首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transplantation of bone marrow-derived mesenchymal stem cells (MSCs) is safe and may improve cardiac function and structural remodelling in patients following myocardial infarction (MI). Cardiovascular cell differentiation and paracrine effects to promote endogenous cardiac regeneration, neovascularization, anti-inflammation, anti-apoptosis, anti-remodelling and cardiac contractility, may contribute to MSC-based cardiac repair following MI. However, current evidence indicates that the efficacy of MSC transplantation was unsatisfactory, due to the poor viability and massive death of the engrafted MSCs in the infarcted myocardium. MicroRNAs are short endogenous, conserved, non-coding RNAs and important regulators involved in numerous facets of cardiac pathophysiologic processes. There is an obvious involvement of microRNAs in almost every facet of putative repair mechanisms of MSC-based therapy in MI, such as stem cell differentiation, neovascularization, apoptosis, cardiac remodelling, cardiac contractility and arrhythmias, and others. It is proposed that therapeutic modulation of individual cardiovascular microRNA of MSCs, either mimicking or antagonizing microRNA actions, will hopefully enhance MSC therapeutic efficacy. In addition, MSCs may be manipulated to enhance functional microRNA expression or to inhibit aberrant microRNA levels in a paracrine manner. We hypothesize that microRNAs may be used as novel regulators in MSC-based therapy in MI and MSC transplantation by microRNA regulation may represent promising therapeutic strategy for MI patients in the future.  相似文献   

2.
Preclinical and clinical studies have demonstrated that stem cell transplantation can improve the left ventricular (LV) contractile performance, yet the underlying mechanisms remain unknown. We examined whether mesenchymal stem cell (MSC) transplantation-induced beneficial effects are secondary to paracrine-associated improvements in LV contractile performance, wall stress, and myocardial bioenergetics in hearts with postinfarction LV remodeling. Myocardial contractile function and bioenergetics were compared 4 wk after acute myocardial infarction in normal pigs (n = 6), untreated pigs with myocardial infarction (MI group; n = 6), and pigs receiving autologous MSC transplantation (MI + MSC group; n = 5). A distal occlusion of the left anterior descending coronary artery instigated significant myocardial hypertrophy. Ejection fraction decreased from 55.3 +/- 3.1% (normal) to 30.4 +/- 2.3% (MI group; P < 0.01) and to 45.4 +/- 3.1% (MI + MSC group; P < 0.01 vs. MI). Hearts in the MI group developed severe contractile dyskinesis in the infarct zone and border zone (BZ). MSC transplantation significantly improved contractile performance from dyskinesis to active contraction (P < 0.01 vs. MI). BZ systolic wall stress was severely increased in MI hearts but significantly improved after MSC transplantation (P < 0.01 vs. MI). The BZ demonstrated profound bioenergetic abnormalities in MI pigs; this was significantly improved after MSC transplantation (P < 0.01 vs. MI). Patchy spared myocytes were found in the infarct zone of hearts receiving MSC transplantation but not in control hearts. These data demonstrate that MSC transplantation into the BZ causes significant improvements in myocardial contractile performance and reduction in wall stress, which ultimately results in significant bioenergetic improvements. Low cell engraftment indicates that MSCs did not provide a structural contribution to the damaged heart and that the observed beneficial effects likely resulted from paracrine repair mechanisms.  相似文献   

3.
The prognosis of patients with myocardial infarction (MI) and resultant chronic heart failure remains extremely poor despite advances in optimal medical therapy and interventional procedures. Animal experiments and clinical trials using adult stem cell therapy following MI have shown a global improvement of myocardial function. Bone marrow-derived mesenchymal stem cells (MSCs) hold promise for cardiac repair following MI, due to their multilineage, self-renewal and proliferation potential. In addition, MSCs can be easily isolated, expanded in culture, and have immunoprivileged properties to the host tissue. Experimental studies and clinical trials have revealed that MSCs not only differentiate into cardiomyocytes and vascular cells, but also secrete amounts of growth factors and cytokines which may mediate endogenous regeneration via activation of resident cardiac stem cells and other stem cells, as well as induce neovascularization, anti-inflammation, anti-apoptosis, anti-remodelling and cardiac contractility in a paracrine manner. It has also been postulated that the anti-arrhythmic and cardiac nerve sprouting potential of MSCs may contribute to their beneficial effects in cardiac repair. Most molecular and cellular mechanisms involved in the MSC-based therapy after MI are still unclear at present. This article reviews the potential repair mechanisms of MSCs in the setting of MI.  相似文献   

4.
This work aimed to evaluate cardiac morphology/function and histological changes induced by bone marrow cells (BMCs) and cultured mesenchymal stem cells (MSCs) injected at the myocardium of spontaneously hypertensive rats (SHR) submitted to surgical coronary occlusion. Female syngeneic adult SHR, submitted (MI) or not (C) to coronary occlusion, were treated 24 h later with in situ injections of normal medium (NM), or with MSCs (MSC) or BMCs (BM) from male rats. The animals were evaluated after 1 and 30 days by echocardiography, histology of heart sections and PCR for the Y chromosome. Improved ejection fraction and reduced left ventricle infarcted area were observed in MSC rats as compared to the other experimental groups. Treated groups had significantly reduced lesion tissue score, increased capillary density and normal (not-atrophied) myocytes, as compared to NM and C groups. The survival rate was higher in C, NM and MSC groups as compared to MI and BM groups. In situ injection of both MSCs and BMCs resulted in improved cardiac morphology, in a more physiological model of myocardial infarction represented by surgical coronary occlusion of spontaneously hypertensive rats. Only treatment with MSCs, however, ameliorated left ventricle dysfunction, suggesting a positive role of these cells in heart remodeling in infarcted hypertensive subjects.  相似文献   

5.
Mesenchymal stem cell (MSC) has been well known to exert therapeutic potential for patients with myocardial infarction (MI). In addition, interleukin‐10 (IL10) could attenuate MI through suppressing inflammation. Thus, the combination of MSC implantation with IL10 delivery may extend health benefits to ameliorate cardiac injury after MI. Here we established overexpression of IL10 in bone marrow‐derived MSC through adenoviral transduction. Cell viability, apoptosis, and IL10 secretion under ischemic challenge in vitro were examined. In addition, MSC was transplanted into the injured hearts in a rat model of MI. Four weeks after the MI induction, MI, cardiac functions, apoptotic cells, and inflammation cytokines were assessed. In response to in vitro oxygen‐glucose deprivation (OGD), IL10 overexpression in MSC (Ad.IL10‐MSC) enhanced cell viability, decreased apoptosis, and increased IL10 secretion. Consistently, the implantation of Ad.IL10‐MSCs into MI animals resulted in more reductions in myocardial infarct size, cardiac impairment, and cell apoptosis, compared to the individual treatments of either MSC or IL10 administration. Moreover, the attenuation of both systemic and local inflammations was most prominent for Ad.IL10‐MSC treatment. IL10 overexpression and MSC may exert a synergistic anti‐inflammatory effect to alleviate cardiac injury after MI.  相似文献   

6.
In the present study, we investigated whether mesenchymal stem cells (MSCs) overexpressing integrin-linked kinase (ILK) might regulate ventricular remodeling and cardiac function in a porcine myocardial infarction model. ILK-modified MSCs (ILK-MSCs) (n = 8), MSCs (n = 8) or placebo (n = 8) were injected into peri-infarct myocardium 7 days after ligation of the left anterior descending coronary artery. ILK expression was confirmed by immunofluorescence, real-time PCR, Western blot analysis, and flow cytometry. In vitro assays indicated increased proliferation and reduced apoptosis of MSCs due to overexpression of ILK. Echocardiographic, single-photon emission computed tomography and positron emission tomography analyses demonstrated preserved cardiac function and myocardial perfusion. Reduced fibrosis, increased cardiomyocyte proliferation, and enhanced angiogenesis were observed in the ILK-MSC group. Reduced apoptosis, as demonstrated by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling analysis, was also noted. In conclusion, ILK promotes MSC proliferation and suppresses apoptosis. ILK-MSC transplantation improves ventricular remodeling and cardiac function in pigs after MI. It is associated with increased angiogenesis, reduced apoptosis, and increased cardiomyocyte proliferation. This may represent a new approach to the treatment of post-infarct remodeling and subsequent heart failure.  相似文献   

7.
Wei H  Tan G  Manasi  Qiu S  Kong G  Yong P  Koh C  Ooi TH  Lim SY  Wong P  Gan SU  Shim W 《Stem cell research》2012,9(2):87-100
Cardiomyocytes (CMs) and mesenchymal stem cells (MSCs) are important cell types for cardiac repair post myocardial infarction. Here we proved that both CMs and MSCs can be simultaneously generated from human induced pluripotent stem cells (hiPSCs) via a pro-mesoderm differentiation strategy. Two hiPSC lines, hiPSC (1) and hiPSC (2) were generated from human dermal fibroblasts using OCT-4, SOX-2, KLF-4, c-Myc via retroviral-based reprogramming. H9 human embryonic stem cells (hESCs) served as control. CMs and MSCs were co-generated from hiPSCs and hESCs via embryoid body-dependent cardiac differentiation protocol involving a serum-free and insulin-depleted medium containing a p38 MAPK inhibitor, SB 203580. Comparing to bone marrow and umbilical cord blood-derived MSCs, hiPSC-derived MSCs (iMSCs) expressed common MSC markers and were capable of adipogenesis, osteogenesis and chondrogenesis. Moreover, iMSCs continuously proliferated for more than 32 population doublings without cellular senescence and showed superior pro-angiogenic and wound healing properties. In summary, we generated a large number of homogenous MSCs in conjunction with CMs in a low-cost and efficient one step manner. Functionally competent CMs and MSCs co-generated from hiPSCs may be useful for autologous cardiac repair.  相似文献   

8.
骨髓间质干细胞向大鼠损伤心肌组织的迁移   总被引:13,自引:0,他引:13  
Jiang WH  Ma AQ  Zhang YM  Han K  Liu Y  Zhang ZT  Wang TZ  Huang X  Zheng XP 《生理学报》2005,57(5):566-572
实验旨在动态观察骨髓间充质干细胞(mesenchymal stem cells,MSCs)向不同微环境下心肌组织的迁移特点,明确组织损伤在干细胞迁移中的作用,为提高干细胞治疗的靶向性和高效性奠定初步试验基础。分离纯化雄性Sprague-Dawley(SD)大鼠的骨髓MSCs,输注入雌性SD大鼠。实验分为4组:正常大鼠+MSCs移植组,假手术+MSCs移植组,心肌缺血+MSCs移植组,心肌缺血对照组(心肌缺血+培养基移植)。结扎冠状动脉前降支制造心肌缺血模型,将相等数量的雄性MSCs经尾静脉注射移植入前3组雌性大鼠体内,对照组注射等体积培养基,分别于移植后1周及8周取心脏组织标本,采用荧光原位杂交方法(fluorescence in situ hybridization,FISH)检测大鼠Y染色体雄性鉴别基因sty片段的表达,用透射电镜观察大鼠心肌组织超微结构改变。结果发现,移植后1周和8周,正常大鼠移植组和对照组大鼠的心肌组织中均未见sry基因的表达,但假手术移植组和心肌缺血移植组的心肌组织中均可见sty基因的表达,心肌缺血移植组的Y染色体sty基因阳性细胞数量在两个时间点均显著高于假手术移植组(P〈0.01)。分别比较心肌缺血移植组和假手术组在移植后1周和8周的Y染色体sry基因阳性细胞的数量,两个时间点无明显差异。心肌组织的超微结构观察发现心肌缺血移植组大鼠的心肌梗死周边区域可见一些细胞,其形态类似于体外培养的MSCs。研究结果提示MSCs具有向损伤心肌组织迁移的特性,迁移的高峰期可能在组织损伤1周左右,组织损伤及其程度在干细胞迁移中起重要作用。  相似文献   

9.
《Cytotherapy》2021,23(12):1074-1084
Background aimsMesenchymal stromal cells (MSCs) have been shown to improve cardiac function after injury and are the subject of ongoing clinical trials. In this study, the authors tested the cardiac regenerative potential of an induced pluripotent stem cell-derived MSC (iPSC-MSC) population (Cymerus MSCs) in a rat model of myocardial ischemia-reperfusion (I/R). Furthermore, the authors compared this efficacy with bone marrow-derived MSCs (BM-MSCs), which are the predominant cell type in clinical trials.MethodsFour days after myocardial I/R injury, rats were randomly assigned to (i) a Cymerus MSC group (n = 15), (ii) a BM-MSC group (n = 15) or (iii) a vehicle control group (n = 14). For cell-treated animals, a total of 5 × 106 cells were injected at three sites within the infarcted left ventricular (LV) wall.ResultsOne month after cell transplantation, Cymerus MSCs improved LV function (assessed by echocardiography) compared with vehicle and BM-MSCs. Interestingly, Cymerus MSCs enhanced angiogenesis without sustained engraftment or significant impact on infarct scar size. Suggesting safety, Cymerus MSCs had no effect on inducible tachycardia or the ventricular scar heterogeneity that provides a substrate for cardiac re-entrant circuits.ConclusionsThe authors here demonstrate that intra-myocardial administration of iPSC-MSCs (Cymerus MSCs) provide better therapeutic effects compared with conventional BM-MSCs in a rodent model of myocardial I/R. Because of its manufacturing scalability, iPSC-MSC therapy offers an exciting opportunity for an “off-the-shelf” stem cell therapy for cardiac repair.  相似文献   

10.

Background  

Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into bone, cartilage, fat and muscle cells and are being investigated for their utility in cell-based transplantation therapy. Yet, adequate methods to track transplanted MSCs in vivo are limited, precluding functional studies. Quantum Dots (QDs) offer an alternative to organic dyes and fluorescent proteins to label and track cells in vitro and in vivo. These nanoparticles are resistant to chemical and metabolic degradation, demonstrating long term photostability. Here, we investigate the cytotoxic effects of in vitro QD labeling on MSC proliferation and differentiation and use as a cell label in a cardiomyocyte co-culture.  相似文献   

11.
The cardiac protection of mesenchymal stem cell (MSC) transplantation for myocardial infarction (MI) is largely hampered by low cell survival. Haem oxygenase 1 (HO‐1) plays a critical role in regulation of cell survival under many stress conditions. This study aimed to investigate whether pre‐treatment with haemin, a potent HO‐1 inducer, would promote the survival of MSCs under serum deprivation and hypoxia (SD/H) and enhance the cardioprotective effects of MSCs in MI. Bone marrow (BM)‐MSCs were pretreated with or without haemin and then exposed to SD/H. The mitochondrial morphology of MSCs was determined by MitoTracker staining. BM‐MSCs and haemin‐pretreated BM‐MSCs were transplanted into the peri‐infarct region in MI mice. SD/H induced mitochondrial fragmentation, as shown by increased mitochondrial fission and apoptosis of BM‐MSCs. Pre‐treatment with haemin greatly inhibited SD/H‐induced mitochondrial fragmentation and apoptosis of BM‐MSCs. These effects were partially abrogated by knocking down HO‐1. At 4 weeks after transplantation, compared with BM‐MSCs, haemin‐pretreated BM‐MSCs had greatly improved the heart function of mice with MI. These cardioprotective effects were associated with increased cell survival, decreased cardiomyocytes apoptosis and enhanced angiogenesis. Collectively, our study identifies haemin as a regulator of MSC survival and suggests a novel strategy for improving MSC‐based therapy for MI.  相似文献   

12.
Bone marrow-derived mesenchymal stem cells (MSC) are a promising source for cell-based treatment of myocardial infarction (MI), but existing strategies are restricted by low cell survival and engraftment. We examined whether vascular endothelial growth factor (VEGF) improve MSC viability in infracted hearts. We found long-term culture increased MSC-cellular stress: expressing more cell cycle inhibitors, p16INK, p21 and p19ARF. VEGF treatment reduced cellular stress, increased pro-survival factors, phosphorylated-Akt and Bcl-xL expression and cell proliferation. Co-injection of MSCs with VEGF to MI hearts increased cell engraftment and resulted in better improvement of cardiac function than that injected with MSCs or VEGF alone. In conclusion, VEGF protects MSCs from culture-induce cellular stress and improves their viability in ischemic myocardium, which results in improvements of their therapeutic effect for the treatment of MI.  相似文献   

13.
For decades, mesenchymal stem (MSCs) cells have been used for cardiovascular diseases as regenerative therapy. This review is an attempt to summarize the types of MSCs involved in myocardial infarction (MI) therapy, as well as its possible mechanisms effects, especially the paracrine one in MI focusing on the studies (human and animal) conducted within the last 10 years. Recently, reports showed that MSC therapy could have infarct‐limiting effects after MI in both experimental and clinical trials. In this context, various types of MSCs can help cardiac regeneration by either revitalizing the cardiac stem cells or revascularizing the arteries and veins of the heart. Furthermore, MSCs could produce paracrine growth factors that increase the survival of nearby cardiomyocytes, as well as increase angiogenesis through recruitment of stem cell from bone marrow or inducing vessel growth from existing capillaries. Recent research suggests that the paracrine effects of MSCs could be mediated by extracellular vesicles including exosomes. Exosomal microRNAs (miRNAs) released by MSCs are promising therapeutic hotspot target for MI. This could be attributed to the role of miRNA in cardiac biology, including cardiac regeneration, stem cell differentiation, apoptosis, neovascularization, cardiac contractility and cardiac remodeling. Furthermore, gene‐modified MSCs could be a recent promising therapy for MI to enhance the paracrine effects of MSCs, including better homing and effective cell targeted tissue regeneration. Although MSC therapy has achieved considerable attention and progress, there are critical challenges that remains to be overcome to achieve the most effective successful cell‐based therapy in MI.  相似文献   

14.
Mesenchymal stem cells (MSCs) are pluripotent cells that differentiate into a variety of cells, including cardiomyocytes and endothelial cells. However, little information is available regarding the therapeutic potency of systemically delivered MSCs for myocardial infarction. Accordingly, we investigated whether intravenously transplanted MSCs induce angiogenesis and myogenesis and improve cardiac function in rats with acute myocardial infarction. MSCs were isolated from bone marrow aspirates of isogenic adult rats and expanded ex vivo. At 3 h after coronary ligation, 5 x 10(6) MSCs (MSC group, n=12) or vehicle (control group, n=12) was intravenously administered to Lewis rats. Transplanted MSCs were preferentially attracted to the infarcted, but not the noninfarcted, myocardium. The engrafted MSCs were positive for cardiac markers: desmin, cardiac troponin T, and connexin43. On the other hand, some of the transplanted MSCs were positive for von Willebrand factor and formed vascular structures. Capillary density was markedly increased after MSC transplantation. Cardiac infarct size was significantly smaller in the MSC than in the control group (24 +/- 2 vs. 33 +/- 2%, P <0.05). MSC transplantation decreased left ventricular end-diastolic pressure and increased left ventricular maximum dP/dt (both P <0.05 vs. control). These results suggest that intravenous administration of MSCs improves cardiac function after acute myocardial infarction through enhancement of angiogenesis and myogenesis in the ischemic myocardium.  相似文献   

15.
Bone marrow‐derived mesenchymal stem cells (BM‐MSCs ) transplantation has been reported to be a promising therapy for myocardial infarction (MI). However, low survival rate of BM‐MSCs in infarcted heart is one of the major limitations for the perspective clinical application. In this study, we aimed to investigate the effect of hepatocyte growth factor (HGF) on left ventricular function improvement of HGF gene‐modified BM‐MSCs (HGF‐MSCs) after its delivery into the infarcted rat hearts. BM‐MSCs were isolated with fibroblast‐like morphology and expressed CD44+CD29+CD90+/CD34‐CD45‐CD31‐CD11a. After 5‐azacytidine induction in vitro, 20%–30% of the cells were positively stained for desmin, cardiac‐specific cardiac troponin I and connexin‐43. Histological staining revealed that 2 weeks after MI is an optimal time point with decreased neutrophil infiltration and increased vascular number. Minimal infarct size and best haemodynamic analysis were also observed after cell injection at 2 weeks compared with that of 1 h, 1 week or 4 weeks. Echocardiogram confirmed that transplantation with HGF‐MSCs significantly improved left ventricular function compared with other groups in rat MI models. MSCs and HGF‐MSCslabelled with DAPI were detected 4 weeks after MI in the infarcted area. Decreased infarcted scar area and increased angiogenesis formation could be found in HGF‐MSCs group than in other groups as demonstrated by hematoxylin and eosin (H&E) staining and factor VIII staining. These results indicate that HGF‐MSCs transplantation could enhance the contractile function and attenuate left ventricular remodelling efficiently in rats with MI. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Kim MK  Min do S  Park YJ  Kim JH  Ryu SH  Bae YS 《FEBS letters》2007,581(9):1917-1922
We investigated the expression of formyl peptide receptor (FPR) and its functional role in human bone marrow-derived mesenchymal stem cells (MSCs). We analyzed the expression of FPR by using ligand-binding assay with radio-labeled N-formyl-met-leu-phe (fMLF), and found that MSCs express FPR. FMLF stimulated intracellular calcium increase, mitogen-activated protein kinases activation, and Akt activation, which were mediated by G(i) proteins. MSCs were chemotactically migrated to fMLF. FMLF-induced MSC chemotaxis was also completely inhibited by pertussis toxin, LY294002, and PD98059, indicating the role of G(i) proteins, phosphoinositide 3-kinase, and extracellular signal regulated protein kinase. N-terminal fragment of annexin-1, Anx-1(2-26), an endogenous agonist for FPR, also induced chemotactic migration of MSCs. Thus MSCs express functional FPR, suggesting a new (patho)physiological role of FPR and its ligands in regulating MSC trafficking during induction of injured tissue repair.  相似文献   

17.
Transplantation of bone-marrow derived mesenchymal stem cells (MSCs) has potential therapeutic effects on cardiac muscle repair. However, the underlying mechanism remains not completely clarified. Here we show that transplantation of MSCs significantly increased local recruitment of macrophages to facilitate cardiac muscle repair. MSCs-induced recovery of cardiac function and attenuation of fibrosis after injury were all abolished by either impaired macrophage infiltration, or by MSCs depletion after macrophage recruitment. However, angiogenesis seemed to be only affected by depletion of macrophages, but not by depletion of MSCs, suggesting that macrophages are responsible for the augmented angiogenesis after MSCs transplantation, while MSCs do not directly contribute to angiogenesis in the functional cardiac repair. Moreover, high level of transforming growth factor β 1 (TGFβ1) was detected in macrophages and high level of BMP7 was detected in MSCs, suggesting that MSCs not only may recruit macrophages to enhance angiogenesis to promote regeneration, but also may secrete BMP7 to contradict the fibrogenic effect of TGFβ1 by macrophages. Our study thus sheds new insight on the interaction of MSCs and macrophages in a functional cardiac repair triggered by MSCs transplantation.  相似文献   

18.
19.
Bone marrow-derived mesenchymal stem cells (MSCs) are pluripotent stem cells that show a vital potential in the clinical application for cell transplantation. In the present paper, proteomic techniques were used to approach the protein profiles associated with porcine bone marrow MSCs and investigate the regulation of MSC proteins on the effect of 5-azacytidine (5-aza). Over 1,700 protein species were separated from MSCs according to gel analysis. Compared with the expression profiling of control MSCs, there were 11 protein spots up-regulated and 26 downregulated in the protein pattern of 5-aza-treated cells. A total of 21 proteins were successfully identified by MALDI-TOF-MS analysis, among which some interesting proteins, such as alpha B-crystallin, annexin A2, and stathmin 1, had been reported to involve in cell proliferation and differentiation through different signaling pathways. Our data should be useful for the future study of MSC differentiation and apoptosis.  相似文献   

20.
Growing cell-based myocardial therapies which could lead to successful myocardial repair attracts medical interest. Even more intriguing is the observation that MSCs appears to be a more potent material among kinds of stem cells for the transplantation, the mechanism for this benefit remains unclear. However, the therapeutic contribution of MSCs to myocardial repair can be caused by multiple factors including: direct differentiation into cardiac tissue including cardiomyocytes, smooth muscle cell, and vascular endothelial cells; secreting a variety of cytokines and growth factors that have paracrine activities; spontaneous cell fusion; and stimulating endogenous repair. In addition, MSCs possess local immunosuppressive properties, and MSCs mobilization is widely used clinically for transplantation. We will discusses the potential mechanisms of MSCs repair for ischemic heart diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号