首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cytotoxic T lymphocytes (CTL) were induced in C57BL/6 and (C57BL/6 X DBA/2)F1 mice after immunization with the Armstrong strain of lymphocytic choriomeningitis virus (LCMV-Arm) and were cloned by limiting dilution in vitro. The cytotoxic activity of these clones was LCMV specific and H-2 restricted. All clones induced in C57BL/6 (H-2b) mice with LCMV-Arm lysed target cells infected with each of five distinct strains of LCMV (Arm, Traub , WE, Pasteur, and UBC ), suggesting recognition of common regions of viral proteins in association with H-2b molecules. In contrast, one clone obtained from (B6 X D2)F1 mice and restricted to the H-2d haplotype only lysed cells infected with one of three strains of virus (Arm, Traub , WE) but not two others (Pasteur, UBC ), suggesting recognition of variable regions of viral proteins in the context of H-2d molecules. To assess the fine specificity for H-2 molecules, we tested H-2Kb-restricted CTL clones for their ability to kill LCMV-infected target cells bearing mutations in their H-2Kb, and we tested clones presumed to be restricted to the H-2Db region for their ability to all LCMV targets cells bearing a mutation in the H-2Db region. Several different patterns of killing of the mutant targets were observed, indicating that a number of different epitopes on the H-2b molecules were used as restricting determinants for LCMV antigen recognition by CTL. Thus, cross-reactive viral determinants were recognized in the context of several different restricting determinants. Mutations in the N or C1 domains of the H-2 molecule affected recognition by a single LCMV specific CTL clone. One implication of this result is that CTL recognize a conformational determinant on the H-2 molecule formed by the association of virus antigen(s) with H-2. An alternate explanation is that one site on the H-2 molecule is involved in the interaction of viral antigens with H-2, whereas another may serve as a binding site for the CTL receptor.  相似文献   

2.
CD8 T cells drive the protective immune response to lymphocytic choriomeningitis virus (LCMV) infection and are thus a determining force in the selection of viral variants. To examine how escape mutations affect the presentation and recognition of overlapping T-cell epitopes, we isolated an LCMV variant that is not recognized by T-cell receptor (TCR)-transgenic H-2Db-restricted LCMV GP33-41-specific cytotoxic T lymphocytes (CTL). The variant virus carried a single-amino-acid substitution (valine to alanine) at position 35 of the viral glycoprotein. This region of the LCMV glycoprotein encodes both the Db-restricted GP33-43 epitope and a second epitope (GP34-42) presented by the Kb molecule. We determined that the V-to-A CTL escape mutant failed to induce a Db GP33-43-specific CTL response and that Db-restricted GP33-43-specific CTL induced by the wild-type LCMV strain were unable to kill target cells infected with the variant LCMV strain. In contrast, the Kb-restricted response was much less affected. We found that the V-to-A substitution severely impaired peptide binding to Db but not to Kb molecules. Strikingly, the V-to-A mutation did not change any of the anchor residues, and the dramatic effect on binding was therefore unexpected. The strong decrease in Db binding explains why the variant virus escapes the Db GP33-43-specific response but still elicits the Kb-restricted response. These findings also illustrate that mutations within regions encoding overlapping T-cell epitopes can differentially affect the presentation and recognition of individual epitopes.  相似文献   

3.
Analyses with segmental reassortants of lymphocytic choriomeningitis virus (LCMV) RNA have shown that cytotoxic T lymphocytes (CTL) are induced by and recognize proteins encoded by the viral short segment, which specifies two virus structural proteins, glycoprotein (GP) and nucleoprotein (NP). Expression of cDNA copies of these genes in vaccinia virus vectors demonstrates that C57BL/6 (H2bb) mice mount significant CTL responses to both GP and NP. We have used LCMV-specific H2bb-restricted CTL clones and a family of serial C-terminal truncations of the LCMV GP expressed in vaccinia virus to map the precise specificities of the anti-GP clones. Of the 18 CTL clones studied, 1 recognizes NP and the other 17 recognize GP. The reactivities of 14 of the 17 anti-GP CTL clones against the deleted GP molecules have been fully characterized, and two clear patterns of anti-GP activity have emerged, defining at least two CTL epitopes. The first epitope, recognized by only two of the clones, lies within GP residues 1 to 218. The second is recognized by all 12 of the remaining clones and was mapped, by using the GP deletions, to a 22-amino-acid region comprising GP residues 272 to 293. A synthetic peptide representing this area sensitized uninfected syngeneic target cells to lysis both by bulk CTL obtained from the spleen after a primary immunization and by appropriate CTL clones. Two sets of criteria are available which are said to identify potential T-cell epitopes, one based on primary amino acid sequence and the second based on protein secondary structure. Neither of these predictive schemes would have identified region 272 to 293 as a CTL recognition motif, indicating that such programs are of limited usefulness as presently conceived. Analysis of the CTL clones shows clearly that all three families (anti-NP and anti-GP 1 to 218 and 272 to 293) direct efficient cross-reactive killing against a variety of serologically distinct strains of LCMV.  相似文献   

4.
Isolates of lymphocytic choriomeningitis virus (LCMV) that elicit a cytotoxic T-lymphocyte response (CTL+) have been compared with isolates that suppress the CTL response (CTL-) in an effort to map this phenotype. A single amino acid change in the glycoprotein of the LCMV Armstrong (ARM) strain is consistently associated with the CTL- trait and the ability of the virus to persist (P+). The CTL+ P- parental strain spontaneously gives rise to CTL- P+ variants within lymphoid tissues of mice persistently infected from birth. To map the structural basis of the phenotype, the complete RNA sequence of LCMV ARM 53b (CTL+) was compared with that of its variant ARM clone 13 (CTL-). Differences in 5 of 10,600 nucleotides were found. Three changes are noted in the large L RNA segment, and two are noted in the small S RNA segment. Only two of the changes distinguishing CTL+ from CTL- isolates affect amino acid coding: lysine to glutamine at amino acid 1079 of the polymerase protein, and phenylalanine to leucine at amino acid 260 of the envelope glycoprotein (GP). We also analyzed two additional CTL- variants and four spontaneous CTL+ revertants. All three CTL- variants differ from the original CTL+ parental strain at GP amino acid 260, indicating that this amino acid change is consistently associated with the CTL- phenotype. By contrast the other four mutations in LCMV are not associated with the CTL- phenotype. Sequence analysis of the coding regions of four CTL+ revertants of ARM clone 13 did not reveal back mutations at the GP 260 locus. This finding indicates that the GP 260 mutation is necessary but not sufficient for a CTL- P+ phenotype and that the reversion to CTL+ P- is likely either due to secondary mutations in other regions of the viral genome or to quasispecies within the revertant population that make significant contributions to the phenotype.  相似文献   

5.
Lymphocytic choriomeningitis virus (LCMV) Armstrong (ARM) strain-specific, H-2d-restricted CTL effectively lyse syngeneic targets infected by LCMV ARM, but show reduced killing of LCMV Pasteur (PAST) strain-infected H-2d cells. We have reassorted the two RNA segments, large (L) and small (S), of LCMV ARM and PAST to generate LCMV with genotypes of L ARM/S PAST and L PAST/S ARM. By using these reassortants and both LCMV primary CTL and CTL clones, we report that the induction, recognition, and lysis of LCMV-specific CTL depend on the S RNA segment and the genes it encodes.  相似文献   

6.
Cytotoxic T lymphocytes (CTL) recognize virus peptide fragments complexed with class I major histocompatibility complex (MHC) molecules on the surface of virus-infected cells. Recognition is mediated by a membrane-bound T-cell receptor (TCR) composed of alpha and beta chains. Studies of the CTL response to lymphocytic choriomeningitis virus (LCMV) in H-2b mice have revealed that three distinct viral epitopes are recognized by CTL of the H-2b haplotype and that all of the three epitopes are restricted by the Db MHC molecule. The immunodominant Db-restricted CTL epitope, located at LCMV glycoprotein amino acids 278 to 286, was earlier noted to be recognized by TCRs that consistently contained V alpha 4 segments but had heterogeneous V beta segments. Here we show that CTL clones recognizing the other two H-2Db-restricted epitopes, LCMV glycoprotein amino acids 34 to 40 and nucleoprotein amino acids 397 to 407 (defined in this study), utilize TCR alpha chains which do not belong to the V alpha 4 subfamily. Hence, usage of V alpha and V beta in the TCRs recognizing peptide fragments from one virus restricted by a single MHC molecule is not sufficiently homogeneous to allow manipulation of the anti-viral CTL response at the level of TCRs. The diversity of anti-viral CTL likely provides the host with a wider option for attacking virus-infected cells and prevents the emergence of virus escape mutants that might arise if TCRs specific for the virus were homogeneous.  相似文献   

7.
Lymphocytic choriomeningitis virus (LCMV), the prototype arenavirus, and Lassa virus (LASV), the causative agent of Lassa fever (LF), have extensive strain diversity and significant variations in pathogenicity for humans and experimental animals. The WE strain of LCMV (LCMV-WE), but not the Armstrong (Arm) strain, induces a fatal LF-like disease in rhesus macaques. We also demonstrated that LASV infection of human macrophages and endothelial cells resulted in reduced levels of proinflammatory cytokines. Here we have shown that cells infected with LASV or with LCMV-WE suppressed Toll-like receptor 2 (TLR2)-dependent proinflammatory cytokine responses. The persisting isolate LCMV clone 13 (CL13) also failed to stimulate interleukin-6 (IL-6) in macrophages. In contrast, nonpathogenic Mopeia virus, which is a genetic relative of LASV and LCMV-Arm induced robust responses that were TLR2/Mal dependent, required virus replication, and were enhanced by CD14. Superinfection experiments demonstrated that the WE strain of LCMV inhibited the Arm-mediated IL-8 response during the early stage of infection. In cells transfected with the NF-κB-luciferase reporter, infection with LCMV-Arm resulted in the induction of NF-κB, but cells infected with LCMV-WE and CL13 did not. These results suggest that pathogenic arenaviruses suppress NF-κB-mediated proinflammatory cytokine responses in infected cells.  相似文献   

8.
Cytotoxic T lymphocytes (CTL) play an important role in recovery from a number of viral infections. They are also implicated in virus-induced immunopathology as best demonstrated in lymphocytic choriomeningitis virus (LCMV) infection of adult immunocompetent mice. In the present study, the structure of the T-cell receptor (TCR) in LCMV-specific CTL in C57BL/6 (B6) mice was investigated. Spleen T cells obtained from LCMV-infected mice were cultured in vitro with virus-infected stimulator cells and then stained with anti-TCR V beta antibodies. A skewing of V beta usage was noticeable in T cells enriched for their reactivity to LCMV, suggesting that particular V segments are important for the recognition of LCMV T-cell epitopes in B6 mice. To gain more detailed information on the structure of the TCR specific for LCMV epitopes, we studied CTL clones. It has been shown that approximately 90% of LCMV-reactive CTL clones generated in H-2b mice are specific for a short peptide fragment of the LCMV glycoprotein, residues 278 to 286, recognized in the context of the class I major histocompatibility complex molecule, Db. Four CTL clones possessing the specificity were randomly selected from a collection of clones, and their TCR genes were isolated by cDNA cloning or by the anchored polymerase chain reaction. All four clones were found to use V alpha gene segments belonging to the V alpha 4 subfamily. By RNA blot analysis, two more clones with the same specificity were also shown to express the V alpha 4 mRNA. In contrast, three different V beta gene segments were used among the four clones examined. J beta 2.1 was used by three of the clones. Although amino acid sequences in the V(D)J junctional regions were dissimilar, aspartic acid was found in the V alpha J alpha and/or V beta D beta J beta junctions of all four of these clones, suggesting that this residue is involved in binding the LCMV fragment. Restricted usage of V alpha and possibly J beta segments in the CTL response to a major T-cell epitope of LCMV raises the possibility that immunopathology in LCMV infection can be treated with antibodies directed against such TCR segments. Thus, similar analysis of the TCR in other virus infections is warranted and may lead to therapeutic strategies for immunopathology due to virus infections.  相似文献   

9.
A unique epitope on the gag protein of human immunodeficiency virus type 1 (HIV-1), located at amino acid 145 to 150, has been mapped by using a CD8+ cytotoxic T-lymphocyte (CTL) clone. This epitope is highly conserved among 18 HIV-1 strains. The HIV-1 gag-specific human leukocyte antigen (HLA) class I-restricted CD8+ CTL clone was generated from fresh peripheral blood mononuclear cells of an HIV-seropositive donor by stimulation with gamma-irradiated allogeneic peripheral blood mononuclear cells in the presence of an anti-CD3 monoclonal antibody and recombinant interleukin-2. This gag-specific CTL clone killed autologous target cells infected with a recombinant vaccinia virus containing the gag gene of HIV-1 and target cells pulsed with an authentic p24gag construct expressed in Escherichia coli. Fine specificity was determined by using a panel of overlapping 30-amino-acid-long synthetic peptides and subsequently using smaller peptides to precisely map the CTL domain on p24. The epitope is on a highly conserved region, and it overlaps with a major B-cell epitope of gag. This CD8+ T-cell epitope is restricted by HLA-Cw3, which has not been previously identified as a restricting element for human CTL responses.  相似文献   

10.
Infection with virus variants exhibiting changes in the peptide sequences defining immunodominant determinants that abolish recognition by antiviral cytotoxic T cells (CTL) presents a considerable challenge to the antiviral T-cell immune system and may enable some viruses to persist in hosts. The potential importance of such variants with respect to mechanisms of viral persistence and disease pathogenesis was assessed by infecting adult mice with variants of lymphocytic choriomeningitis virus (LCMV) strain WE. These variants were selected in vivo or in vitro for resistance to lysis by CD8+ H-2b-restricted antiviral CTL. The majority of anti-LCMV CTL in infected H-2b mice recognize epitopes defined by residues 32 to 42 and 275 to 289 (epitopes 32-42 and 275-289) of the LCMV glycoprotein or 397 to 407 of the viral nucleoprotein. The 8.7 variant exhibits a change in the epitope 32-42 (Val-35-->Leu), and variant CL1.2 exhibits a change in the epitope 275-289 (Asn-280-->Asp) of the wild-type LCMV-WE. The double-mutated 8.7-B23 variant had the variation of 8.7 and an additional change located in the epitope 275-289 (Asn-280-->Ser). The 8.7 variant peptide with unchanged anchor positions bound efficiently to H-2Db and H-2Kb molecules but induced only a very weak CTL response. CTL epitope 275-289 of CL1.2 and 8.7-B23 altered at predicted anchor residues were unable to bind Db molecules and were also not recognized by antiviral CTL. Infection of C57BL/6 mice (H-2b) with the variants exhibiting mutations of one of the CTL epitopes, i.e., 8.7 or CL1.2, induced CTL responses specific for the unmutated epitopes comparable with those induced by infection with WE, and these responses were sufficient to eliminate virus from the host. In contrast, infection with the double-mutated variant 8.7-B23 induced CTL activity that was reduced by a factor of about 50-fold compared with wild-type LCMV. Consequently, high doses (10(7) PFU intravenously) of this virus were eliminated slowly and only by about day 100 after infection. 8.7-B23 failed to cause lethal lymphocytic choriomeningitis after intracerebral infection with a dose of > 10(4) PFU in C57BL/6 mice (but not in mice of nonselecting H-2d haplotype); with the other variants or wild-type LCMV, doses greater than 10(6) to 10(7) PFU were necessary to avoid lethal choriomeningitis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Several dominant T-cell receptors of cytotoxic T-lymphocyte (CTL) clones specific for FBL-3 tumor antigen were clonally amplified in mixed lymphocyte tumor cell cultures derived from an individual immune mouse. Every CTL clone analyzed had a common specificity for a single epitope in the precursor to cell membrane-associated nonstructural gag-encoded protein, Pr75gag, which can be minimally identified by nine amino acid residues, SIVLCCLCL. This epitope is located within the hydrophobic signal sequence motif that mediates translocation of the protein into the endoplasmic reticulum. These novel observations suggest that expression of Pr75gag in FBL-3 tumor cells led to the amplification of CTLs which recognize the signal sequence of the nonstructural gag-encoded glycoprotein precursor.  相似文献   

12.
CD4+ T cells play an important role in regulating the immune response; their contribution to virus clearance is variable. Mice that lack CD4+ T cells (CD4-/- mice) and are therefore unable to produce neutralizing antibodies cleared viscero-lymphotropic lymphocytic choriomeningitis virus (LCMV) strain WE when infected intravenously with a low dose (2 x 10(2) PFU) because of an effective CD8+ cytotoxic T-cell (CTL) response. In contrast, infection with a high dose (2 x 10(6) PFU) of LCMV strain WE led to expansion of antiviral CTL, which disappeared in CD4-/- mice; in contrast, CD4+ T-cell-competent mice developed antiviral memory CTL. This exhaustion of specific CTL caused viral persistence in CD4-/- mice, whereas CD4+ T-cell-competent mice eliminated the virus. After infection of CD4-/- mice with the faster-replicating LCMV strain DOCILE, abrogation of CTL response and establishment of viral persistence developed after infection with a low dose (5 x 10(2) PFU), i.e., an about 100-fold lower dose than in CD(4+)-competent control mice. These results show that absence of T help enhances establishment of an LCMV carrier state in selected situations.  相似文献   

13.
Infection of neonatal mice with lymphocytic choriomeningitis virus (LCMV) strain Armstrong (ARM) results in a lifelong persistent infection. Viral variants (cytotoxic T lymphocyte [CTL] negative, persistence positive [CTL- P+]) can be isolated from the lymphoid tissues of such mice. Adult mice inoculated with these CTL- P+ viruses fail to generate sufficient cytotoxic T lymphocytes to clear the acute infection and become persistently infected. By contrast, inoculation of a similar dose of the parental ARM virus (CTL+ P-) into adult mice leads to the generation of a vigorous virus-specific CTL response that clears the infection. Sequence analysis revealed a phenylalanine (Phe)-to-Leucine (Leu) change at amino acid 260 of the viral glycoprotein (GP) as a marker for variant viruses with the CTL- P+ phenotype. An RNA PCR assay that detects the variant GP sequence and thus allows kinetic studies of the selection of the Leu at position 260 was developed. We found that although CTL- P+ viruses are known to be lymphotropic, mature T and B cells were not required for the generation and selection of the Leu at GP amino acid 260. Kinetically, in mice infected at birth with LCMV ARM, as early as 3 weeks postinfection the Phe-to-Leu change was found in virus in the serum. By 5 weeks, viral nucleic acid obtained from peritoneal macrophages, spleen, lymph nodes, and liver showed the Phe-to-Leu change. At 2 months postinfection, the Leu change was detected in virus from the thymus, heart, lung, and kidney. By contrast, virus replicating in the central nervous system showed only minimal levels of the Leu change by 4 months and as long as 1 year postinfection. In vitro studies showed that the parental LCMV ARM CTL+ P- virus replicates more efficiently and outcompetes CTL- P+ virus in a cultured neuronal cell line, indicating that differential growth properties in neurons are likely the basis for the selection of the parental virus over the CTL- P+ variant in the brain.  相似文献   

14.
The Armstrong CA 1371 (ARM) and WE strains of lymphocytic choriomeningitis virus (LCMV) differ in the ability to produce disease in adult guinea pigs. Infection with the ARM strain is not lethal, even at high virus doses (greater than 10,000 PFU), whereas the WE strain causes 100% mortality even at low doses (less than 10 PFU). To determine the genetic basis of this virulence, intertypic reassortants were made between the ARM and WE strains of LCMV. The two reassortants with the genotypes WE/ARM (L segment of WE and S segment of ARM) and ARM/WE (L segment of ARM and S segment of WE) were tested for their pathogenicity in guinea pigs. The ARM/WE reassortant was avirulent like the ARM/ARM parental strain. Minimal viral replication was observed in organs of guinea pigs inoculated with 10(2) or 10(5) PFU of ARM/ARM or ARM/WE, and all animals survived. In contrast, the WE/ARM reassortant was highly virulent like the WE/WE parental strain and killed all of the infected animals. High levels of viral replication were observed in guinea pigs infected with the latter two strains. In contrast to these in vivo observations, both the parental strains and the ARM/WE or WE/ARM reassortants had similar growth potential in cultured guinea pig fibroblasts. Thus, the L RNA segment of LCMV WE is important for viral replication in vivo and is associated with fatal acute disease after infection of adult guinea pigs.  相似文献   

15.
Cytotoxic T lymphocytes (CTLs) are important agents in the control of intracellular pathogens, which specifically recognize and kill infected cells. Recently developed experimental methods allow the estimation of the CTL''s efficacy in detecting and clearing infected host cells. One method, the in vivo killing assay, utilizes the adoptive transfer of antigen displaying target cells into the bloodstream of mice. Surprisingly, killing efficacies measured by this method are often much higher than estimates obtained by other methods based on, for instance, the dynamics of escape mutations. In this study, we investigated what fraction of this variation can be explained by differences in peptide loads employed in in vivo killing assays. We addressed this question in mice immunized with lymphocytic choriomeningitis virus (LCMV). We conducted in vivo killing assays varying the loads of the immunodominant epitope GP33 on target cells. Using a mathematical model, we determined the efficacy of effector and memory CTL, as well as CTL in chronically infected mice. We found that the killing efficacy is substantially reduced at lower peptide loads. For physiological peptide loads, our analysis predicts more than a factor 10 lower CTL efficacies than at maximum peptide loads. Assuming that the efficacy scales linearly with the frequency of CTL, a clear hierarchy emerges among the groups across all peptide antigen concentrations. The group of mice with chronic LCMV infections shows a consistently higher killing efficacy per CTL than the acutely infected mouse group, which in turn has a consistently larger efficacy than the memory mouse group. We conclude that CTL killing efficacy dependence on surface epitope frequencies can only partially explain the variation in in vivo killing efficacy estimates across experimental methods and viral systems, which vary about four orders of magnitude. In contrast, peptide load differences can explain at most two orders of magnitude.  相似文献   

16.
The relationships between T cell populations during primary viral infection and persistence are poorly understood. Mice infected with the neurotropic JHMV strain of mouse hepatitis virus mount potent regional CTL responses that effectively reduce infectious virus; nevertheless, viral RNA persists in the central nervous system (CNS). To evaluate whether persistence influences Ag-specific CD8+ T cells, functional TCR diversity was studied in spleen and CNS-derived CTL populations based on differential recognition of variant peptides for the dominant nucleocapsid epitope. Increased specificity of peripheral CTL from persistently infected mice for the index epitope compared with immunized mice suggested T cell selection during persistence. This was confirmed with CD8+ T cell clones derived from the CNS of either acutely (CTLac) or persistently (CTLper) infected mice. Whereas CTLac clones recognized a broad diversity of amino acid substitutions, CTLper clones exhibited exquisite specificity for the wild-type sequence. Highly focused specificity was CD8 independent but correlated with longer complementarity-determining regions 3 characteristic of CTLper clonotypes despite limited TCR alpha/beta-chain heterogeneity. Direct ex vivo analysis of CNS-derived mononuclear cells by IFN-gamma enzyme-linked immunospot assay confirmed the selection of T cells with narrow Ag specificity during persistence at the population level. These data suggest that broadly reactive CTL during primary infection are capable of controlling potentially emerging mutations. By contrast, the predominance of CD8+ T cells with dramatically focused specificity during persistence at the site of infection and in the periphery supports selective pressure driven by persisting Ag.  相似文献   

17.
Immunization of DBA/2 (H-2d) mice with syngeneic P815 tumor cell transfectants that express HLA class I genes elicits CTL that recognize HLA in the context of H-2Kd molecules. Anti-HLA-CW3 CTL cross-react to a variable extent on the related alleles A3 and A24. Using a panel of target cells expressing native or recombinant HLA genes, we could map the epitope recognized by a CTL clone specific for CW3 to the second external (alpha 2) domain of CW3. Moreover, the epitope recognized by this clone could be mimicked by incubating P815 (HLA negative) target cells with a synthetic peptide corresponding to the C-terminal 12 amino acids of the CW3 alpha 2 domain (residues 171 to 182). Other independent anti-CW3 CTL clones with different fine specificities recognized the same CW3 peptide. In contrast, CTL clones specific for HLA-A24 or HLA-A3 that did not lyse P815-CW3 transfectants did not recognize this peptide. The CW3 peptide could be recognized on other tumor cell targets that were also of H-2d origin, but not on those of H-2b or H-2k origin. The requirement for the expression of H-2Kd by the target cells was directly demonstrated using L cell Kd transfectants. Our results suggest that the CTL response of DBA/2 mice immunized with P815-CW3 transfectants is predominantly Kd restricted and focused on epitopes contained within the 12 C-terminal amino acids of the alpha 2 domain.  相似文献   

18.
The effects on CTL recognition of individual amino acid substitutions within epitopes I, II, and III of SV40 tumor Ag (T Ag) were examined. Epitope I spans amino acids 207 to 215, and epitope II/III is within residues 223 to 231 of SV40 T Ag. An amino acid substitution at position 207 (Ala----Val) or 214 (Lys----Glu) of SV40 T Ag expressed in transformed cells resulted in loss of epitope I, recognized by CTL clone Y-1. The amino acid substitution at residue 214 in the corresponding synthetic peptide, LT207-215(214-Lys----Glu), also led to loss of recognition by CTL clone Y-1. The recognition, by CTL clone Y-1, of peptides LT207-215 and LT207-217 with an Ala----Val substitution at position 207 was severely affected. Peptides LT205-215 and LT205-219 with the Ala----Val substitution at residue 207 were, however, recognized by CTL clone Y-1, suggesting that residues 205 and 206 may be involved in presentation of site I. Alteration of residue 224 (Lys----Glu) in the native T Ag resulted in loss of recognition by both CTL clones Y-2 and Y-3. However, a peptide corresponding to epitope II/III with an identical amino acid substitution at residue 224 provided a target for CTL clone Y-3 but not clone Y-2. A change of Lys----Gln at residue 224 in both the native protein and a synthetic peptide caused loss of recognition by CTL clone Y-2 but not CTL clone Y-3. Further, an amino acid substitution of Lys----Arg at position 224 of the native T Ag decreased recognition of epitope II/III by CTL clones Y-2 and Y-3 but had no effect on recognition of a synthetic peptide bearing the same substitution. These results indicate that the mutagenesis approach, resulting in identical amino acid substitutions in the native protein and in the synthetic peptides, may provide insight into the role of individual residues in the processing, presentation, and recognition of CTL recognition epitopes.  相似文献   

19.
The majority of T-cell clones derived from a donor who experienced dengue illness following receipt of a live experimental dengue virus type 3 (DEN3) vaccine cross-reacted with all four serotypes of dengue virus, but some were serotype specific or only partially cross-reactive. The nonstructural protein, NS3, was immuno-dominant in the CD4+ T-cell response of this donor. The epitopes of four NS3-specific T-cell clones were analyzed. JK15 and JK13 recognized only DEN3 NS3, while JK44 recognized DEN1, DEN2, and DEN3 NS3 and JK5 recognized DEN1, DEN3, and West Nile virus NS3. The epitopes recognized by these clones on the DEN3 NS3 protein were localized with recombinant vaccinia viruses expressing truncated regions of the NS3 gene, and then the minimal recognition sequence was mapped with synthetic peptides. Amino acids critical for T-cell recognition were assessed by using peptides with amino acid substitutions. One of the serotype-specific clones (JK13) and the subcomplex- and flavivirus-cross-reactive clone (JK5) recognized the same core epitope, WITDFVGKTVW. The amino acid at the sixth position of this epitope is critical for recognition by both clones. Sequence analysis of the T-cell receptors of these two clones showed that they utilize different VP chains. The core epitopes for the four HLA-DR15-restricted CD4+ CTL clones studied do not contain motifs similar to those proposed by previous studies on endogenous peptides eluted from HLA-DR15 molecules. However, the majority of these dengue virus NS3 core epitopes have a positive amino acid (K or R) at position 8 or 9. Our results indicate that a single epitope can induce T cells with different virus specificities despite the restriction of these T cells by the same HLA-DR15 allele. This finding suggests a previously unappreciated level of complexity for interactions between human T-cell receptors and viral epitopes with very similar sequences on infected cells.  相似文献   

20.
A human leukocyte antigen A24-restricted CD8+ cytotoxic T-cell clone specific for gp41 of human immunodeficiency virus type 1 was isolated from an infected individual. The epitope was localized to amino acids 584 to 591 (YLKDQQLL, NL43 env sequence) of gp41 by using a panel of recombinant vaccinia viruses that contain truncated env genes and synthetic peptides. The clone killed autologous B-lymphoblastoid cell lines pulsed with a synthetic peptide reflecting the sequence of the IIIB and MN strains. This clone, however, failed to kill target cells pulsed with the peptides that have a mutation from Lys to Arg or Gln at amino acid 585 which is present in some prototype human immunodeficiency virus type 1 strains, e.g., ADA, JFL, SC, ALA1, BAL1, SF2, VRF, SF33, and WMJ2. This finding that a mutation at amino acid 585 on gp41 results in nonrecognition by human leukocyte antigen A24-restricted CD8+ cytotoxic T lymphocytes suggests that antigenic variation at T-cell epitopes contributes to the failure of immune control of human immunodeficiency virus type 1 infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号