted values of photoequilibrium ratios and rates of photoconversion and cycling, calculated from known optical parameters of purified phytochrome and the spectral photon flux distribution of the light sources used, arc often applied in the evaluation of the relationships between the state of phytochrome and the expression of phytochrome-mediated responses. This is commonly done when the state of phytochrome in vivo cannot be determined experimentally. The ‘predicted’ states of phytochrome may be quite different from the actual ones in vivo for several reasons: the particular set of optical parameters of purified phytochrome used in the calculations and the difficulties encountered in correcting the predicted values for the contribution of the non-photochemical reactions (dark reversion, destruction, synthesis), the effects of the optical properties of the tissue (light attenuation, scattering, trapping) on the rate of phytochrome photo-conversion, and the geometrical relationships between irradiated sample and the light source. At present, in many studies, it is not possible to avoid using predicted values of the state of phytochrome. The limitations imposed by the use of ‘predicted’ values in the interpretation of results obtained in plant photomorphogenesis research should be always clearly stated.  相似文献   

11.
12.
To a plant, the sun’s light is not exclusively energy for photosynthesis, it also provides a package of data about time and prevailing conditions. The plant’s surroundings may dampen or filter solar energies, altering spectral profiles of their light environment. Plants use this information to adjust form and physiology, tailoring gene expression to best match ambient conditions. Extensive literature exists on how blue, red and far-red light contribute to plant adaptive responses. A growing body of work identifies discrete effects of green light (500–565 nm) that also shape plant biology. Green light responses are known to be either mediated through, or independent of, the cryptochrome blue light receptors. Responses to green light share a general tendency to oppose blue- or red-light-induced responses, including stem growth rate inhibition, anthocyanin accumulation or chloroplast gene expression. Recent evidence demonstrates a role for green light in sensing a shaded environment, independent from far-red shade responses.  相似文献   

13.
14.
Phytochrome is a ubiquitous photoreceptor of plants and is encoded by a small multigene family. We have shown recently that a functional nuclear localization signal may reside within the COOH-terminal region of a major member of the family, phytochrome B (phyB) (Sakamoto, K., and A. Nagatani. 1996. Plant J. 10:859-868). In the present study, a fusion protein consisting of full-length phyB and the green fluorescent protein (GFP) was overexpressed in the phyB mutant of Arabidopsis to examine subcellular localization of phyB in intact tissues. The resulting transgenic lines exhibited pleiotropic phenotypes reported previously for phyB overexpressing plants, suggesting that the fusion protein is biologically active. Immunoblot analysis with anti-phyB and anti-GFP monoclonal antibodies confirmed that the fusion protein accumulated to high levels in these lines. Fluorescence microscopy of the seedlings revealed that the phyB-GFP fusion protein was localized to the nucleus in light grown tissues. Interestingly, the fusion protein formed speckles in the nucleus. Analysis of confocal optical sections confirmed that the speckles were distributed within the nucleus. In contrast, phyB-GFP fluorescence was observed throughout the cell in dark-grown seedlings. Therefore, phyB translocates to specific sites within the nucleus upon photoreceptor activation.  相似文献   

15.
Abstract The ‘end-of-day’ phytochrome control of internode growth was characterized in Sinapis alba, seedlings previously grown under continuous white light for 13 d. The transition from white light to darkness caused a reduction in internode extension rate with a lag of less than 10 min. Following this, extension rate remained almost constant for at least 48 h. i.e. ‘re-etiolation’ was not noticed. The phytochorme controlling the growth processes was stable in the Pfr form. The growth rate of plants receiving a red light pulse, and the growth promotion caused by a far-red light pulse, increased with increasing fluence rate of the previous white light treatment. In far-red treated plants a first growth rate acceleration peaked at 20–30 min after the end of white light, followed by a transient deceleration which led to a growth rate minimum at 40–60 min, followed by a final growth rate recovery yielding a more-or-less steady elevated rate. Pulses establishing different Pfr/P modified the extent, but not the early kinetics, of the growth response. The relative promotion of growth caused by low Pfr/P was limited by darkness as follows: (a), The growth promotion caused by far-red directed to the internode alone was transient. (b), The promotion caused by a reduction of Pfr/P in the whole shoot persisted in darkness for at least 48 h and also persisted if, after a 3–9 h dark period, the plants were returned to continuous white light. In darkness, however, the magnitude of this growth rate promotion decreased with time, particularly when the previous white light fluence rate was low, or the pulse preceding darkness provided the lowest Pfr/P. (c), When compared over the same period in darkness, growth rate was higher in those seedlings in which Pfr/P was reduced during the continuous white light pretreatment than in those ones in which the Pfr/P was only reduced immediately before darkness. It is proposed that in the natural environment, red/far-red signals could be more effective when provided during daytime than at the end of the photoperiod, as both the background growth rate and the relative promotion caused by low Pfr/P are reduced by darkness.  相似文献   

16.
转录因子在调控植物生长、发育及环境适应性等方面发挥重要作用。具有B-box结构域的一类锌指结构转录因子称为BBX,它们通过调控基因转录,与同类或其他转录因子的互作参与植物光形态建成、花发育、避荫效应、植物信号转导以及非生物和生物逆境响应等。文中从BBX蛋白结构、分类以及其功能方面对该类转录因子在植物中的作用进行了综述。  相似文献   

17.
18.
Chloroplast genetic engineering overcomes concerns of gene containment, low levels of transgene expression, gene silencing, positional and pleiotropic effects or presence of vector sequences in transformed genomes. Several therapeutic proteins and agronomic traits have been highly expressed via the tobacco chloroplast genome but extending this concept to important crops has been a major challenge; lack of 100 homologous species-specific chloroplast transformation vectors containing suitable selectable markers, ability to regulate transgene expression in developing plastids and inadequate tissue culture systems via somatic embryogenesis are major challenges. We employed a Double Gene/Single Selection (DGSS) plastid transformation vector that harbors two selectable marker genes (aphA-6 and nptII) to detoxify the same antibiotic by two enzymes, irrespective of the type of tissues or plastids; by combining this with an efficient regeneration system via somatic embryogenesis, cotton plastid transformation was achieved for the first time. The DGSS transformation vector is at least 8-fold (1 event/2.4 bombarded plates) more efficient than Single Gene/Single Selection (SGSS) vector (aphA-6; 1 event per 20 bombarded plates). Chloroplast transgenic lines were fertile, flowered and set seeds similar to untransformed plants. Transgenes stably integrated into the cotton chloroplast genome were maternally inherited and were not transmitted via pollen when out-crossed with untransformed female plants. Cotton is one of the most important genetically modified crops ($ 120 billion US annual economy). Successful transformation of the chloroplast genome should address concerns about transgene escape, insects developing resistance, inadequate insect control and promote public acceptance of genetically modified cotton.  相似文献   

19.
The effects of overexpression of oat phytochrome A on neighbour detection and on stem-growth responses to changes in red light (R), far-red light (FR) and blue light (B) simulating neighbours were investigated in transgenic tobacco seedlings grown under natural radiation. In wild-type (WT) seedlings, stem extension growth was promoted: (1) by lowering the R:FR by means of daytime supplementary FR, end-of-day FR, neighbours reflecting FR, or selective light filters placed around the base of the shoot to reduce R without affecting FR; and (2) by lowering phytochrome-absorbable radiation (R+FR) reaching the stem. Transgenic seedlings only responded to reductions in R:FR involving no significant changes in FR irra-diance, i.e. end-of-day FR and filters placed around the stem to reduce R. Neither daytime supplementary R nor selective filters placed around the stem to reduce B affected stem growth in any genotype. In growing canopies, WT seedlings responded to the reduction of R:FR caused by FR reflected in neighbour plants. Transgenic seedlings responded to plant density about a week later, when mutual plant shading reduced R and (to a lesser extent) FR below sunlight levels. Overexpression of phytochrome A impaired early neighbour detection.  相似文献   

20.
A specific light program consisting of multiple treatments with alternating red and far-red light pulses was used to isolate mutants in phytochrome A-dependent signal transduction pathways in Arabidopsis. Because of their phenotype, the mutants were called eid for empfindlicher im dunkelroten Licht, which means hypersensitive in far-red light. One of the isolated mutants, eid4, is a novel semi-dominant allele of the phytochrome A gene that carries a missense mutation in the chromophore-binding domain. The mutation did not change the photochemical properties of the photoreceptor, but it leads to an increased stability under light conditions that induce its rapid degradation. Fusion proteins with the green fluorescent protein exhibited clear alterations in subcellular localization of the mutated photoreceptor: The fusion protein was impaired in the formation of sequestered areas of phytochrome in the cytosol, which can explain its reduced light-dependent degradation. In contrast, the mutation stabilizes nuclear speckles (NUS) that appear late under continuous far-red light, whereas the formation of early, transiently appearing NUS remained more or less unaltered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号