首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 327 毫秒
1.
《Journal of molecular biology》2019,431(17):3056-3067
PRL-3 belongs to the PRL phosphatase family. Its physiological role remains unclear, but many studies have identified that PRL-3 is a marker of cancer progression and shown it to be associated with metastasis. Evidence implicating PRL-3 in various elements of the metastatic process, such as the cell cycle, survival, angiogenesis, adhesion, cytoskeleton remodeling, EMT, motility and invasion, has been reported. Furthermore, several molecules acting as direct or indirect substrates have been identified. However, this information was obtained in many different studies, and it remains difficult to see the larger picture. We therefore systematically collected the published information together and used it to develop a comprehensive signaling network map. By analyzing this network map, we were able to retrieve the signaling pathways via which PRL-3 governs the key steps of the metastatic process in cancer. In this review, we summarize current knowledge of the role of PRL-3 in cancer and the molecular mechanisms involved. We also provide the web-based open-source PRL-3 signaling network map, for use in further studies.  相似文献   

2.
3.
The PRL phosphatases, which constitute a subfamily of the protein tyrosine phosphatases (PTPs), are implicated in oncogenic and metastatic processes. Here, we report the crystal structure of human PRL-1 determined at 2.7A resolution. The crystal structure reveals the shallow active-site pocket with highly hydrophobic character. A structural comparison with the previously determined NMR structure of PRL-3 exhibits significant differences in the active-site region. In the PRL-1 structure, a sulfate ion is bound to the active-site, providing stabilizing interactions to maintain the canonically found active conformation of PTPs, whereas the NMR structure exhibits an open conformation of the active-site. We also found that PRL-1 forms a trimer in the crystal and the trimer exists in the membrane fraction of cells, suggesting the possible biological regulation of PRL-1 activity by oligomerization. The detailed structural information on the active enzyme conformation and regulation of PRL-1 provides the structural basis for the development of potential inhibitors of PRL enzymes.  相似文献   

4.
蛋白酪氨酸磷酸酶PRL-3是近年发现的蛋白酪氨酸磷酸酶家族成员,能促进肿瘤细胞的侵袭、转移及上皮细胞间质转型,提示PRL-3可能在肿瘤发生发展及诱导肿瘤干细胞生成中发挥重要作用.由于侧群(SP)细胞具有许多干细胞的性质,SP细胞分选是目前筛选和分离获得干细胞或前体细胞常用的有效方法.为探讨PRL-3在诱导干细胞生成中的潜在作用,本文在建立过表达PRL-3的人胃癌细胞BGC823的基础上,通过SP分选和CCK-8的方法分析PRL-3对BGC823细胞中SP细胞的比例以及对化疗药物耐受性的影响.结果提示,高表达PRL-3提高BGC823中SP细胞的比例(2.5% vs 9.4%),同时增加BGC823对化疗药物紫杉醇和顺铂的耐受性(相对于对照细胞,其耐药指数分别为1.75和1.29).由于SP细胞的产生和细胞耐药性的提高与ABC家族基因表达水平上调密切相关,通过定量 RT-PCR和Western印迹检测发现,PRL-3能上调ABCB1和ABCG2的表达.上述研究结果表明,PRL-3有可能通过上调ABCB1和ABCG2的表达,增加胃癌细胞BGC823的SP细胞比例并增加其对化疗药物的耐受性.  相似文献   

5.
Ezrin is a specific and direct target of protein tyrosine phosphatase PRL-3   总被引:4,自引:0,他引:4  
Phosphatase of Regenerating Liver-3 (PRL-3) is a small protein tyrosine phosphatase considered an appealing therapeutic cancer target due to its involvement in metastatic progression. However, despite its importance, the direct molecular targets of PRL-3 action are not yet known. Here we report the identification of Ezrin as a specific and direct cellular substrate of PRL-3. In HCT116 colon cancer cell line, Ezrin was identified among the cellular proteins whose phosphorylation level decreased upon ectopic over-expression of wtPRL-3 but not of catalytically inactive PRL-3 mutants. Although PRL-3 over-expression in HCT116 cells appeared to affect Ezrin phosphorylation status at both tyrosine residues and Thr567, suppression of the endogenous protein by RNA interference pointed to Ezrin-Thr567 as the residue primarily affected by PRL-3 action. In vitro dephosphorylation assays suggested Ezrin-Thr567 as a direct substrate of PRL-3 also proving this enzyme as belonging to the dual specificity phosphatase family. Furthermore, the same effect on levels of pThr567, but not on pTyr residues, was observed in endothelial cells pointing to Ezrin-pThr567 dephosphorylation as a mean through which PRL-3 exerts its function in promoting tumor progression as well as in the establishment of the new vasculature needed for tumor survival and expansion.  相似文献   

6.
磷酸激酶因参与多种信号通路的异常激活导致肿瘤生成和发展而受到重视,但与磷酸激酶功能相对的磷酸酶却因与底物作用的瞬时性、缺乏底物特异性等多种原因较少得到深入研究。近年来,随着研究手段的不断进步,越来越多的结果显示,磷酸酶在疾病的发生发展中同样扮演了重要角色,如肝再生磷酸酶3(PRL-3),其异常高表达在实验动物、细胞培养和患者中均被证实与癌症发生、转移和预后密切相关。目前,关于其作用机制研究虽有一定进展,但仍有许多问题需要进一步解释。本文总结了迄今为止对PRL-3结构、功能和基因表达调控的研究进展,分析了PRL-3在癌症转移中的作用机制,并简要归纳了靶向PRL-3进行癌症治疗的一些最新现状。  相似文献   

7.
Sun JP  Wang WQ  Yang H  Liu S  Liang F  Fedorov AA  Almo SC  Zhang ZY 《Biochemistry》2005,44(36):12009-12021
The PRL (phosphatase of regenerating liver) phosphatases constitute a novel class of small, prenylated phosphatases that are implicated in promoting cell growth, differentiation, and tumor invasion, and represent attractive targets for anticancer therapy. Here we describe the crystal structures of native PRL-1 as well as the catalytically inactive mutant PRL-1/C104S in complex with sulfate. PRL-1 exists as a trimer in the crystalline state, burying 1140 A2 of accessible surface area at each dimer interface. Trimerization creates a large, bipartite membrane-binding surface in which the exposed C-terminal basic residues could cooperate with the adjacent prenylation group to anchor PRL-1 on the acidic inner membrane. Structural and kinetic analyses place PRL-1 in the family of dual specificity phopsphatases with closest structural similarity to the Cdc14 phosphatase and provide a molecular basis for catalytic activation of the PRL phosphatases. Finally, native PRL-1 is crystallized in an oxidized form in which a disulfide is formed between the active site Cys104 and a neighboring residue Cys49, which blocks both substrate binding and catalysis. Biochemical studies in solution and in the cell support a potential regulatory role of this intramolecular disulfide bond formation in response to reactive oxygen species such as H2O2.  相似文献   

8.
PRL-3在乳腺癌中的表达及意义   总被引:4,自引:0,他引:4  
目的研究蛋白酪氨酸磷酸酶PRL-3在乳腺癌组织中的表达及其与乳腺癌血管形成和临床病理特征之间的关系。方法采用免疫组织化学S-P法检测72例乳腺癌石蜡包埋组织,WesternBlot方法检测15例新鲜乳腺癌组织及5例癌旁乳腺组织中PRL-3的表达情况,并应用χ2检验和t检验等方法分析PRL-3在乳腺癌组织中表达的意义及其与临床病理特征之间的关系。结果免疫组化结果显示PRL-3表达定位于乳腺癌组织和癌旁乳腺组织的细胞质,间质无着色。癌组织与癌旁乳腺组织的阳性率为分别为69·4%和35%,癌组织中PRL-3的表达明显高于癌旁组织,具有统计学意义(P=0·005)。统计分析显示,PRL-3的表达与临床分期(P=0·001)、淋巴结转移(P=0·008)呈明显正相关,R值分别为0·360和0·299;而与患者的年龄、性别、家族史、肿瘤大小、ER、PR和C-erBb-2阳性率无明显关系。WesternBlot结果亦证实PRL-3在乳腺癌中的表达较癌旁乳腺组织明显增高(P=0·044),且有淋巴结转移组表达高于无淋巴结转移组(P=0·040)。72例乳腺癌中,PRL-3蛋白阳性组MVD的均值高于PRL-3阴性组,两者之间差异显著(P=0·001)。结论PRL-3的表达水平在一定程度上提示乳腺癌的转移潜能,并可能通过促进肿瘤血管形成来促进乳腺癌的生长和转移。  相似文献   

9.
Prolactin (PRL) gene expression in three strains of GH cells (rat pituitary tumor cells) has been quantitated by measurement of: (a) intracellular and extracellular PRL, (b) cytoplasmic translatable PRL-specific mRNA (mRNAPRL), and (c) molecular hybridization of cytoplasmic poly(A) RNA to cDNAPRL (DNA complementary to mRNAPRL). Three GH cell lines utilized in this investigation were a PRL-producing (PRL+) strain, GH4C1, a PRL nonproducing 5-bromo-deoxyuridine resistnat (PRL- BrdUrdr) strain, F1BGH12C1, and a new strain, 928-9b, derived by fusion of PRL+ cells with a nuclear monolayer of the PRL-, BrdUrdr GH cell strain. PRL production is a characteristic of 928-9b cells, but the level of PRL production (2-4 micrograms/mg protein/24 h) is much lower than that of the PRL+ strain, GH4C1 (15-25 micrograms/mg protein/24 h). Levels of cytoplasmic translatable mRNAPRL and cytoplasmic PRL-RNA sequences quantitated with a cDNAPRL probe were also much lower in 928-9b as compared to the PRL+ parent. PRL-RNA sequences could not be detected in the PRL- strain. Thyrotopin-releasing hormone (TRH) stimulates PRL synthesis about threefold and inhibit a growth hormone (GH) synthesis 72% in the PRL+ strain. TRH has no effect on the synthesis of either PRL or GH in the 928-9b strain, although TRH receptors could be detected in these cells. Stimulation of PRL synthesis in the PRL+ strain by TRH could be correlated with increases in levels of cytoplasmic translatable mRNAPRL and increases in cytoplasmic PRL-RNA sequences. These results demonstrate that the graded expression of the PRL gene at the basal level, and in response to TRH, is caused by the regulated production of specific mRNA, i.e., mRNAPRL in these three GH cell strains.  相似文献   

10.
Phosphatase of regenerating liver-3 (PRL-3) has been proposed to promote the invasion of tumor cells to metastasis sites. However, the effect of PRL-3 on spontaneous metastasis has not been clearly demonstrated, and whether PRL-3 could become a new therapeutic target in malignant tumor is still unknown. In this study, we used PRL-3 siRNA as a molecular medicine to specifically reduce the expression of PRL-3 in B16-BL6 cells, a highly metastatic melanoma cell line. In vitro, PRL-3 siRNA significantly inhibited cell adhesion and migration, but had no effect on cell proliferation. In the spontaneous metastatic tumor model in vivo, PRL-3 siRNA treatment remarkably inhibited the proliferation of primary tumor, prevented tumor cells from invading the draining lymph nodes, and prolonged the life span of mice. Therefore, our results indicate that PRL-3 plays a critical role in promoting the whole process of spontaneous metastasis and tumor growth initiation, and that inhibiting PRL-3 will improve malignant tumor therapy.  相似文献   

11.
Protein of regenerating liver (PRL)-1, -2, and -3 comprise a subgroup of closely related protein-tyrosine phosphatases featuring a C-terminal prenylation motif conforming to either the consensus sequence for farnesylation, CAAX, or geranylgeranylation, CCXX. Yeast two-hybrid screening for PRL-2-interacting proteins identified the beta-subunit of Rab geranylgeranyltransferase II (betaGGT II). The specific interaction of betaGGT II with PRL-2 but not with PRL-1 or -3 occurred in yeast and HeLa cells. Chimeric PRL-1/-2 molecules were tested for their interaction with betaGGT II, and revealed that the C-terminal region of PRL-2 is required for interaction, possibly the PRL variable region immediately preceeding the CAAX box. Additionally, PRL-2 prenylation is prequisite for betaGGT II binding. As prenylated PRL-2 is localized to the early endosome, we propose that this is where the interaction occurs. PRL-2 is not a substrate for betaGGT II, as isoprenoid analysis showed that PRL-2 was solely farnesylated in vivo. Co-expression of the alpha-subunit (alpha) of GGT II, betaGGT II, and PRL-2 resulted in alpha/betaGGT II heterodimer formation and prevented PRL-2 binding. Expression of PRL-2 alone inhibited the endogenous alpha/betaGGT II activity in HeLa cells. Together, these results indicate that the binding of alphaGGT II and PRL-2 to betaGGT II is mutually exclusive, and suggest that PRL-2 may function as a regulator of GGT II activity.  相似文献   

12.
Prolactin (PRL) is the primary hormone that, in conjunction with local factors, leads to lobuloalveolar development during pregnancy. Recently, receptor activator of NF-kappaB ligand (RANKL) has been identified as one of the effector molecules essential for lobuloalveolar development. The molecular mechanisms by which PRL may induce RANKL expression have not been carefully examined. Here we report that RANKL expression in the mammary gland is developmentally regulated and dependent on PRL and progesterone, whereas its receptor RANK (receptor activator of NF-kappaB) and decoy receptor osteoprotegerin (OPG) are constitutively expressed at all stages in both normal (PRL+/-) and prolactin knockout (PRL-/-) mice. In vitro, PRL markedly increased RANKL expression in primary mammary epithelial cells and RANKL-luciferase reporter activity in CHOD6 cells, which constitutively express the PRL receptor. We identified a gamma-interferon activation sequence (GAS) in the region between residues -965 to -725 of the RANKL promoter, which conferred a PRL response. Using dominant negative mutants of recombinant Jak2 and Stat5 in CHOD6 cells, and by reconstituting the Jak2/Stat5 pathway in COS7 cells, we determined that Jak2 and Stat5a are essential for the PRL-induced RANKL expression in mammary gland.  相似文献   

13.
The 5-bromodeoxyuridine-resistant (BrdUrdr) derivative (F1BGH12C1) of prolactin nonproducing (PRL-) rat pituitary tumor cell-subclone GH12C1, synthesize prolactin (PRL) in the presence of the drug. Analysis of nuclear RNA isolated from BrdUrd treated F1BHG12C1 cells demonstrated several high molecular weight RNA PRL sequences, similar to those observed in the nuclear RNA fraction of PRL producing (PRL+) GH3 cells. No such RNAPRL sequences could be detected in nuclear RNA fraction of untreated F1 BGH12C1 cells. PRL sequences in the genome of GH3 (PRL+), GH12C1 (PRL-) and F1BGH12C1 (PRL-, BrdUrdr) GH cells could be identified by blot analysis in 4.8-5.2kb fragment of restriction endonuclease, Hind III digested DNA. Both PRL+ and PRL- cells seem to have approximately the same level of PRL gene sequences in total cell DNA. However Hind III digested DNA of BrdUrd treated F1BGH12C cells revealed the presence of significantly higher levels of PRL gene sequences, in comparison, to that observed in total DNA of untreated cells. The increased level of PRL gene sequences was dependent on the period of drug treatment and a parallel increase in the cytoplasmic RNAPRL sequences was also observed.  相似文献   

14.
15.
Pituitary adenylate cyclase-activating polypeptide (PACAP) plays a role in mediating growth hormone and gonadotropin release in the teleost pituitary. In the present study, we examined the immunohistochemical relationship between PACAP nerve fibers and prolactin (PRL)- and somatolactin (SL)-producing cells in the goldfish pituitary. Nerve fibers with PACAP-like immunoreactivity (PACAP-LI) were identified in the neurohypophysis in close proximity to cells containing PRL-LI or SL-LI. Several cells with PRL-LI or SL-LI showed PACAP receptor (PAC(1)R)-LI. The cell immunoblot assay method was used to examine the effect of PACAP on PRL and SL release from dispersed goldfish pituitary cells. Treatment with PACAP increased the immunoblot area for PRL- and SL-LI from individual pituitary cells in a dose-dependent manner. The effect of PACAP on the expression of mRNAs for PRL and SL in cultured pituitary cells was also tested. Semiquantitative analysis revealed that the expression of SL mRNA, but not PRL mRNA, was increased significantly by the treatment with PACAP. The effect of PACAP on intracellular calcium mobilization in isolated pituitary cells was also investigated using confocal laser-scanning microscopy. The amplitude of Ca(2+) mobilization in individual cells showing PRL- or SL-LI was increased significantly following exposure of cells to PACAP. These results indicate that PACAP can potentially function as a hypophysiotropic factor mediating PRL and SL release in the goldfish pituitary.  相似文献   

16.
Phosphatases and kinases are the cellular signal transduction enzymes that control protein phosphorylation. PRL phosphatases constitute a novel class of small (20 kDa), prenylated phosphatases with oncogenic activity. In particular, PRL-3 is consistently overexpressed in liver metastasis in colorectal cancer cells and represents a new therapeutic target. Here, we present the solution structure of PRL-3, the first structure of a PRL phosphatase. The structure places PRL phosphatases in the class of dual specificity phosphatases with closest structural homology to the VHR phosphatase. The structure, coupled with kinetic studies of site-directed mutants, identifies functionally important residues and reveals unique features, differentiating PRLs from other phosphatases. These differences include an unusually hydrophobic active site without the catalytically important serine/threonine found in most other phosphatases. The position of the general acid loop indicates the presence of conformational change upon catalysis. The studies also identify a potential regulatory role of Cys(49) that forms an intramolecular disulfide bond with the catalytic Cys(104) even under mildly reducing conditions. Molecular modeling of the highly homologous PRL-1 and PRL-2 phosphatases revealed unique surface elements that are potentially important for specificity.  相似文献   

17.
PRL-1 is one of three closely related protein-tyrosine phosphatases, which are characterized by C-terminal farnesylation. Recent reports suggest that they are involved in the regulation of cell proliferation and transformation. However, their biological function has not yet been determined. Here we show that PRL-1 mRNA is overexpressed in a number of human tumor cell lines, including HeLa cells. Using immunofluorescence we studied the subcellular localization of endogenous PRL-1, and our results demonstrate that PRL-1 exhibits cell cycle-dependent localization; in non-mitotic HeLa cells, PRL-1 is localized to the endoplasmic reticulum in a farnesylation-dependent manner. In mitotic cells PRL-1 relocalizes to the centrosomes and the spindle apparatus, proximal to the centrosomes, in a farnesylation-independent manner. Conditional expression of a catalytic domain mutant in HeLa cells results in a delay in the progression of cells through mitosis but has no effect on other phases of the cell cycle. Further, expression of a farnesylation site PRL-1 mutant results in mitotic defects, characterized by chromosomal bridges in anaphase and lagging chromosomes, without affecting spindle checkpoint function. Together, these results suggest that PRL-1 function is regulated in a cell cycle-dependent manner and implicate PRL-1 in regulating progression through mitosis, possibly by modulating spindle dynamics.  相似文献   

18.
High expression of PRL-3, a protein tyrosine phosphatase, is proved to be associated with lymph node metastasis in gastric carcinoma from previous studies. In this paper, we examined the relationship between PRL-3 expression and peritoneal metastasis in gastric carcinoma. We applied the artificial miRNA (pCMV-PRL3miRNA), which is based on the murine miR-155 sequence, to efficiently silence the target gene expression of PRL-3 in SGC7901 gastric cancer cells at both mRNA and protein levels. Then we observed that, in vitro, pCMV-PRL3miRNA significantly depressed the SGC7901 cell invasion and migration independent of cellular proliferation. In vivo, PRL-3 knockdown effectively suppressed the growth of peritoneal metastases and improved the prognosis in nude mice. Therefore, we concluded that artificial miRNA can depress the expression of PRL-3, and that PRL-3 might be a potential therapeutic target for gastric cancer peritoneal metastasis.  相似文献   

19.
20.
The mechanisms controlling tyrosine phosphorylation of cellular proteins are important in the regulation of many cellular processes, including development and differentiation. Protein tyrosine phosphatases (PTPases) may be as important as protein tyrosine kinases (PTKs) in these processes. PRL-1 is a distinct PTPase originally identified as an immediate-early gene in liver regeneration whose expression is associated with growth in some tissues but with differentiation in others. We now demonstrate that the PRL-1 protein is expressed during development in a number of digestive epithelial tissues. It is expressed at variable time points in the developing intestine, but its expression is limited to the developing villus enterocytes. In the gastric epithelium, PRL-1 expression in the adult is restricted to zymogen cells. PRL-1 is also expressed in the developing liver and esophagus and in the epithelia of the kidney and lung. In each of these contexts, the expression of PRL-1 is associated with terminal differentiation, suggesting that it may play a role in this important developmental process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号