首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The serine-rich (SR) protein family is involved in the pre-mRNA splicing process and the DNA sequences of the corresponding genes are highly conserved in the metazoan organisms. The mammalian SR proteins consist of one or two characteristic RNA binding domains (RBD), containing the signature sequences RDAEDA and SWQDLKD and a RS (arginine/serine-rich) domain. We used the amino acid and nucleotide sequences deposited in GenBank and Swiss-Prot databases to perform a phylogenetic analysis using bioinformatics tools. The results of the phylogenetic trees suggest that this family has evolved by several gene duplication events as a result of a positive selection mechanism.  相似文献   

2.
The LEM motif is a sequence of 40-50 amino acids that has been identified in a number of non-related proteins of the inner nuclear membrane including the lamina-associated polypeptides 2 (LAP2), emerin, MAN1 and the Drosophila protein otefin. This evolutionary conserved sequence motif can mediate via the interaction with the small protein BAF the binding of LEM-domain proteins to DNA. Taking advantage of its sequenced genome we analyzed whether Drosophila possesses beside otefin additional genes coding for proteins with a LEM motif. A putative candidate gene was the annotated gene CG9424 which we named Bocksbeutel. Of all putative Drosophila LEM-domain proteins, otefin and Bocksbeutel exhibited the highest similarity in the LEM motif (53% identical amino acids). The Bocksbeutel gene can code for two isoforms of 399 and 351 amino acids that are produced by alternative splicing. In the alpha-isoform a transmembrane domain is localized close to the carboxyterminus. This segment is absent in the shorter beta-isoform. By RT-PCR we could show that in the embryo the mRNA coding for the alpha-isoform and in significantly lower amounts the mRNA coding for the beta-isoform are expressed. When expressed in transfected cells as GFP fusion proteins, the beta-isoform is localized predominantly in the nucleoplasm and the alpha-isoform is targeted to the nuclear envelope, indicating that Bocksbeutel-alpha is localized in the inner nuclear membrane. Bocksbeutel-alpha is the predominant isoform expressed in cells, larvae, and flies. Indirect immunofluorescence with Bocksbeutel-specific antibodies on tissues and cultured cells revealed that Bocksbeutel proteins are localized in the nuclear envelope and in the cytoplasm. By RNA interference we have down-regulated the expression of Bocksbeutel, BAF, otefin, and lamin DmO in Drosophila Kc167 cells. The down-regulation of Bocksbeutel and otefin had no influence on the viability of Kc167 cells and the intracellular localization of all other nuclear and nuclear envelope proteins analyzed. In contrast, when lamin DmO was reduced by RNAi the distribution of Bocksbeutel and otefin in the nuclear envelope of Kc167 cells was significantly altered. We conclude that the two LEM-domain proteins Bocksbeutel and otefin are no limiting components for the maintenance of the nuclear architecture in cultured Drosophila cells at interphase.  相似文献   

3.
A set of 43 337 splice junction pairs was extracted from mammalian GenBank annotated genes. Expressed sequence tag (EST) sequences support 22 489 of them. Of these, 98.71% contain canonical dinucleotides GT and AG for donor and acceptor sites, respectively; 0.56% hold non-canonical GC-AG splice site pairs; and the remaining 0.73% occurs in a lot of small groups (with a maximum size of 0.05%). Studying these groups we observe that many of them contain splicing dinucleotides shifted from the annotated splice junction by one position. After close examination of such cases we present a new classification consisting of only eight observed types of splice site pairs (out of 256 a priori possible combinations). EST alignments allow us to verify the exonic part of the splice sites, but many non-canonical cases may be due to intron sequencing errors. This idea is given substantial support when we compare the sequences of human genes having non-canonical splice sites deposited in GenBank by high throughput genome sequencing projects (HTG). A high proportion (156 out of 171) of the human non-canonical and EST-supported splice site sequences had a clear match in the human HTG. They can be classified after corrections as: 79 GC-AG pairs (of which one was an error that corrected to GC-AG), 61 errors that were corrected to GT-AG canonical pairs, six AT-AC pairs (of which two were errors that corrected to AT-AC), one case was produced from non-existent intron, seven cases were found in HTG that were deposited to GenBank and finally there were only two cases left of supported non-canonical splice sites. If we assume that approximately the same situation is true for the whole set of annotated mammalian non-canonical splice sites, then the 99.24% of splice site pairs should be GT-AG, 0.69% GC-AG, 0.05% AT-AC and finally only 0.02% could consist of other types of non-canonical splice sites. We analyze several characteristics of EST-verified splice sites and build weight matrices for the major groups, which can be incorporated into gene prediction programs. We also present a set of EST-verified canonical splice sites larger by two orders of magnitude than the current one (22 199 entries versus approximately 600) and finally, a set of 290 EST-supported non-canonical splice sites. Both sets should be significant for future investigations of the splicing mechanism.  相似文献   

4.
Pinin (pnn) is an SR-related protein that is ubiquitously expressed in most cell types and functions in regulating pre-mRNA splicing and mRNA export. Previously, we demonstrated that pnn is expressed in all tissues during mouse embryonic development with highest levels of expression in the central nervous system (CNS). Here we show that pnn and other SR proteins including SC35 are differentially expressed in the adult mouse CNS, displaying cell type-specific distribution patterns. Immunohistochemical analysis of whole-brain sections showed that levels of pnn and SR proteins expression were very low or nonexistent in the corpus callosum and white matter of cerebellum and spinal cord. Double-immunostaining with antibodies specific to neuron or glial cells showed that most astrocytes and microglia expressed neither pnn nor SR proteins. In contrast, oligodendrocytes and neurons expressed moderate and high levels, respectively, of both pnn and SR proteins. These results suggest that astrocytes are unique among cell types of neuroblast origin in terms of expression SR family proteins. Our results pave the way for future studies of the functional roles of pnn and SR family proteins in adults.  相似文献   

5.
6.
7.
Barta A  Kalyna M  Reddy AS 《The Plant cell》2010,22(9):2926-2929
Growing interest in alternative splicing in plants and the extensive sequencing of new plant genomes necessitate more precise definition and classification of genes coding for splicing factors. SR proteins are a family of RNA binding proteins, which function as essential factors for constitutive and alternative splicing. We propose a unified nomenclature for plant SR proteins, taking into account the newly revised nomenclature of the mammalian SR proteins and a number of plant-specific properties of the plant proteins. We identify six subfamilies of SR proteins in Arabidopsis thaliana and rice (Oryza sativa), three of which are plant specific. The proposed subdivision of plant SR proteins into different subfamilies will allow grouping of paralogous proteins and simple assignment of newly discovered SR orthologs from other plant species and will promote functional comparisons in diverse plant species.  相似文献   

8.
Cell-cycle checkpoint proteins maintain genomic integrity by sensing damaged DNA and initiating DNA repair or apoptosis. RAD1 is a checkpoint protein involved in the sensing of damaged DNA and is a part of the 9-1-1 complex. In this project rainbow trout rad1 (rtrad1) was cloned, sequenced, expressed as a recombinant protein and anti-rtRAD1 antibodies were developed. RAD1 protein levels were characterized in various rainbow trout tissues. It was determined that an 840 bp open-reading frame encodes 279 aa with a predicted protein size of 31 kDa. The rtRAD1 amino-acid sequence is highly conserved and contains conserved exonuclease and leucine zipper domains. RT-PCR was used to identify three non-canonical splice variants of rtrad1, two of which are capable of forming functional proteins. The rad1 splice variant that encodes an 18 kDa protein appears to be abundant in rainbow trout spleen, heart and gill tissue and in the RTgill-W1 cell-line. Based on the genomic rtrad1 sequence the splice variants contain only partial exons which are consistent with the splicing of rad1 variants in mammals. This is the first time that rad1 has been fully characterized in a fish species.  相似文献   

9.
10.
11.
Correct identification of all introns is necessary to discern the protein-coding potential of a eukaryotic genome. The existence of most of the spliceosomal introns predicted in the genome of Saccharomyces cerevisiae remains unsupported by molecular evidence. We tested the intron predictions for 87 introns predicted to be present in non-ribosomal protein genes, more than a third of all known or suspected introns in the yeast genome. Evidence supporting 61 of these predictions was obtained, 20 predicted intron sequences were not spliced and six predictions identified an intron-containing region but failed to specify the correct splice sites, yielding a successful prediction rate of <80%. Alternative splicing has not been previously described for this organism, and we identified two genes (YKL186C/MTR2 and YML034W) which encode alternatively spliced mRNAs; YKL186C/MTR2 produces at least five different spliced mRNAs. One gene (YGR225W/SPO70) has an intron whose removal is activated during meiosis under control of the MER1 gene. We found eight new introns, suggesting that numerous introns still remain to be discovered. The results show that correct prediction of introns remains a significant barrier to understanding the structure, function and coding capacity of eukaryotic genomes, even in a supposedly simple system like yeast.  相似文献   

12.
TFIID is a multiprotein complex composed of the TATA binding protein (TBP) and TBP-associated factors (TAF(II)s). The binding of TFIID to the promoter is the first step of RNA polymerase II preinitiation complex assembly on protein-coding genes. Yeast (y) and human (h) TFIID complexes contain 10 to 13 TAF(II)s. Biochemical studies suggested that the Drosophila (d) TFIID complexes contain only eight TAF(II)s, leaving a number of yeast and human TAF(II)s (e.g., hTAF(II)55, hTAF(II)30, and hTAF(II)18) without known Drosophila homologues. We demonstrate that Drosophila has not one but two hTAF(II)30 homologues, dTAF(II)16 and dTAF(II)24, which are encoded by two adjacent genes. These two genes are localized in a head-to-head orientation, and their 5' extremities overlap. We show that these novel dTAF(II)s are expressed and that they are both associated with TBP and other bona fide dTAF(II)s in dTFIID complexes. dTAF(II)24, but not dTAF(II)16, was also found to be associated with the histone acetyltransferase (HAT) dGCN5. Thus, dTAF(II)16 and dTAF(II)24 are functional homologues of hTAF(II)30, and this is the first demonstration that a TAF(II)-GCN5-HAT complex exists in Drosophila. The two dTAF(II)s are differentially expressed during embryogenesis and can be detected in both nuclei and cytoplasm of the cells. These results together indicate that dTAF(II)16 and dTAF(II)24 may have similar but not identical functions.  相似文献   

13.
Protease inhibitors (PIs) are generally small proteins that have been identified in plants. The wip1 gene codes for wound-induced protein, which is similar to serine PIs of the Bowman-Birk family (BBIs). In this study, we analyzed 10 wip1 genes of Turkish maize varieties to understand the structure and characteristics of the wip1 genes and proteins in maize. We found that genetic variability of wip1 genes was higher (π: 0.0173) than reported in previous studies. Tajima’s D value was found to be positive (1.73), suggesting over-dominant selection in these loci. According to phylogenetic analysis of wip1 proteins, monocot and dicot BBIs were separated independently, and Turkish varieties were clustered with each other generally. The 3D structures of wip1 proteins indicated that several wip1 proteins had structural divergence in active loops, containing various numbers of cysteine residues ranging between 7 and 9. Particularly, Cys74 was identified in Kocbey and Gozdem varieties, whereas Cys98 was only in the Gozdem variety. Also, a critical serine residue (Ser98) was observed in two varieties — Antbey and Batem Efe. These results can contribute to understanding the role of wip1 genes and corresponding proteins in maize.  相似文献   

14.
The serine/arginine (SR)-rich protein family is phylogenetically conserved and plays significant roles in mRNA maturation, including alternative splicing (AS). In Drosophila, SR protein B52 functions as a splicing activator to regulate AS events in several genes, including the Down syndrome cell adhesion molecule (Dscam). In this study, the B52 gene from Litopenaeus vannamei (LvB52) was isolated and characterized. The open reading frame of LvB52 contains 1149 bp encoding 382 amino acids. The deduced LvB52 protein includes two RNA recognition motifs (RRM) at the N terminus and an arginine/serine rich domain (RS rich domain) at the C terminus, and thus shows the expected RRM1-RRM2-RS domain architecture. Tissue tropism analysis revealed that LvB52 is expressed in most tissues and at high levels in stomach and muscle. After white spot syndrome virus (WSSV) infection, a parallel increase in the expression of total LvDscam, tail-less LvDscam, membrane-bound LvDscam and LvB52 was observed after 24 hpi. Conversely, there was no obvious change in the expression of the AS repressor Lvhrp36. In vivo dsRNA silencing of LvB52 induced element 3 exclusion in the LvDscam cytoplasmic tail, but no abnormal exclusions in the Ig2–Ig3 region or the transmembrane region. We also found that the exon of the Ig7 region was quite often excluded, even in normal shrimp, and that LvB52 silencing was associated with a decrease in the variability of this region. Taken together, our data suggest that LvB52 acts as a splicing activator that regulates AS events in LvDscam.  相似文献   

15.
16.
17.
18.
The identification of proteins involved in pollen germination and tube growth is important for fundamental studies of fertility and reproduction in flowering plants. We used 2-DE and MALDI-TOF-MS to identify differentially expressed proteins in mature (P0) and 1-h germinated (P1) maize pollen. Among about 470 proteins separated in 2D gels, the abundances of 26 protein spots changed (up- or down-regulation) between P0 and P1. The 13 up-regulated protein spots were mainly involved in tube wall modification, actin cytoskeleton organization, energy metabolism, signaling, protein folding and degradation. In particular, pectin methylesterase, inorganic pyrophosphatase, glucose-1-phosphate uridylyltransferase and rab GDP dissociation inhibitor α are highly up-regulated, suggesting their potential role in pollen tube growth. The down-regulated 13 protein spots mainly include defense-related proteins, pollen allergens and some metabolic enzymes. This study would contribute to the understanding of the changes in protein expression associated with pollen tube development.  相似文献   

19.
We have characterized two RNA-binding proteins, of apparent molecular masses of approximately 40 and 35 kDa, which possess a single N-terminal RNA-recognition motif (RRM) followed by a C-terminal domain rich in serine-arginine dipeptides. Their primary structures resemble the single-RRM serine-arginine (SR) protein, SC35; however their functional effects are quite distinctive. The 40-kDa protein cannot complement SR protein-deficient HeLa cell S100 extract and showed a dominant negative effect in vitro against the authentic SR proteins, SF2/ASF and SC35. Interestingly, the 40- and 35-kDa proteins antagonize SR proteins and activate the most distal alternative 5' splice site of adenovirus E1A pre-mRNA in vivo, an activity that is similar to that characterized previously for the heterogeneous nuclear ribonucleoprotein particles A/B group of proteins. A series of recombinant chimeric proteins consisting of domains from these proteins and SC35 in various combinations showed that the RRM, but not the C-terminal domain rich in serine-arginine dipeptides, has a dominant role in this activity. Because of the similarity to SR proteins we have named these proteins SRrp40 and SRrp35, respectively, for SR-repressor proteins of approximately 40 and approximately 35 kDa. Both factors show tissue- and cell type-specific patterns of expression. We propose that these two proteins are SR protein-like alternative splicing regulators that antagonize authentic SR proteins in the modulation of alternative 5' splice site choice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号