首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Goats in Group A were pretreated for 9 days with a synthetic progestagen, administered via intravaginal sponge, and 1000 i.u. PMSG s.c. on Day 12 of the oestrous cycle. Goats in Group B had the same PMSG treatment, but not the progestagen pretreatment. Group C goats received a s.c. twice daily injection of a porcine FSH preparation (8 mg on Day 12, 4 mg Day 13, 2 mg Day 14 and 1 mg Day 15). Oestrus was synchronized in all animals by 50 micrograms cloprostenol, 2 days after the start of gonadotrophin treatment. The vaginal progestagen sponges were removed from Group A at the same time. Mean ovulation rate was slightly higher in FSH-treated than in the PMSG-treated animals, whereas the incidence of large follicles that failed to ovulate was significantly elevated in PMSG-treated animals in Group B. More goats in Groups A and B than in Group C exhibited premature luteal failure. Progestagen pretreatment appeared to suppress both follicular and luteal activity, as indicated by numbers of large non-ovulating follicles and by the magnitude and duration of elevated plasma oestradiol levels following PMSG stimulation, and by decreased plasma progesterone levels before and after PMSG treatment. Oestrogenic response to FSH was considerably less than that to PMSG, as indicated both by a considerably shorter duration of elevation of circulating oestradiol levels during the peri-ovulatory period, and by lower maximal oestradiol levels. Differences in the ovarian responses to PMSG and FSH may be attributed primarily to differences in the biological half-life of each preparation.  相似文献   

2.
This study was designed to test the hypothesis that treatment with super-ovulatory drugs suppresses endogenous pulsatile LH secretion. Heifers (n=5/group) were superovulated with eCG (2500 IU) or FSH (equivalent to 400 mg NIH-FSH-P1), starting on Day 10 of the estrous cycle, and were injected with prostaglandin F(2alpha) on Day 12 to induce luteolysis. Control cows were injected only with prostaglandin. Frequent blood samples were taken during luteolysis (6 to 14 h after PG administration) for assay of plasma LH, estradiol, progesterone, testosterone and androstenedione. The LH pulse frequency in eCG-treated cows was significantly lower than that in control cows (2.4 +/- 0.4 & 6.4 +/- 0.4 pulses/8 h, respectively; P<0.05), and plasma progesterone (3.4 +/- 0.4 vs 1.8 +/- 0.1 ng/ml, for treated and control heifers, respectively; P<0.05) and estradiol concentrations (25.9 +/- 4.3 & 4.3 +/- 0.4 pg/ml, for treated and control heifers, respectively; P<0.05) were higher compared with those of the controls. No LH pulses were detected in FSH-treated cows, and mean LH concentrations were significantly lower than those in the controls (0.3 +/- 0.1 & 0.8 +/- 0.1, respectively; P<0.05). This suppression of LH was associated with an increase in estradiol (9.5 +/- 1.4 pg/ml; P<0.05 compared with controls) but not in progesterone concentrations (2.1 +/- 0.2 ng/ml; P>0.05 compared to controls). Both superovulatory protocols increased the ovulation rate (21.6 +/- 3.9 and 23.0 +/- 4.2, for eCG and FSH groups, respectively; P>0.05). These data demonstrate that super-ovulatory treatments decrease LH pulse frequency during the follicular phase of the treatment cycle. This could be explained by increased steroid secretion in the eCG-trated heifers but not in FSH-treated animals.  相似文献   

3.
4.
5.
Heifers between Days 6 and 10 of the cycle were allocated at random to groups of 8 and treated with (i) a 4% progesterone-releasing intravaginal device (PRID) + oestrogen capsule for 12 days; (ii) 4% PRID for 12 days; (iii) 20% PRID for 12 days; (iv) 4% for 14 days; or (v) 20% PRID for 14 days. Blood was obtained daily during treatment and at 2- or 4-h intervals for 72 h after removal of PRIDs. Some animals were sampled every 20 min for 4.676 h on the 3rd day after PRID insertion, and 1 day before and 36 h after removal of the PRID insertion, and 1 day before and 36 h after removal of the PRID. During progesterone treatment there was: (i) no correlation between concentrations of progesterone and LH within days; (ii) a significant negative correlation between progesterone and days (P less than 0.01) and also between progesterone and LH over days (P less than 0.01); (iii) the overall correlation co-efficient between LH and days was positive (P less than 0.05). The amplitude of LH or FSH episodes was not affected as progesterone concentrations declined during PRID treatment, but the number of LH (but not FSH) episodes was increased (p less than 0.01). After PRID removal, the amplitude of both LH and FSH episodes increased (P less than 0.01). We suggest that progesterone is part of a negative feedback complex on LH secretion in cattle and that this effect is apparently mediated through frequency of episodic LH release.  相似文献   

6.
Nonlactating Dutch-Friesian cows were selected from a local slaughterhouse and synchronized with Syncro-Mate B. Cows with a normal progesterone pattern were treated with PMSG (3,000 I.U. i.m.) on Day 10 followed by PG (Prosolvin 22.5 mg) 48 h later. Blood samples were collected daily and at hourly intervals from 30 h after PG. Monoclonal anti-PMSG (Neutra-PMSG) was administered i.v. at 5.8 h after the LH peak in 16 cows; controls (n = 16) did not receive Neutra-PMSG. For comparison, 16 additional cows were superovulated with FSH-P in decreasing doses, twice a day (total 32 mg), starting at Day 10. All cows were inseminated at 10 h after the LH peak. Embryos were evaluated on Days 6 and 7 after flushing upon slaughter (recovery 87%). The number of corpora lutea and follicles on the donor ovaries were counted. No significant differences in the concentrations of progesterone and LH were observed between the three superovulation groups. Upon Neutra-PMSG, PMSG in blood was completely neutralized, it was decreased to < 0.5 ug/l at AI from 7.0 ug/l at the LH peak. The number of transferable embryos was significantly higher after Neutra-PMSG (9.1 per cow) than without Neutra-PMSG (5.3). or upon FSH-superovulation (4.6). The number of cysts on the ovaries of Neutra-PMSG-treated cows was reduced similarly to that after FSH-superovulation. Treatment with Neutra-PMSG shortly after the LH peak positively affects final follicular maturation in PMSG-superovulated cows and results in a nearly two-fold increase of transferable embryos.  相似文献   

7.
Two experiments were conducted in Ile-de-France ewes to study changes in pulsatile LH secretion in ewes ovariectomized during anoestrus or during the midluteal phase of the oestrous cycle. In Exp. 1, blood samples were taken every 20 min for 12 h the day before ovariectomy (Day 0). After ovariectomy, samples were taken every 10 min for 6 h (10 ewes per group), on Days 1, 3, 7 and 15. In Exp. 2 samples were taken every 10 min for 6 h (10 ewes per group) on Days 7, 15, 30, 60, 90, 120, 150 and 180 after ovariectomy. Further samples were taken (5 ewes per group) at 9 and 12 months after ovariectomy. There were significant interactions between season and day of sampling for the interval between LH pulses in both experiments. LH pulse frequency increased within 1 day of ovariectomy and the increase was more rapid during the breeding season. There were clear seasonal differences in pulse frequency in Exp. 2. Compared with ewes ovariectomized in anoestrus, pulse frequency was significantly higher for ewes ovariectomized in the breeding season, from Day 7 until Day 120. Once pulse frequency had increased in ewes about the time of the normal breeding season, pulse frequency remained high and subsequent seasonal changes were greatly reduced. Pulse amplitude increased immediately after ovariectomy to reach a maximum on Day 7 and there were no differences between season of ovariectomy in the initial changes in amplitude. In Exp. 2, changes in amplitude followed changes in pulse interval and there was a significant interaction between season and day of sampling. There were no significant effects of season on nadir LH concentrations which increased throughout the duration of the experiments. These results show that, in ovariectomized ewes, LH pulse frequency observed on a given day depends on time after ovariectomy, season at the time of sampling and on previous exposure of ewes to stimulatory effects of season. The direct effects of season on LH pulse frequency and seasonal changes in sensitivity to steroid feedback may contribute to control of the breeding season and their relative contributions to the beginning and end of the breeding season may differ.  相似文献   

8.
Administration of a GnRH agonist (5 micrograms) every 12 h to long-term ovariectomized ewes for 5 or 10 days during the breeding season suppressed mean LH levels from around 6 to 1 ng/ml on Days 1 and 4 after treatment; on Day 1 after treatment LH pulse frequency and amplitude were lower than pretreatment values. On Day 4 after treatment LH pulse frequency was restored to pretreatment levels (1 per h) whereas LH pulse amplitude had only slightly increased from 0.5 to 1 ng/ml, a value 25% of that before treatment. This increase in amplitude was greater the shorter the duration of treatment. Ovariectomized ewes treated with the agonist for 5 days exhibited both negative and positive feedback actions after implantation of a capsule containing oestradiol; however, compared to control ewes treated with oestradiol only, the positive and negative feedback actions of oestradiol were blunted. These results suggest that the recovery of tonic LH concentrations after GnRH agonist-induced suppression is limited primarily by changes in LH pulse amplitude. The results also demonstrate that the feedback actions of oestradiol are attenuated, but not blocked, by GnRH agonist treatment.  相似文献   

9.
10.
This study was conducted to test the hypothesis that the rate (dose/time) at which oestradiol-17 beta (oestradiol) is presented to the hypothalamo-pituitary axis influences secretion of LH, FSH and prolactin. A computer-controlled infusion system was used to produce linearly increasing serum concentrations of oestradiol in ovariectomized ewes over a period of 60 h. Serum samples were collected from ewes every 2 h from 8 h before to 92 h after start of infusion, and assayed for oestradiol, LH, FSH and prolactin. Rates of oestradiol increase were categorized into high (0.61-1.78 pg/h), medium (0.13-0.60 pg/h) and low (0.01-0.12 pg/h). Ewes receiving high rates of oestradiol (N = 11) responded with a surge of LH 12.7 +/- 2.0 h after oestradiol began to increase, whereas ewes receiving medium (N = 15) and low (N = 11) rates of oestradiol responded with a surge of LH at 19.4 +/- 1.7 and 30.9 +/- 2.0 h, respectively. None of the surges of LH was accompanied by a surge of FSH. Serum concentrations of FSH decreased and prolactin increased in ewes receiving high and medium rates of oestradiol, when compared to saline-infused ewes (N = 8; P less than 0.05). We conclude that rate of increase in serum concentrations of oestradiol controls the time of the surge of LH and secretion of prolactin and FSH in ovariectomized ewes. We also suggest that the mechanism by which oestradiol induces a surge of LH may be different from the mechanism by which oestradiol induces a surge of FSH.  相似文献   

11.
Recovery rate and embryo quality were investigated in beef heifers and suckled cows following superovulation induced by 2000 IU pregnant mare serum (PMSG) combined with different methods of estrus cycle synchronization (Norgestomet, Prid, Dinolytic, Norgestomet combined with Dinolytic). Genital tracts were flushed upon slaughter with Dulbecco's medium 6.5 to 7.5 days after insemination. Of the heifers, 42 out of 43 responded to treatment. The mean embryo recovery rate, based on the number of corpora lutea, was only 14.8%. Of the 83 embryos recovered, 54.2% had developed to the expected stage and only 40% appeared normal. Of the adult cows, 55 out 58 responded with an embryo recovery rate of 39.5%. Of the 149 embryos recovered, 48.9% had developed to the expected stage and 67.1% of these appeared normal. In both heifers and adult cows, the different methods of estrus synchronization produced no significant differences in recovery rate or embryo quality.  相似文献   

12.
Intravaginal rings containing progesterone were inserted on Day 5 of the cycle to 8 healthy, normally menstruating women. Blood samples were taken during Days 4--22 of the cycle at 2--3-day intervals. The plasma progesterone levels obtained after the insertion were between 7.5 and 21 nmol/l. Four subjects showed no increase in plasma oestradiol concentrations. The subjects showing increased plasma oestradiol levels also showed a positive feedback on LH, resulting in ovulation or an LH peak. The results suggest that progesterone may have a local inhibitory effect on the follicular oestradiol production.  相似文献   

13.
1. In order to investigate the role of the adrenocortical system in the regulation of plasma levels of reproductive hormones, adult male white-tailed deer (five intact and one castrated) from a captive herd were sedated with xylazine and ketamine and then challenged with various doses of ACTH with and without dexamethasone (DX) pretreatment. 2. Plasma levels of LH, testosterone (T), FSH, prolactin (PRL) and androstenedione (A) were determined by RIA in serial samples taken from the jugular vein. 3. An increase of A levels detected after ACTH in both intact and castrated deer indicated stimulation of secretion of adrenal androgens by ACTH. 4. No effect on FSH and PRL levels was observed in either group. 5. A significant decline of LH and T observed in various treatments could not be attributed to ACTH or DX administration. It is speculated that the decrease may be caused by anaesthetics which alleviate the stress induced in deer by the pre-immobilization activities.  相似文献   

14.
15.
Adult Soay rams were infused for 21 days with 50 micrograms buserelin/day, using s.c. implanted osmotic mini-pumps. The continuous treatment with this LHRH agonist induced a supraphysiological increase in the blood concentrations of LH (15-fold) and testosterone (5-fold) followed by a decrease below pre-treatment values after 10 days. The blood concentrations of FSH showed only a minimal initial increase but the subsequent decrease was dramatic, occurring within 1 day. By Day 10 of treatment, the blood concentrations of all 3 hormones were low or declining, LH pulses were absent in the serial profiles based on 20-min blood samples and the administration of LHRH antiserum failed to affect the secretion of LH or testosterone. By Day 21, the secretion of FSH, LH and testosterone was maximally suppressed. The i.v. injection of 400 ng LHRH was totally ineffective at stimulating an increase in the blood concentrations of LH while the i.v. injection of 50 micrograms ovine LH induced a normal increase in the concentrations of testosterone; this confirmed that the chronic treatment with the LHRH agonist had desensitized the pituitary gonadotrophs without markedly affecting the responsiveness of the testicular Leydig cells. The ratio of bioactive: radioimmunoactive LH did not change during the treatment. The long-term effect of the infusion was fully reversible as shown by the increase in the blood concentrations of FSH, LH and testosterone and the return of normal pulsatile fluctuations in LH and testosterone within 7 days of the end of treatment.  相似文献   

16.
Seven mature ewes were synchronized to oestrus by two injections of 125 μg Cloprostenol given 9 days apart. Blood samples, collected for 72 h at 4-h intervals beginning 16 h after the second Cloprostenol injection, were assayed for testosterone, androstenedione, progesterone, oestradiol-17β, LH and FSH. For the testosterone measurements, two radioimmunoassays, using two different antisera, were validated and used. A typical pattern of release was observed for progesterone, oestradiol-17β, LH and FSH, with a preovulatory gonadotrophin peak recorded 16.1 ± 2.1 h after the observed oestrous behaviour. In two of the experimental animals, an extra oestradiol peak was recorded before the usual preovulatory rise. The changes in the concentrations of testosterone and androstenedione during the same period were not synchronous. The levels of the two androgens fluctuated considerably with occasional peaks of 150–250 pg/ml and even 900–1400 pg/ml. Although a tendency towards an increase in the levels of both androgens was observed during the period of oestrous behaviour, the individual variations were significant.  相似文献   

17.
Gonadotrophin-receptor binding studies involving the use of 125I-labelled highly purified FSH and LH have shown that equine gonadal tissues possess similar numbers of specific FSH and LH receptors per cell as the gonadal tissues of other mammals. However, while rat, cow and pig gonadal tissues were shown to bind as much 125I-labelled PMSG as 125I-labelled LH on a molar basis, the equivalent equine tissues bound only less than or equal to 4% as much of the labelled PMSG as LH. Competitive binding studies involving the use of radioreceptor assay techniques have further demonstrated that the small but significant degree of PMSG binding which does take place to equine tissues occurs at LH receptors and not at receptors specific for PMSG. The binding of PMSG to equine FSH receptors was negligible. These results suggest that PMSG (1) binds to equine LH receptors with about one-tenth the affinity of that observed with LH receptors of other species and (2) does not appear to bind specifically to equine FSH receptors. This would possibly explain the apparent refractoriness of mares' ovaries to exogenous and endogenous OMSG.  相似文献   

18.
Progesterone (P(4)), 17beta- estradiol (E(2)) and androstenedione (A(4)) plasma concentrations were correlated with palpated corpora lutea (CL), recovered embryos and viable embryos in 13 Nelore cows induced to superovulate with FSH, starting on Day 10 of the estrous cycle. Administration of FSH increased the number of ovulations and recovered embryos. Plasma P(4), E(2) and A(4) levels on Day 0 and of P(4) on Days 10 and 11 of the cycle were not correlated with the superovulatory response. Determination of CL by palpation per rectum was used to estimate the number of recovered embryos. Plasma P(4) levels higher than 1 ng/ml on the induced estrus day (Day 14) had an adverse effect on the embryo viability rate. Plasma E(2) concentrations on Day 14 were positively correlated with the number of viable embryos collected, a correlation that has not been previously reported. The present data indicate that plasma P(4) and E(2) concentrations in FSH-PGF2alpha-treated Nelore cows are useful for the identification of 2 different populations of Nelore donors and are correlated with superovulatory response and, particularly, with the number of viable embryos.  相似文献   

19.
This study examined the effects of two specific neurotransmitter receptor antagonists, naloxone (NAL; mu-opioid) and yohimbine (YOH; alpha(2)-adrenergic), on pulsatile luteinizing hormone (LH) release during the luteal phase (Day 10; Day 0 = estrus) of beef cows. Treatments were saline i.m. (C; n = 4); 1mg/kg NAL i.m. followed 3 h later by two 0.5 mg/kg injections spaced 2.5 h apart (N; n = 4); 0.2 mg/kg YOH i.v. (Y; n = 3); or combined N and Y regimens, with Y preceding N by 30 min (NY; n = 4). Blood samples were collected for 8 h before (Period I) and after (Period II) initiation of treatment. Respiration rates of Y cows were similar to C cows during Period II. However, respiration rates of N and NY animals increased 70% within 30 min of the first NAL injection. Acute LH release was not observed in response to either NAL or YOH. Pulsatile LH secretion was unchanged in N, Y and NY cows during Period II when compared with Period I. In contrast, basal and pulsatile LH secretion was inhibited in C cows during Period II. The inhibition of LH secretion in C animals following NAL indicate that the cows were under stress during Period II. Thus, these data suggest that the inhibition of LH release in stressed animals can be overcome by pharmacologic attenuation of inhibitory (N) or accentuation of stimulatory (Y) signals to LHRH-containing neurons.  相似文献   

20.
Measurement of plasma progesterone, LH and FSH were made every 6 h during the first 6 days of pregnancy in the mouse. Plasma progesterone and LH were low on day 1, minimum values being recorded at 24 h post coitus. Concentrations of both these hormones started rising during the second half on day 2 with the rise continuing during day 3 to a progesterone peak of 25 ng/ml early on day 4 and an LH peak of 37 ng/ml late on day 4. Levels of progesterone fell during day 4 and LH during day 5 to approximately half their respective peak values and then remained relatively constant over the remainder of the measurement period. Levels of FSH, which were high early on day 1 (180 ng/ml), fell sharply by midday with a small rise late in the day followed by a decline during day 2 to a minimum level of 2 ng/ml at 48 h post coitus. Early on day 3 FSH values rose to 120 ng/ml then fell to 50-60 ng/ml during the next 6 h and remained relatively stable at this level during days 4 and 5. It is suggested that LH is concerned with progesterone production and maintenance of the corpus luteum whilst FSH is concerned with the production of oestrogen required for implantation in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号