首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of the Rev protein from human immunodeficiency virus type 1 (HIV-1) with the nucleocytoplasmic mRNA-transport system was investigated. In gel-shift assay, the recombinant Rev protein used in this study selectively bound to the Rev-responsive element (RRE) region of HIV-1 env-specific RNA. Nitrocellulose-filter-binding studies and Northern/Western-blotting experiments revealed an association constant of approximately 1 x 10(10) M-1. The Rev protein also strongly bound to isolated nuclear envelopes from H9 cells, containing the poly(A)-binding site (= mRNA carrier) and the nucleoside triphosphatase (= NTPase), which are thought to be involved in nuclear export of poly(A)-rich mRNA. Binding of 125I-Rev to a 110-kDa nuclear-envelope protein, the putative mRNA carrier, could be demonstrated in in vitro experiments. Both efflux of cellular poly(A)-rich RNA, such as actin RNA [but not efflux of poly(A)-free RNA] from isolated nuclei and the nuclear-envelope NTPase activity were strongly inhibited by Rev protein. On the other hand, transport of viral env RNA, containing the Rev-responsive element, was increased in the presence of Rev. Studying the release of RNA from closed nuclear-envelope vesicles containing entrapped RNA, the action of Rev was found to occur at the level of translocation of RNA through the nuclear pore. Evidence is presented that Rev down-regulates the NTPase-driven transport of mRNA lacking the RRE, most likely via binding to the mRNA carrier within the envelope. In contrast to the efflux of RRE-free RNA, ATP-dependent efflux of RRE-containing RNA from resealed nuclear-envelope vesicles was found to be increased, if the RNA was entrapped in the vesicles together with Rev protein. In addition, it was found that phosphorylated Rev, which is transported together with RRE-containing RNA out of the vesicles, becomes dephosphorylated during transport. In the vesicle experiments it is demonstrated for the first time that a protein selectively channels a specific mRNA across the nuclear-envelope pore complex.  相似文献   

2.
3.
4.
5.
6.
7.
The major nucleoside triphosphatase of rat liver nuclear scaffold, a 46 kD protein thought to participate in nucleocytoplasmic RNA translocation, is distinct from immunologically-identified scaffold actin on Western blots, has a substantially different amino acid composition, and its enzymatic activity is not affected by anti-actin antibodies. Thus, although the contractile protein actin is found in nuclear scaffold and appears to interact with RNA, it is not associated with the nucleoside triphosphatase activity in such preparations.  相似文献   

8.
The Rev axis of HIV autoregulation is one of two critical viral regulatory pathways required for expression of viral genomic and mRNA and for replication. Consequently it is an attractive therapeutic target. Previous studies have investigated the anti-HIV efficacy of targeting to the RRE (the viral RNA target sequence of the Rev axis) a trans-dominant negative inhibitor mutant Rev, M10. In this study we have fused a portion of the influenza virus NS1 protein (which normally inhibits polyA(+) mRNA transport and splicing) to the Rev M10 gene while deleting the NS1 poly(A) binding region. The resulting chimera demonstrates specific and enhanced inhibition of viral-RRE-containing RNA expression.  相似文献   

9.
Minimal Rev-response element for type 1 human immunodeficiency virus.   总被引:22,自引:9,他引:13       下载免费PDF全文
Rev protein regulates nuclear export of viral mRNAs that contain a 240-base RNA sequence termed the Rev-response element (RRE). We demonstrate that an 88-base truncated RRE encompassing a known Rev binding site can mediate Rev responsiveness in vivo. Two tandem copies of this mutant function as efficiently as the full-length RRE.  相似文献   

10.
11.
The Rev transactivator protein of human immunodeficiency virus type 1 (HIV-1) is required for protein expression from the HIV-1 RNAs which contain a binding site for the Rev protein, termed the Rev-responsive element (RRE). This transactivator acts both at the level of splicing/transport of nuclear RNAs and at the level of translation of cytoplasmic RNAs. We used a monoclonal antibody specific for the HIV-1 Rev protein to immunoprecipitate cellular extracts from HIV-1-infected and -transfected cells. High levels of specific binding of wild-type Rev to the RRE-containing RNAs were found in cytoplasmic, but not nuclear, extracts from these cells. A Rev mutant which lacked both nuclear and cytoplasmic Rev function but retained RNA binding in vivo was generated. This binding was detectable with both nuclear and cytoplasmic extracts. These results verify the existence of direct binding of Rev to HIV-1 RNAs in vivo and conclusively prove that binding of Rev is not sufficient for nuclear or cytoplasmic Rev function. The results also support a direct role for Rev in the nuclear export and translation of HIV-1 RNAs.  相似文献   

12.
13.
Recognition of the human immunodeficiency virus Rev-responsive element (RRE) RNA by the Rev protein is an essential step in the viral life cycle. Formation of the Rev-RRE complex signals nucleocytoplasmic export of unspliced and partially spliced viral RNA. Essential components of the complex have been localized to a minimal arginine-rich Rev peptide and stem IIB of RRE. In vitro selection studies have identified a synthetic peptide known as RSG 1.2 that binds with better specificity and affinity to RRE than the Rev peptide. NMR structures of both peptide-RNA complexes of Rev and RSG 1.2 bound to RRE stem IIB have been solved and reveal gross structural differences between the two bound complexes. Molecular dynamics simulations of the Rev and RSG 1.2 peptides in complex with RRE stem IIB have been simulated to better understand on an atomic level how two arginine-rich peptides of similar length recognize the same sequence of RNA with such different structural motifs. While the Rev peptide employs some base-specific hydrogen bonding for recognition of RRE, shape recognition, through contact with the sugar-phosphate backbone, and cation-pi interactions are also important. Molecular dynamics simulations suggest that RSG 1.2 binds more tightly to the RRE sequence than Rev by forming more base-specific contacts, using water to mediate peptide-RNA contacts, and is held in place by a strong salt bridge network spanning the major groove of the RNA.  相似文献   

14.
15.
16.
The human immunodeficiency virus type 1 (HIV) Rev protein is thought to be involved in the export of unspliced or singly spliced viral mRNAs from the nucleus to the cytoplasm. This function is mediated by a sequence-specific interaction with a cis-acting RNA element, the Rev response element (RRE), present in these intron-containing RNAs. To identify possible host proteins involved in Rev function, we fractionated nuclear cell extracts with a Rev affinity column. A single, tightly associated Rev-binding protein was identified; this protein is the mammalian nucleolar protein B23. The interaction between HIV Rev and B23 is very specific, as it was observed in complex cell extracts. The complex is also very stable toward dissociation by high salt concentrations. Despite the stability of the Rev-B23 protein complex, the addition of RRE, but not control RNA, led to the displacement of B23 and the formation of a specific Rev-RRE complex. The mammalian nucleolar protein B23 or its amphibian counterpart No38 is believed to function as a shuttle receptor for the nuclear import of ribosomal proteins. B23 may also serve as a shuttle for the import of HIV Rev from the cytoplasm into the nucleus or nucleolus to allow further rounds of export of RRE-containing viral RNAs.  相似文献   

17.
The Rev protein of human immunodeficiency virus type 1 (HIV-1) is essential for the nucleocytoplasmic transport of unspliced and partially spliced HIV mRNAs containing the Rev response element (RRE). In a yeast two-hybrid screen of a HeLa cell-derived cDNA expression library for human factors interacting with the Rev leucine-rich nuclear export sequence (NES), we identified a kinesin-like protein, REBP (Rev/Rex effector binding protein), highly homologous to Kid, the carboxy-terminal 75-residue region of which interacts specifically with the NESs of HIV-1 Rev, human T-cell leukemia virus type 1 Rex, and equine infectious anemia virus Rev but not with functionally inactive mutants thereof. REBP is a nuclear protein that colocalizes with Rev in the nucleoplasm and nuclear periphery of transfected cells. Specific, albeit weak, interaction between REBP and Rev could be demonstrated in coimmunoprecipitation assays in BSC-40 cells. REBP can modestly enhance Rev-dependent RRE-linked reporter gene expression both independently and in cooperation with the nucleoporin cofactor Rab/hRIP. Thus, REBP displays the characteristics expected of an authentic mediator of Rev NES function and may play a role in RRE RNA transport during HIV infection.  相似文献   

18.
Expression of the structural proteins of human immunodeficiency virus type 1 (HIV-1) requires the direct interaction of multiple copies of the viral protein Rev with its target RNA, the Rev response element (RRE). RRE is a complex 351-nt RNA that is highly structured and located within the viral env gene. During initial Rev-RRE recognition, Rev binds with high affinity to a bubble structure located within the RRE RNA stem-loop II. We have used a site-specific photocrosslinking method based on 6-thioguanosine (6-thioG) photochemistry to probe the conformation of the high-affinity binding site of RRE RNA and its interactions with Rev protein under physiological conditions. A minimal duplex RNA containing the bubble region of RRE and 12 flanking base pairs was synthesized chemically. Two different RRE constructs with a single photoactive nucleoside (6-thio-dG or 6-thioG) at position 47 or 48 were synthesized. Upon UV irradiation, 6-thioG at both positions formed interstrand covalent crosslinks in RRE RNA. Mapping of crosslink sites by RNA sequencing revealed that 6-thioG at position 47 or 48 crosslinked to A73. In the presence of Rev, both RNA-RNA and RNA-protein crosslinks were observed, however, the RNA-RNA crosslink site was unchanged. Our results provide direct evidence that, during RNA-protein recognition, Rev is in close proximity to O6 of G47 and G48 in the major groove of RRE RNA. Our results also show that the bubble region of RRE RNA has a biologically relevant structure where G47 and G48 are in close proximity to A73 and this RNA structure is not changed significantly upon Rev binding. We propose that Rev protein recognizes and binds to specific structural elements of RRE RNA containing non-Watson-Crick base pairs and such structures could be a determinant for recognition by other RNA-binding proteins. Our site-specific crosslinking methods provide a general approach to capture dynamic states of biologically relevant RNA structures that are otherwise missed by NMR and X-ray crystallographic studies.  相似文献   

19.
The main function attributed to the Rev proteins of immunodeficiency viruses is the shuttling of viral RNAs containing the Rev responsive element (RRE) via the CRM-1 export pathway from the nucleus to the cytoplasm. This restricts expression of structural proteins to the late phase of the lentiviral replication cycle. Using Rev-independent gag-pol expression plasmids of HIV-1 and simian immunodeficiency virus and lentiviral vector constructs, we have observed that HIV-1 and simian immunodeficiency virus Rev enhanced RNA encapsidation 20- to 70-fold, correlating well with the effect of Rev on vector titers. In contrast, cytoplasmic vector RNA levels were only marginally affected by Rev. Binding of Rev to the RRE or to a heterologous RNA element was required for Rev-mediated enhancement of RNA encapsidation. In addition to specific interactions of nucleocapsid with the packaging signal at the 5' end of the genome, the Rev/RRE system provides a second mechanism contributing to preferential encapsidation of genomic lentiviral RNA.  相似文献   

20.
The Rev protein of human immunodeficiency virus type 1 (HIV-1) differentially transactivates the expression of viral structural proteins by allowing the accumulation of unspliced and singly spliced viral mRNA in the cytoplasm. The cis-acting RNA target sequence for the Rev protein, termed the Rev response element (RRE), is present in the env gene and is predicted to form a highly ordered RNA secondary structure. Recent data indicate that Rev directly binds to RRE and, further, that this binding can be mapped to a 90-nucleotide subfragment at the 5' end of RRE. We now report that RRE also binds specifically and predominantly to a nuclear factor of approximately 56 kD. Mapping of the binding site reveals that the same subfragment that binds Rev also binds this nuclear factor. We designate this protein as NFRRE for nuclear factor, RRE binding. Rev and NFRRE appear to bind simultaneously to RRE. NFRRE is widely distributed in various mammalian cells. We speculate that this factor plays an important role in Rev-mediated transactivation and is likely to be involved in the processing or transport of cellular mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号