首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Folate is a source of one-carbons necessary for DNA methylation, a critical epigenetic modification necessary for genomic structure and function. The use of supplemental folic acid is widespread however; the potential influence on DNA methylation is unclear. We measured global DNA methylation using DNA extracted from samples from a population-based, double-blind randomized trial of folic acid supplementation (100, 400, 4000 μg per day) taken for 6 months; including a 3 month post-supplementation sample. We observed no changes in global DNA methylation in response to up to 4,000 μg/day for 6 months supplementation in DNA extracted from uncoagulated blood (approximates circulating blood). However, when DNA methylation was determined in coagulated samples from the same individuals at the same time, significant time, dose, and MTHFR genotype-dependent changes were observed. The baseline level of DNA methylation was the same for uncoagulated and coagulated samples; marked differences between sample types were observed only after intervention. In DNA from coagulated blood, DNA methylation decreased (-14%; P<0.001) after 1 month of supplementation and 3 months after supplement withdrawal, methylation decreased an additional 23% (P<0.001) with significant variation among individuals (max+17%; min-94%). Decreases in methylation of ≥25% (vs. <25%) after discontinuation of supplementation were strongly associated with genotype: MTHFR CC vs. TT (adjusted odds ratio [aOR] 12.9, 95%CI 6.4, 26.0). The unexpected difference in DNA methylation between DNA extracted from coagulated and uncoagulated samples in response to folic acid supplementation is an important finding for evaluating use of folic acid and investigating the potential effects of folic acid supplementation on coagulation.  相似文献   

2.
用MspⅠ/HpaⅡ酶解电泳法和高效液相色谱(HPLC)两种方法进行比较,研究了不同年龄大鼠的肝、脑细胞基因组DNA的甲基化程度。从酶解电泳图谱可观察到,肝、脑细胞基因组DNA甲基化在青年鼠和老年鼠之间没有差异。但用具有高分辨率的高效液相色谱测量DNA中5-mC的含量时发现,老年鼠脑细胞DNA甲基化程度较大年鼠的下降62%,而肝细胞DNA甲基化程度在老年鼠与青年鼠之间并没有显著差异。这些结果提示:(1)用常规的酶解电泳法所分析的DNA甲基化结果并不能反映整个基因组DNA甲基化的水平。(2)衰老过程中,不同组织DNA甲基化的改变存在差异,引起这种差异的原因可能与组织的增殖和分化程度有关。进一步分析脑细胞原癌基因c-Ha-ras的甲基化水平,无论MspⅠ酶切图谱,还是HpaⅡ酶切图谱均可观察到分子大小为19kb、7.5kb、1.3kb、0.9kb的四条阳性带,说明该基因未发生甲基化,且与年龄无关。  相似文献   

3.
Folic acid (FA) supplementation may protect from obesity and insulin resistance, the effects and mechanism of FA on chronic high-fat-diet-induced obesity-related metabolic disorders are not well elucidated. We adopted a genome-wide approach to directly examine whether FA supplementation affects the DNA methylation profile of mouse adipose tissue and identify the functional consequences of these changes. Mice were fed a high-fat diet (HFD), normal diet (ND) or an HFD supplemented with folic acid (20 μg/ml in drinking water) for 10 weeks, epididymal fat was harvested, and genome-wide DNA methylation analyses were performed using methylated DNA immunoprecipitation sequencing (MeDIP-seq). Mice exposed to the HFD expanded their adipose mass, which was accompanied by a significant increase in circulating glucose and insulin levels. FA supplementation reduced the fat mass and serum glucose levels and improved insulin resistance in HFD-fed mice. MeDIP-seq revealed distribution of differentially methylated regions (DMRs) throughout the adipocyte genome, with more hypermethylated regions in HFD mice. Methylome profiling identified DMRs associated with 3787 annotated genes from HFD mice in response to FA supplementation. Pathway analyses showed novel DNA methylation changes in adipose genes associated with insulin secretion, pancreatic secretion and type 2 diabetes. The differential DNA methylation corresponded to changes in the adipose tissue gene expression of Adcy3 and Rapgef4 in mice exposed to a diet containing FA. FA supplementation improved insulin resistance, decreased the fat mass, and induced DNA methylation and gene expression changes in genes associated with obesity and insulin secretion in obese mice fed a HFD.  相似文献   

4.
BackgroundRadiotherapy is one of the most important and common therapies for cancer patients. Selenium has been shown to be capable of reducing the side effects of radiotherapy because selenoproteins have anti-oxidative functions against reactive oxygen species that are induced by the radiation. They also function in DNA-repair and cytokine control.PurposeWe explored the benefits and risks of selenium supplementation in radiotherapy in our previous review to establish guidelines. In the current study, we expanded the search to cover recent advances in clinical studies of selenium supplementation in radiotherapy.MethodsWe conducted an initial screening in the PubMed using the MeSH terms and keywords “selenium”, “radiation”, “therapy”, and “radiotherapy” using the same methodology applied in our previous review. We identified 121 articles published between January 2013 and December 2019. We then identified eight articles (six studies) on selenium and radiotherapy by excluding 113 articles.ResultsIn selenium supplementation studies, selenium doses of 300−500 μg/day with duration of 10 days to 6 months were used. Selenium supplementation improved the selenium nutritional conditions of the patients and reduced the side effects of radiotherapy. Selenium supplementation did not reduce the effectiveness of radiotherapy, and no toxicities were reported.ConclusionThe results of our previous and current reviews showed that selenium supplementation offers specific benefits for several cancer types treated with radiotherapy. Here, we suggest a new guideline for selenium supplementation in radiotherapy. We recommend determining the selenium status of the patients before radiotherapy, and in cases of deficiency (<100 μg/L serum selenium level), selenium supplement can be beneficial.  相似文献   

5.
《Epigenetics》2013,8(4):223-226
Background: Global genomic DNA hypomethylation is a feature of genomic DNA derived from solid and hematologic tumors in animal models and human carcinogenesis. Global genomic DNA hypomethylation may be the earliest epigenetic change from a normal to a pre-malignant cell. Objectives: To test if global hypomethylation is a good marker for early detection of cancer we used a novel quantification method of 2’-deoxynucleosides to evaluate DNA methylation in liver cancer cases and controls. Methods: Frozen tissue from liver cancer patients and controls were obtained from the Cooperative Human Tissue Network. DNA was extracted using standard methods. Genomic DNA samples were boiled and treated with nuclease P1 and alkaline phosphatase. Global genomic DNA methylation patterns were obtained using HPLC for fraction separation and mass spectrometry for quantification. A two-sample t test was performed using Welch’s approximation for samples with unequal variances. A Wilcoxon rank sum test was also performed. Results: A global genomic DNA methylation index measuring methylated cytidine relative to global cytidine in the genome was significantly lower (p-value = 0.001) for all cases, mean = 2.43 (95% CI, 2.08, 2.78), when compared to controls, mean = 3.55 (95% CI, 3.16, 3.93). Discussion: A correlation between global genomic DNA methylation patterns and type of liver tissue was observed. These results add to the accumulating body of evidence suggesting that global DNA hypomethylation may be a useful biomarker to distinguish between liver cancer cases and controls.  相似文献   

6.
《Epigenetics》2013,8(4):221-230
Cell-free circulating DNA isolated from the plasma of individuals with cancer has been shown to harbor cancer-associated changes in DNA methylation, and thus it represents an attractive target for biomarker discovery. However, the reliable detection of DNA methylation changes in body fluids has proven to be technically challenging. Here we describe a novel combination of methods that allows quantitative and sensitive detection of DNA methylation in minute amounts of DNA present in body fluids (quantitative Methylation Analysis of Minute DNA amounts after whole Bisulfitome Amplification, qMAMBA). This method involves genome-wide amplification of bisulphite-modified DNA template followed by quantitative methylation detection using pyrosequencing and allows analysis of multiple genes from a small amount of starting DNA. To validate our method we used qMAMBA assays for four genes and LINE1 repetitive sequences combined with plasma DNA samples as a model system. qMAMBA offered high efficacy in the analysis of methylation levels and patterns in plasma samples with extremely small amounts of DNA and low concentrations of methylated alleles. Therefore, qMAMBA will facilitate methylation studies aiming to discover epigenetic biomarkers, and should prove particularly valuable in profiling a large sample series of body fluids from molecular epidemiology studies as well as in tracking disease in early diagnostics.  相似文献   

7.
By using a therapeutic dietary supplementation in pigs, which had developed the vitamin Ε and selenium deficiency (VESD) syndrome, the same amounts of α-tocopheryl acetate and selenium were found to be effective as under prophylactic conditions. The experiment thus supported the conclusions that the addition of 5 mg DL-α-tocopheryl acetate/kg and 135 μg selenium/kg to a diet, which contained only traces of vitamin Ε and selenium, represents a level of minimal requirement. Glutathione peroxidase activity in blood serum was used to evaluate the selenium status in pigs. A modified method for determination of tocopherol in fat tissue was described. The addition of 15 mg α-tocopheryl acetate/kg diet was demonstrated to be sufficient to maintain the tocopherol stores in body fat at an unchanged level.  相似文献   

8.
The relationship among impaired selenium status, lipid peroxidation, and liver function was examined in 19 hospitalized patients with severe alcoholic cirrhosis. Plasma selenium was found to be significantly lower (mean±SD: 54±13 μg/L) than in healthy controls (83±11 μg/L) and plasma malondialdehyde, assessed as thiobarbituric acid reactants, which reflects lipid peroxidation, was increased (2.0±1.2 μmol/L vs <1.2 μmol/L in controls). The mean14C aminopyrine breath test, an indicator of liver function, was lower than normal (2.7±1.9 vs 6.3±0.9% in controls) and found to be significantly correlated with plasma selenium (r=0.59,p<0.05). A prospective, randomized selenium supplementation trial was conducted in a group of 16 patients who received either daily 100 μg selenium as enriched yeast during 4 mo or a placebo. Among the 10 patients who completed the study, plasma selenium significantly increased in the supplemented group (n=4; before: 58±10 μg/L, and after 101±12 μg/L,p<0.01) contrary to the placebo group (n=6, before: 47±10 μg/L, after: 57±9 μg/L, n.s.),14C aminopyrine breath test improved in three out of four selenium-supplemented patients and in three out of six placebo patients, but the small number of patients did not allow statistical evaluation. These results demonstrate that low selenium status in alcoholic cirrhosis is correlated to liver function and could be improved by supplementation.  相似文献   

9.
This study evaluated selenium status in relation to lipid peroxidation, liver microsomal function, and serum lipids in humans. Serum selenium concentration, glutathione peroxidase (GSH-Px) activity, liver microsomal enzyme activity, assessed by plasma antipyrine clearance (AP-CL) rate, and serum lipids were determined in 23 healthy subjects in a double-blind placebo-controlled trial of selenium supplementation. The low selenium concentration (74.0±14.2 μg/L, mean±SD) is attributable to the low selenium content of the diet. Subjects with the lowest selenium levels (n=11) had reduced serum GSH-Px activity, AP-CL rate, high-density lipoprotein cholesterol (HDL-C), and total cholesterol (T-C) as compared with subjects with higher selenium concentrations (n=12). Low AP-CL rates were associated with low HDL-C: T-C ratios. Selenium supplementation, 96 μg/d for 2 wk, increased serum selenium, GSH-Px activity, and the HDL-C: T-C ratio. The results suggest that a low serum selenium level is associated with a decrease in liver microsomal enzyme activity and serum HDL-C and T-C concentrations. Selenium supplementation in subjects with low serum selenium may favorably influence relations between serum lipoproteins connected with the development of atherosclerotic vascular disease.  相似文献   

10.
本文比较了不同年龄的鼠肝DNA甲基化酶活力及DNA甲基化水平,发现它们均与鼠龄呈反相关。又以不同年龄的鼠肝DNA为模板,检验了其体外转录活力,发现其与鼠龄呈正相关。  相似文献   

11.
12.
Growing and laying chickens were fed graded levels of selenium in the form of sodium selenite. One day old Norwegian bred broiler chickens and 20 weeks old Norwegian bred White Leghorn chickens were divided into 5 groups each and fed a basal diet supplemented with 0, 0.1, 1.0, 3.0 or 6.0 μg Se/g for 6 and 31 weeks, respectively. At the end of the experiments significantly higher concentrations of selenium were found in the groups fed 1.0, 3.0 and 6.0 μg Se/g diet compared to the control group. Correspondingly higher concentrations of selenium were found in egg samples. The increase in egg yolk selenium was much higher than in egg white. Significant correlations were found between the amounts of selenium added to the ration and the selenium concentrations in liver, kidney, breast muscle, egg white, yolk and homogenized egg. There were no differences in body weight gain and egg production between the groups. A possible positive contribution to animal and human health of selenium supplementation of animals’ diet above the required level is discussed.  相似文献   

13.
DNA methylase from rat liver was partially purified through a DEAE sephacel column and characterized in an in vitro assay with respect to time, protein, DNA and S-adenosylmethionine curves. The Km for S-adenosylmethionine was 2.5 microM. Sodium selenium inhibited the methylation of DNA in a dose dependent fashion when added to the assay. It was also demonstrated that selenite non-competitively inhibits rat-liver DNA methylase with a Ki of 6.7 microM. Dithiothreitol had no effect on selenite inhibition and increasing amounts of DNA did not alter the inhibition. However, increasing amounts of protein overcame the inhibition, suggesting that selenite is reacting with the DNA methylase protein. DNA methylase isolated from selenite treated animals had only 43% of the activity as enzyme from control rats. It appears that selenite is a good inhibitor of DNA methylase.  相似文献   

14.
A methodology based on liquid chromatography coupled online with atomic and molecular mass spectrometry was developed for identifying trace amounts of the selenosugar methyl 2-acetamido-2-deoxy-1-seleno-β-D-galactopyranoside (SeGalNAc) in porcine liver, obtained from an animal that had not received selenium supplementation. Sample preparation was especially critical for the identification of SeGalNAc by molecular mass spectrometry. This involved liver extraction using a Tris buffer, followed by sequential centrifugations. The resulting cytosolic fraction was pre-concentrated and the low molecular weight selenium (LMWSe) fraction obtained from a size exclusion column was collected, concentrated, and subsequently analyzed using a tandem dual-column HPLC-ICP-MS system which consisted of strong cation exchange (SCX) and reversed phase (RP) columns coupled in tandem. Hepatocytosolic SeGalNAc was tentatively identified by retention time matching and spiking. Its identity was further confirmed by using the same type of chromatography on-line with atmospheric pressure chemical ionization tandem mass spectrometry operated in the selected reaction monitoring (SRM) mode. Four SRM transitions, characteristic of SeGalNAc, were monitored and their intensity ratios determined in order to confirm SeGalNAc identification. Instrument limits of detection for SeGalNAc by SCX-RP HPLC-ICP-MS and SCX-RP HPLC-APCI-MS/MS were 3.4 and 2.9 μg Se L(-1), respectively. Selenium mass balance analysis revealed that trace amounts of SeGalNAc, 2.16±0.94 μg Se kg(-1) liver (wet weight) were present in the liver cytosol, corresponding to 0.4% of the total Se content in the porcine liver.  相似文献   

15.
 以 S-腺苷酰 - L-甲硫氨酸 (SAM)为诱导物 ,在 1 0 μmol/L最佳浓度下造成 1 6%的 HL- 60细胞分化 .HPLC检测结果表明 ,细胞基因组 DNA甲基化水平升高 .通过3H甲基同位素参入法研究细胞 DNA甲基化酶活力 ,则发现在细胞分化过程中酶活力未见升高 .说明细胞基因组甲基化水平升高并不是胞内 DNA甲基化酶催化能力改变的结果 ,而是由于 SAM进入细胞提供过量甲基造成的 .  相似文献   

16.
HPLC analysis of nucleosides is important for determining total DNA methylation in plants and can be used to help characterise epigenetic changes during stress, growth and development. This is of particular interest for in vitro plant cultures as they are highly susceptible to genetic change. HPLC methodologies have been optimised for mammalian and microbial DNA, but not for plants. This study examines critical methodological factors in the HPLC analysis of plant DNA methylation using in vitro cultures of Ribes ciliatum. HPLC revealed that complete removal of RNA from plant DNA extractions is difficult using RNase (A and T1) digestions and LiCl precipitation. This suggests that base analysis should be avoided when using these RNA removal techniques, as bases from residual RNA fragments will inflate peak areas for DNA-derived bases. Nucleoside or nucleotide analysis is therefore recommended as a more suitable option as RNA and DNA constituents can be readily separated. DNA digestion was also a critical factor as methylation was under-estimated following incomplete nuclease digestion and over-estimated following incomplete phosphatase digestion. The units of enzyme required for complete DNA digestion was optimised and found to be 20-200 times less for nuclease P1 and 15 times less for alkaline phosphatase as compared with previous protocols. Digestion performance was conveniently monitored using marker peaks that indicate incomplete digestion products. This study identifies critical components of HPLC analysis and offers a comprehensive guide for the stringent analysis of DNA methylation in plants.  相似文献   

17.
Epigenetic mechanisms, including DNA methylation, are important determinants in development and disease. There is a need for technologies capable of detecting small variations in methylation levels in an accurate and reproducible manner, even if only limited amounts of DNA are available (which is the case in many studies in humans). Quantitative methylation analysis of minute DNA amounts after whole bisulfitome amplification (qMAMBA) has been proposed as an alternative, but this technique has not been adequately standardized and no comparative study against conventional methods has been performed, that includes a wide range of methylation percentages and different target assays. We designed an experiment to compare the performance of qMAMBA and bisulfite-treated genomic (non-amplified) DNA pyrosequencing. Reactions were performed in duplicate for each technique in eight different target genes, using nine artificially constructed DNA samples with methylation levels ranging between 0% and 100% with intervals of 12.5%. Cubic polynomial curves were plotted from the experimental results and the real methylation values and the resulting equation was used to estimate new corrected data points. The use of the cubic regression-based correction benefits the accuracy and the power of discrimination in methylation studies. Additionally, dispersion of the new estimated data around a y = x line (R2) served to fix a cutoff that can discriminate, with a single 9-point curve experiment, whether whole bisulfitome amplification and subsequent qMAMBA can produce accurate methylation results. Finally, even with an optimized reagent kit, DNA samples subjected to whole bisulfitome amplification enhance the preferential amplification of unmethylated alleles, and subtle changes in methylation levels cannot be detected confidently.  相似文献   

18.
《Epigenetics》2013,8(12):1349-1354
Epigenetic mechanisms, including DNA methylation, are important determinants in development and disease. There is a need for technologies capable of detecting small variations in methylation levels in an accurate and reproducible manner, even if only limited amounts of DNA are available (which is the case in many studies in humans). Quantitative methylation analysis of minute DNA amounts after whole bisulfitome amplification (qMAMBA) has been proposed as an alternative, but this technique has not been adequately standardized and no comparative study against conventional methods has been performed, that includes a wide range of methylation percentages and different target assays. We designed an experiment to compare the performance of qMAMBA and bisulfite-treated genomic (non-amplified) DNA pyrosequencing. Reactions were performed in duplicate for each technique in eight different target genes, using nine artificially constructed DNA samples with methylation levels ranging between 0% and 100% with intervals of 12.5%. Cubic polynomial curves were plotted from the experimental results and the real methylation values and the resulting equation was used to estimate new corrected data points. The use of the cubic regression-based correction benefits the accuracy and the power of discrimination in methylation studies. Additionally, dispersion of the new estimated data around a y = x line (R2) served to fix a cutoff that can discriminate, with a single 9-point curve experiment, whether whole bisulfitome amplification and subsequent qMAMBA can produce accurate methylation results. Finally, even with an optimized reagent kit, DNA samples subjected to whole bisulfitome amplification enhance the preferential amplification of unmethylated alleles, and subtle changes in methylation levels cannot be detected confidently.  相似文献   

19.
Characterization of dynamic DNA methylomes in diverse phylogenetic groups has attracted growing interest for a better understanding of the evolution of DNA methylation as well as its function and biological significance in eukaryotes. Sequencing-based methods are promising in fulfilling this task. However, none of the currently available methods offers the ‘perfect solution’, and they have limitations that prevent their application in the less studied phylogenetic groups. The recently discovered Mrr-like enzymes are appealing for new method development, owing to their ability to collect 32-bp methylated DNA fragments from the whole genome for high-throughput sequencing. Here, we have developed a simple and scalable DNA methylation profiling method (called MethylRAD) using Mrr-like enzymes. MethylRAD allows for de novo (reference-free) methylation analysis, extremely low DNA input (e.g. 1 ng) and adjustment of tag density, all of which are still unattainable for most widely used methylation profiling methods such as RRBS and MeDIP. We performed extensive analyses to validate the power and accuracy of our method in both model (plant Arabidopsis thaliana) and non-model (scallop Patinopecten yessoensis) species. We further demonstrated its great utility in identification of a gene (LPCAT1) that is potentially crucial for carotenoid accumulation in scallop adductor muscle. MethylRAD has several advantages over existing tools and fills a void in the current epigenomic toolkit by providing a universal tool that can be used for diverse research applications, e.g. from model to non-model species, from ordinary to precious samples and from small to large genomes, but at an affordable cost.  相似文献   

20.
We report a method for studying global DNA methylation based on using bisulfite treatment of DNA and simultaneous PCR of multiple DNA repetitive elements, such as Alu elements and long interspersed nucleotide elements (LINE). The PCR product, which represents a pool of approximately 15000 genomic loci, could be used for direct sequencing, selective restriction digestion or pyrosequencing, in order to quantitate DNA methylation. By restriction digestion or pyrosequencing, the assay was reproducible with a standard deviation of only 2% between assays. Using this method we found that almost two-thirds of the CpG methylation sites in Alu elements are mutated, but of the remaining methylation target sites, 87% were methylated. Due to the heavy methylation of repetitive elements, this assay was especially useful in detecting decreases in DNA methylation, and this assay was validated by examining cell lines treated with the methylation inhibitor 5-aza-2′deoxycytidine (DAC), where we found a 1–16% decrease in Alu element and 18–60% LINE methylation within 3 days of treatment. This method can be used as a surrogate marker of genome-wide methylation changes. In addition, it is less labor intensive and requires less DNA than previous methods of assessing global DNA methylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号