首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascular calcification is a prominent feature of many diseases, including atherosclerosis, and it has emerged as a powerful predictor of cardiovascular morbidity and mortality. A number of studies have examined the association between selenium and risk of cardiovascular diseases, but little is known about the role of selenium in vascular calcification. To determine the role of selenium in regulating vascular calcification, we assessed the effect of sodium selenite on oxidative-stress-enhanced vascular smooth muscle cell (VSMC) calcification and the underlying mechanism. Oxidative stress induced by xanthine/xanthine oxidase increased apoptosis, as determined by Hoechst 33342 staining and annexin V/propidium iodide staining, and it enhanced osteoblastic differentiation and calcification of VSMCs, on the basis of alkaline phosphatase activity, the expression of Runx2 and type I collagen, and calcium deposition. These effects of oxidative stress were significantly inhibited by selenite. The following processes may explain the inhibitory effects of selenite: (1) selenite significantly suppressed oxidative stress, as evidenced by the decrease of the oxidative status of the cell and lipid peroxidation levels, as well as by the increase of the total protein thiol content and the activity of the antioxidant selenoenzyme glutathione peroxidase; (2) selenite significantly attenuated oxidative-stress-induced activation of the phosphatidylinositol 3-kinase/AKT and extracellular-signal-regulated kinase signaling pathways, resulting in decreased osteoblastic differentiation of VSMCs; (3) selenite significantly inhibited oxidative-stress-activated endoplasmic reticulum stress, thereby leading to decreased apoptosis. Our results suggest a potential role of selenium in the prevention of vascular calcification, which may provide more mechanistic insights into the relationship between selenium and cardiovascular diseases.  相似文献   

2.
3.
Osteoporosis is a bone disease that leads to an increased risk of fracture. Oxidative stress may play a major role in the development of osteoporosis in part by inhibiting osteoblastic differentiation of bone marrow stromal cells (MSCs). Some evidence suggested that antioxidant selenium could prevent osteoporosis, but the underlying mechanism remains unclear. In this work, the effect of sodium selenite on H2O2-induced inhibition of osteoblastic differentiation of primary rat bone MSCs and the related mechanisms were examined. Pretreatment with selenite inhibited the adverse effect of H2O2 on osteoblastic differentiation of MSCs, based on alkaline phosphatase activity, gene expression of type I collagen and osteocalcin, and matrix mineralization. In addition, selenite pretreatment also suppressed the activation of extracellular signal-regulated kinase (ERK) induced by H2O2. The above effects were mediated by the antioxidant effect of selenite. Selenite enhanced the gene expression and activity of glutathione peroxidase, reversed the decreased total antioxidant capacity and reduced glutathione, and suppressed reactive oxygen species production and lipid peroxidation level in H2O2-treated MSCs. These results showed that selenite protected MSCs against H2O2-induced inhibition of osteoblastic differentiation through inhibiting oxidative stress and ERK activation, which provided, for the first time, the mechanistic explanation for the negative association of selenium status and risk of osteoporosis in terms of bone formation.  相似文献   

4.
Recent studies showed that hydrogen peroxide (H2O2) enhanced bone markers expression in vascular smooth muscle cells (VSMCs) implicated in osteoblastic differentiation. This study aimed at investigating the role of NAD(P)H oxidase in vascular calcification processes. A7r5 rat VSMCs were incubated with β-glycerophosphate (10 mm) or uremic serum to induce a diffuse mineralization. H2O2 production by VSMCs was determinated by chemiluminescence. NAD(P)H oxidase sub-unit (p22phox), Cbfa-1, ERK phosphorylation and bone alkaline phosphatase (ALP) expressions were measured by Western blotting. VSMCs exhibited higher production of H2O2 and early expression of p22phox with β-glycerophosphate or uremic serum within 24 h of treatment. β-glycerophosphate-induced oxidative stress was associated with Cbfa-1 expression followed by ALP expression and activity, meanwhile the VSMCs expressing ALP diffusely calcified their extracellular matrix. Interestingly, diphenyleneiodonium partly prevented the osteoblastic differentiation. Results from this model strongly suggest a major implication of vascular NAD(P)H oxidase in vascular calcification supported by VSMCs osteoblastic differentiation.  相似文献   

5.
Signaling pathways involved in oxidative stress-induced inhibition of osteoblast differentiation are not known. We showed in this report that H(2)O(2) (0.1-0.2mM)-induced oxidative stress suppressed the osteoblastic differentiation process of primary rabbit bone marrow stromal cells (BMSC) and calvarial osteoblasts, manifested by a reduction of differentiation markers including alkaline phosphatase (ALP), type I collagen, colony-forming unit-osteoprogenitor (CFU-O) formation, and nuclear phosphorylation of Runx2. H(2)O(2) treatment stimulated phospholipase C-gamma1 (PLC-gamma1), extracellular signal-regulated kinase 1/2 (ERK1/2), and NF-kappaB signaling but inhibited p38 mitogen-activated protein kinase (MAPK) activation. In the presence of 20microM PD98059 or 50microM caffeic acid phenethyl ester (CAPE), specific inhibitor for ERKs or NF-kappaB, respectively, could significantly reverse the decrease of above-mentioned osteoblastic differentiation markers elicited by H(2)O(2) (0.1mM). Furthermore, PD98059 also suppressed H(2)O(2)-stimulated NF-kappaB signaling in this process. These data suggest that ERK and ERK-dependent NF-kappaB activation is required for oxidative stress-induced inhibition of osteoblastic differentiation in rabbit BMSC and calvarial osteoblasts.  相似文献   

6.
A major cellular event in vascular calcification is the phenotypic transformation of vascular smooth muscle cells (VSMCs) into osteoblast‐like cells. After demonstrating that lanthanum chloride (LaCl3) suppresses hydrogen peroxide‐enhanced calcification in rat calcifying vascular cells (CVCs), here we report its effect on the osteoblastic differentiation of rat VSMCs, a process leading to the formation of CVCs. Cells were isolated from aortic media of male SD rats, and passages between three and eight were cultured in Dulbeccol's Modified Eagle's Medium (DMEM) containing 10% fetal bovine serum (FBS) and 10 mM β‐glycerophosphate (β‐GP) in the presence or absence of LaCl3. Exposure of cells to LaCl3 suppressed the β‐GP‐induced elevations in calcium deposition, alkaline phosphatase (ALP) activity, and Cbfa1/Runx2 expression, as well as the concomitant loss of SM α‐actin. Furthermore, LaCl3 activated the phosphorylation of extracellular signal‐regulated kinase (ERK) and c‐Jun N‐terminal kinase (JNK), and the blockage of either pathway with a specific inhibitor abolished the effects of LaCl3. In addition, pretreatment of the cells with pertussis toxin (PTx), an inhibitor of G protein‐mediated signaling pathway, repealed all the changes induced by LaCl3. These findings demonstrate that LaCl3 suppresses the β‐GP‐induced osteoblastic differentiation and calcification in rat VSMCs, and its effect is mediated by the activation of both ERK and JNK MAPK pathways via PTx‐sensitive G proteins. J. Cell. Biochem. 108: 1184–1191, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Vascular calcification is common in patients with peripheral artery diseases and coronary artery diseases. The osteoblastic differentiation of vascular smooth muscle cells (VSMCs) contributes significantly to vascular calcification. Adiponectin has been demonstrated to exert a protective effect in osteoblastic differentiation of VSMCs through regulating mTOR activity. However, the upstream and downstream signaling molecules of adiponectin-regulated mTOR signaling have not been identified in VSMCs with osteoblastic differentiation. In this study, the VSMC differentiation model was established by beta-glycerophosphate (β-GP) induction. The mineralization was identified by Alizarin Red S staining. Protein expression and phosphorylation were detected by Western blot or immunofluorescence. Adiponectin attenuated osteoblastic differentiation and mineralization of β-GP-treated VSMCs. Adiponectin inhibited osteoblastic differentiation of VSMCs through increasing the level of p-AMPKα. Pretreatment of VSMCs with AMPK inhibitor blocked while AMPK activator enhanced the effect of adiponectin on osteoblastic differentiation of VSMCs. Adiponectin upregulated TSC2 expression and downregulated mTOR and S6K1 phosphorylation in β-GP-treated VSMCs. Adiponectin treatment significantly attenuates the osteoblastic differentiation and calcification of VSMCs through modulation of AMPK–TSC2–mTOR–S6K1 signal pathway.  相似文献   

8.
Oxidative stress may regulate cellular function in multiple pathological conditions, including atherosclerosis. One feature of the atherosclerotic plaque is calcium mineral deposition, which appears to result from the differentiation of vascular osteoblastic cells, calcifying vascular cells (CVC). To determine the role of oxidative stress in regulating the activity of CVC, we treated these cells with hydrogen peroxide (H(2)O(2)) or xanthine/xanthine oxidase (XXO) and assessed their effects on intracellular oxidative stress, differentiation, and mineralization. These agents increased intracellular oxidative stress as determined by 2,7 dichlorofluorescein fluorescence, and enhanced osteoblastic differentiation of vascular cells, based on alkaline phosphatase activity and mineralization. In contrast, H(2)O(2) and XXO resulted in inhibition of differentiation markers in bone osteoblastic cells, MC3T3-E1, and marrow stromal cells, M2-10B4, while increasing oxidative stress. In addition, minimally oxidized low-density lipoprotein (MM-LDL), previously shown to enhance vascular cell and inhibit bone cell differentiation, also increased intracellular oxidative stress in the three cell types. These effects of XXO and MM-LDL were counteracted by the antioxidants Trolox and pyrrolidinedithiocarbamate. These results suggest that oxidative stress modulates differentiation of vascular and bone cells oppositely, which may explain the parallel buildup and loss of calcification, seen in vascular calcification and osteoporosis, respectively.  相似文献   

9.
Liang QH  Jiang Y  Zhu X  Cui RR  Liu GY  Liu Y  Wu SS  Liao XB  Xie H  Zhou HD  Wu XP  Yuan LQ  Liao EY 《PloS one》2012,7(4):e33126
Vascular calcification results from osteoblastic differentiation of vascular smooth muscle cells (VSMCs) and is a major risk factor for cardiovascular events. Ghrelin is a newly discovered bioactive peptide that acts as a natural endogenous ligand of the growth hormone secretagog receptor (GHSR). Several studies have identified the protective effects of ghrelin on the cardiovascular system, however research on the effects and mechanisms of ghrelin on vascular calcification is still quite rare. In this study, we determined the effect of ghrelin on osteoblastic differentiation of VSMCs and investigated the mechanism involved using the two universally accepted calcifying models of calcifying vascular smooth muscle cells (CVSMCs) and beta-glycerophosphate (beta-GP)-induced VSMCs. Our data demonstrated that ghrelin inhibits osteoblastic differentiation and mineralization of VSMCs due to decreased alkaline phosphatase (ALP) activity, Runx2 expression, bone morphogenetic protein-2 (BMP-2) expression and calcium content. Further study demonstrated that ghrelin exerted this suppression effect via an extracellular signal-related kinase (ERK)-dependent pathway and that the suppression effect of ghrelin was time dependent and dose dependent. Furthermore, inhibition of the growth hormone secretagog receptor (GHSR), the ghrelin receptor, by siRNA significantly reversed the activation of ERK by ghrelin. In conclusion, our study suggests that ghrelin may inhibit osteoblastic differentiation of VSMCs through the GHSR/ERK pathway.  相似文献   

10.
Our previous studies demonstrated that taurine inhibits osteoblastic differentiation of vascular smooth muscular cells (VSMCs) via the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway, but the underlying mechanism is not elucidated. The tyrosine kinase receptor Axl and its ligand growth arrest-specific protein 6 (Gas6) are expressed in VSMCs. Axl/Gas6 signaling system is known to inhibit VSMCs calcification. We herein showed that taurine partially restored Axl and Gas6 expression in β-glycerophosphate (β-GP)-induced VSMC calcification model. Taurine also induced activation of ERK, but not other two MAPKs including c-jun N-terminal Kinase (JNK) and p38 in VSMCs. Either knockdown of the taurine transporter (TAUT) or treatment with the ERK-specific inhibitor PD98059 blocked the activation of ERK by taurine and abolished taurine-induced Axl/Gas6 expression and calcium deposition reduction in β-GP-induced VSMC calcification model. These results demonstrate for the first time that taurine stimulates expression of Axl and Gas6 via TAUT/ERK signaling pathway in β-GP-induced VSMC calcification model.  相似文献   

11.
Liao XB  Zhou XM  Li JM  Yang JF  Tan ZP  Hu ZW  Liu W  Lu Y  Yuan LQ 《Amino acids》2008,34(4):525-530
Vascular calcification develops within atherosclerotic lesions and results from a process similar to osteogenesis. Taurine is a free β-amino acid and plays an important physiological role in mammals. We have recently demonstrated that vascular smooth muscle cells (VSMCs) express a functional taurine transporter. To evaluate the possible role of taurine in vascular calcification, we assessed its effects on osteoblastic differentiation of VSMCs in vitro. The results showed that taurine inhibited the β-glycerophosphate-induced osteoblastic differentiation of VSMCs as evidenced by both the decreasing alkaline phosphate (ALP) activity and expression of the core binding factor α1 (Cbfα1). Taurine also activated the extracellular signal-regulated protein kinase (ERK) pathway. Inhibition of ERK pathway reversed the effect of taurine on ALP activity and Cbfα1 expression. These results suggested that taurine inhibited osteoblastic differentiation of vascular cells via the ERK pathway.  相似文献   

12.
Shan PF  Lu Y  Cui RR  Jiang Y  Yuan LQ  Liao EY 《PloS one》2011,6(3):e17938
Vascular calcification, which results from a process osteoblastic differentiation of vascular smooth muscle cells (VSMCs), is a major risk factor for cardiovascular morbidity and mortality. Apelin is a recently discovered peptide that is the endogenous ligand for the orphan G-protein-coupled receptor, APJ. Several studies have identified the protective effects of apelin on the cardiovascular system. However, the effects and mechanisms of apelin on the osteoblastic differentiation of VSMCs have not been elucidated. Using a culture of calcifying vascular smooth muscle cells (CVMSCs) as a model for the study of vascular calcification, the relationship between apelin and the osteoblastic differentiation of VSMCs and the signal pathway involved were investigated. Alkaline phosphatase (ALP) activity and osteocalcin secretion were examined in CVSMCs. The involved signal pathway was studied using the extracellular signal-regulated kinase (ERK) inhibitor, PD98059, the phosphatidylinositol 3-kinase (PI3-K) inhibitor, LY294002, and APJ siRNA. The results showed that apelin inhibited ALP activity, osteocalcin secretion, and the formation of mineralized nodules. APJ protein was detected in CVSMCs, and apelin activated ERK and AKT (a downstream effector of PI3-K). Suppression of APJ with siRNA abolished the apelin-induced activation of ERK and Akt. Furthermore, inhibition of APJ expression, and the activation of ERK or PI3-K, reversed the effects of apelin on ALP activity. These results showed that apelin inhibited the osteoblastic differentiation of CVSMCs through the APJ/ERK and APJ/PI3-K/AKT signaling pathway. Apelin appears to play a protective role against arterial calcification.  相似文献   

13.
Lanthanum chloride (LaCl3) has been shown to retard the progression of established atherosclerotic lesions in animal models, and used as a calcium channel blocker in various cellular experiments. In this study, we assessed the role of lanthanum chloride (LaCl3) in H2O2-enhanced calcification in rat calcifying vascular cells (CVCs) and examined the involvement of MAPK signaling pathways. H2O2 induced growth inhibition of CVCs, as well as increases in intracellular levels of calcium and reactive oxygen species, ALP activity, apoptosis and calcium deposition. These effects of H2O2 were suppressed by pretreatment of the cells with 1 μM of LaCl3 for 2 h. In addition, H2O2 activated the phosphorylation of ERK1/2, JNK and p38 MAPK, but only the last two were associated with the ALP activity. Our findings demonstrate that H2O2-enhanced osteoblastic differentiation and apoptosis are responsible for the increased calcification in rat CVCs, and LaCl3 can counteract these effects by suppressing the activation of JNK (JNK2, but not JNK1) and p38 MAPK signaling pathway.  相似文献   

14.
15.
Metallothionein (MT), a cysteine-rich, metal-binding protein, is involved in homeostatic regulation of essential metals and protection of cells against oxidative injury. It has been shown that oxidative stress is associated with pathogenesis of osteoporosis and is capable of inhibiting osteoblastic differentiation of bone cells by nuclear factor-kappaB (NF-kappaB). In this study, the effect of MT on oxidative stress-induced inhibition of osteoblast differentiation was examined. 50-200 microM hydrogen peroxide-induced oxidative stress suppressed the osteoblastic differentiation process of primary mouse bone marrow stromal cells (BMSCs), manifested by a reduction in the differentiation marker alkaline phosphatase (ALP). The presence of exogenous MT (20-500 microM) or induction of endogenous MT by ZnCl2 (50-200 microM) could protect BMSCs against H2O2-induced inhibition of osteoblastic differentiation, manifested by a resumption of H2O2-inhibited ALP activity and ALP positive cells. Furthermore, adding exogenous MT or inducing endogenous MT expression impaired H2O2-stimulated NF-kappaB signaling. These data indicate the ability of MT to protect BMSCs against oxidative stress-induced inhibition of osteoblastic differentiation.  相似文献   

16.
17.
18.
Oxidative stress is known to be involved in growth control of vascular smooth muscle cells (VSMCs). We and others have demonstrated that angiotensin II (Ang II) has an important role in vascular remodeling. Several reports suggested that VSMC growth induced by Ang II was elicited by oxidative stress. Gax, growth arrest-specific homeobox is a homeobox gene expressed in the cardiovascular system. Over expression of Gax is demonstrated to inhibit VSMC growth. We previously reported that Ang II down-regulated Gax expression. To address the regulatory mechanism of Gax, we investigated the significance of oxidative stress in Ang II-induced suppression of Gax expression. We further examined the involvement of mitogen-activated protein kinases (MAPKs), which is crucial for cell growth and has shown to be activated by oxidative stress, on the regulation of Gax expression by Ang II. Ang II markedly augmented intracellular H2O2 production which was decreased by pretreatment with N-acetylcystein (NAC), an anti-oxidant. Ang II and H2O2 decreased Gax expression dose-dependently and these effects were blocked by administration of both NAC and pyrrolidine dithiocarbamate (PDTC), another anti-oxidant. Ang II and H2O2 induced marked activation of extracellular signal-responsive kinase1/2 (ERK1/2), which was blocked by NAC. Ang II and H2O2 also activated p38MAPK, and they were blocked by pre-treatment with NAC. However, the level of activated p38MAPK was quite low in comparison with ERK1/2. Ang II- or H2O2 -induced Gax down-regulation was significantly inhibited by PD98059, an ERK1/2 inhibitor but not SB203580, a p38MAPK inhibitor. The present results demonstrated the significance of regulation of Gax expression by redox-sensitive ERK1/2 activation.  相似文献   

19.
Vascular calcification is a major risk factor for the cardiovascular disease, yet its underlying molecular mechanisms remain to be elucidated. Recently, we identified that osteogenic signals via bone morphogenetic protein (BMP)-2 exerted by vascular smooth muscle cells (VSMCs) play a crucial role in the formation of atherosclerotic plaque calcification. Here we report a synergistic interaction between macrophages and VSMCs with respect to plaque calcification. Treatment with conditioned medium (CM) of macrophages dramatically enhanced BMP-2 expression in VSMCs, while it substantially reduced the expression of matrix Gla-protein (MGP) that inhibits the BMP-2 osteogenic signaling. As a result, macrophages significantly accelerated the osteoblastic differentiation of C2C12 cells induced by VSMC-CM. In contrast, macrophage-CM did not enhance the osteoblastic gene expressions in VSMCs, indicating that macrophages unlikely induced the osteoblastic trans-differentiation of VSMCs. We then examined the effect of recombinant TNF-α and IL-1β on the VSMC-derived osteogenic signals. Similar to the macrophage-CM, both cytokines enhanced BMP-2 expression and reduced MGP expression in VSMCs. Nevertheless, only the neutralization of TNF-α but not IL-1β attenuated the effect of macrophage-CM on the expression of these genes in VSMCs, due to the very low concentration of IL-1β in the macrophage-CM. On the other hand, VSMCs significantly enhanced IL-1β expression in macrophages, which might in turn accelerate the VSMC-mediated osteogenic signals. Together, we identified a unique role of macrophages in the formation of plaque calcification in coordination with VSMCs. This interaction between macrophages and VSMCs is a potential therapeutic target to treat and prevent the atherosclerotic plaque calcification.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号