首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of muscle activity on the growth of synaptic acetylcholine receptor (AChR) accumulations and on the metabolic AChR stability were investigated in rat skeletal muscle. Ectopic end plates induced surgically in adult soleus muscle were denervated early during development when junctional AChR number and stability were still low and, subsequently, muscles were either left inactive or they were kept active by chronic exogenous stimulation. AChR numbers per ectopic AChR cluster and AChR stabilities were estimated from the radioactivity and its decay with time, respectively, of end plate sites whose AChRs had been labeled with 125I-alpha-bungarotoxin (alpha-butx). The results show that the metabolic stability of the AChRs in ectopic clusters is reversibly increased by muscle activity even when innervation is eliminated very early in development. 1 d of stimulation is sufficient to stabilize the AChRs in ectopic AChR clusters. Muscle stimulation also produced an increase in the number of AChRs at early denervated end plates. Activity-induced cluster growth occurs mainly by an increase in area rather than in AChR density, and for at least 10 d after denervation is comparable to that in normally developing ectopic end plates. The possible involvement of AChR stabilization in end plate growth is discussed.  相似文献   

2.
During the development of the neuromuscular junction, motor axons induce the clustering of acetylcholine receptors (AChRs) and increase their metabolic stability in the muscle membrane. Here, we asked whether the synaptic organizer agrin might regulate the metabolic stability and density of AChRs by promoting the recycling of internalized AChRs, which would otherwise be destined for degradation, into synaptic sites. We show that at nerve-free AChR clusters induced by agrin in extrasynaptic membrane, internalized AChRs are driven back into the ectopic synaptic clusters where they intermingle with pre-existing and new receptors. The extent of AChR recycling depended on the strength of the agrin stimulus, but not on the development of junctional folds, another hallmark of mature postsynaptic membranes. In chronically denervated muscles, in which both AChR stability and recycling are significantly decreased by muscle inactivity, agrin maintained the amount of recycled AChRs at agrin-induced clusters at a level similar to that at denervated original endplates. In contrast, AChRs did not recycle at agrin-induced clusters in C2C12 or primary myotubes. Thus, in muscles in vivo, but not in cultured myotubes, neural agrin promotes the recycling of AChRs and thereby increases their metabolic stability.  相似文献   

3.
Development of rat soleus endplate membrane following denervation at birth   总被引:1,自引:0,他引:1  
Rat soleus endplates develop some of their characteristic features before birth and others after birth. Specializations appearing before birth include a localized cluster of acetylcholine receptors (AChRs), an accumulation of acetylcholinesterase (AChE) in the synaptic basal lamina, and a cluster of nuclei near the endplate membrane. In contrast, postsynaptic membrane folds are elaborated during the first three weeks after birth. We denervated soleus muscles on postnatal day 1, before folds had appeared, and followed the subsequent development of endplate regions with light and electron microscopy. We found that the denervated endplates initiated fold formation on schedule and maintained their accumulations of AChRs, AChE, and endplate nuclei. However, the endplates stopped fold formation prematurely and eventually lost their rudimentary folds. At about the same time, the junctional AChR clusters were joined by ectopic patches of AChRs. The former endplate regions also became unusually elongated, possibly as a consequence of the lack of membrane folds. Apparently, endplate membranes have only a limited capacity for further development in the absence of both the nerve and muscle activity.  相似文献   

4.
The maintenance of a high density of postsynaptic receptors is essential for proper synaptic function. At the neuromuscular junction, acetylcholine receptor (AChR) aggregation is induced by nerve-clustering factors and mediated by scaffolding proteins. Although the mechanisms underlying AChR clustering have been extensively studied, the role that the receptors themselves play in the clustering process and how they are organized with scaffolding proteins is not well understood. Here, we report that the exposure of AChRs labeled with Alexa 594 conjugates to relatively low-powered laser light caused an effect similar to chromaphore-assisted light inactivation (CALI) , which resulted in the unexpected dissipation of the illuminated AChRs from clusters on cultured myotubes. This technique enabled us to demonstrate that AChR removal from illuminated regions induced the removal of scaffolding proteins and prevented the accumulation of new AChRs and associated scaffolding proteins. Further, the dissipation of clustered AChRs and scaffold was spatially restricted to the illuminated region and had no effect on neighboring nonilluminated AChRs. These results provide direct evidence that AChRs are essential for the local maintenance and accumulation of intracellular scaffolding proteins and suggest that the scaffold is organized into distinct modular units at AChR clusters.  相似文献   

5.
The effects of calpain inhibitors on the total number of acetylcholine receptors (AChRs) on cultured rat myotubes and on the stability of AChR clusters in these myotubes were investigated. The degradation rate of total AChRs labeled with (125)I-alpha-bungarotoxin was assessed from radioactivity remaining in the myotubes as a function of time. Treatment with calpain inhibitors resulted in a two- to three-fold increase in the half-life of total AChRs. Incubation with these inhibitors produced 40% increases in intracellular AChRs but no major changes in surface AChRs, indicating that the increased AChR half-life is due to intracellular accumulation. The rate loss of AChRs from the clusters was assessed by measuring the loss of fluorescence intensity in rhodaminated-alpha-bungarotoxin-labeled clusters with time. Treatment with calpain inhibitors resulted in twofold increases in cluster half-life. Thus, there was generally no change in total surface receptors with the calpain inhibitors, whereas cluster half-life was substantially increased. Furthermore, with a low dose of calpeptin there was no change in turnover of total cellular AChRs, whereas cluster half-life was doubled. Taken together, these results suggest that the increased half-life of clusters produced by the calpain inhibitors may be due to retardation of the lateral movement from AChRs in the clusters.  相似文献   

6.
Two populations of acetylcholine receptors (AChRs) are present in cultured myotubes. One forms large aggregates or clusters and the other has a much lower density of AChRs, which are diffusely distributed. Both clustered and diffuse AChRs are inserted and removed (internalized) from the sarcolemma. To determine the insertion and removal rates of AChRs in these two plasma membrane domains, we used a double label technique to distinguish and quantitate newly inserted and "old" AChRs. Application of our method revealed that the rate of AChR internalization is the same at the clustered and diffuse regions of the plasma membrane, whereas the rate of insertion is threefold greater at the clusters than elsewhere in the plasma membrane. Thus, the increase in AChR number at the clusters is not due to an increase in their half-life, but to an increase in their rate of insertion.  相似文献   

7.
In order to determine the roles of nerves in the formation of clusters of acetylcholine receptors (AChRs) during synaptogenesis, we examined the distribution of AChRs in denervated, nerve-transplanted (neurotized) muscles and in regenerated skeletal muscles of adult chickens by fluorescence microscopy using curaremimetic toxins. In the denervated muscles, many extrajunctional clusters developed at the periphery of some of the muscle nuclei of a single muscle fiber and continued to be present for up to 3 months. The AChR accumulations originally present at the neuromuscular junctions disappeared within 3 weeks. In the neurotized muscles, line-shaped AChR clusters developed at 4 days after transection of the original nerve, but no change in the distribution of AChRs had occurred even at 2 months after implantation of the foreign nerve. The line-shaped AChR clusters were found to be newly formed junctional clusters as they were associated with nerve terminals of similar shape and size. Some of both the line-shaped and extrajunctional clusters were formed at least partly by the redistribution of preexisting AChRs. Finally, based on the above observations, the regenerating muscle fibers in normal muscles and in denervated muscles were examined: The extrajunctional clusters appeared in both kinds of muscles at 2 weeks after injury. Afterward, during the innervation process, the line-shaped AChR clusters developed while the extrajunctional clusters disappeared in the innervated muscles. In contrast with this, in the absence of innervation, only the extrajunctional clusters continued to be present for up to 3 months. These results demonstrate clearly that the nerve not only induces the formation of junctional clusters at the contact site, but also prevents the formation of clusters at the extrajunctional region during synaptogenesis.  相似文献   

8.
Y Gu  Z W Hall 《Neuron》1988,1(2):117-125
We used specific antibodies to gamma, delta, and epsilon subunits to characterize acetylcholine receptor (AChR) in extracts and at endplates of developing, adult, and denervated rat muscle. The AChRs in normal adult muscle were immunoprecipitated by anti-epsilon and anti-delta, but not by anti-gamma antibodies, whereas AChRs in denervated and embryonic muscles were precipitated by anti-gamma and anti-delta, but showed little or no reactivity to anti-epsilon antibodies. In immunofluorescence experiments, AChRs at neonatal endplates bound antibodies to gamma or delta, but not epsilon, subunit, whereas those in adult muscles bound antibodies to epsilon or delta, but not gamma, subunit. AChRs at denervated endplates and at developing endplates between postnatal days 9 and 16 bound all three antibodies. We conclude that the distribution of gamma and epsilon subunits of the AChR parallels the distribution of AChRs with embryonic and adult channel properties, respectively.  相似文献   

9.
Agrin induces the formation of highly localized specializations on myotubes at which nicotinic acetylcholine receptors (AChRs) and many other components of the postsynaptic apparatus at the vertebrate skeletal neuromuscular junction accumulate. Agrin also induces AChR tyrosine phosphorylation. Treatments that inhibit tyrosine phosphorylation prevent AChR aggregation. To examine further the relationship between tyrosine phosphorylation and receptor aggregation, we have used the technique of fluorescence recovery after photobleaching to assess the lateral mobility of AChRs and other surface proteins in mouse C2 myotubes treated with agrin or with pervanadate, a protein tyrosine phosphatase inhibitor. Agrin induced the formation of patches in C2 myotubes that stained intensely with anti-phosphotyrosine antibodies and within which AChRs were relatively immobile. Pervanadate, on the other hand, increased protein tyrosine phosphorylation throughout the myotube and caused a reduction in the mobility of diffusely distributed AChRs, without affecting the mobility of other membrane proteins. Pervanadate, like agrin, caused an increase in AChR tyrosine phosphorylation and a decrease in the rate at which AChRs could be extracted from intact myotubes by mild detergent treatment, suggesting that immobilized receptors were phosphorylated and therefore less extractable. Indeed, phosphorylated receptors were extracted from agrin-treated myotubes more slowly than nonphosphorylated receptors. AChR aggregates at developing neuromuscular junctions in embryonic rat muscles also labeled with anti- phosphotyrosine antibodies, suggesting that tyrosine phosphorylation could mediate AChR aggregation in vivo as well. Thus, agrin appears to induce AChR aggregation by creating circumscribed domains of increased protein tyrosine phosphorylation within which receptors become phosphorylated and immobilized.  相似文献   

10.
The effect of denervation on acetylcholine receptor (AChR) cluster distribution on cultured Xenopus muscle cells has been examined in order to study the role of intact nerve in the maintenance of clusters at the nerve-muscle junction during development. AChRs on the muscle cell were labeled with tetramethyl rhodamine-conjugated alpha-bungarotoxin and sequential changes in AChR cluster distribution were examined with a fluorescence microscope using an image intensifier. Denervation was carried out by exposing the nerve cell body to a focused laser light of a high intensity. After this procedure the neurites originating from the cell quickly disintegrated and large AChR clusters associated with nerve divided into smaller clusters. Individual clusters subsequently decreased in size and finally disappeared. In about 30% of the cases new AChR clusters appeared at the extrajunctional region after denervation. These observations indicate that intact nerves are necessary for the maintenance of receptor localization at the nerve-muscle junction and that nerve-induced accumulation is seemingly reversible during the early period of synapse formation. We tested the idea that receptor clusters were lost due to diffusion of receptors in the muscle membrane after denervation. However, the rate of receptor cluster dispersal after denervation was much slower than that predicted by the diffusion model, suggesting that diffusion of receptors is not a rate-limiting step. Furthermore, we found that receptor clusters at the junction stabilize during days in culture. Thus, 80-90% of receptor clusters at the nerve-muscle junction disappeared at 7 hr after denervation in 1-day cocultures, while about 50% of receptor clusters remained after denervation in 3-day cocultures.  相似文献   

11.
During the formation of the neuromuscular junction, the nerve induces the clustering of acetylcholine receptors (AChR) in the postsynaptic membrane. This process can be mimicked by treating cultured Xenopus myotomal muscle cells with basic polypeptide-coated latex beads. Using this bead-muscle coculture system, we examined the role of lateral migration of AChRs in the formation of the clusters. First, we studied the contributions of the preexisting and newly inserted AChRs. After the cluster formation was triggered by the addition of the beads, preexisting receptors were immediately recruited to the bead-muscle contacts and they remained to be the dominant contributor during the first 24 hr. New AChRs, which were inserted after the addition of the beads, appeared at the clusters after a 4-hr delay and, thereafter, there was a steady increase in their contribution. After 24-48 hr, newly inserted AChRs could be detected at the bead-induced clusters to the same extent as the preexisting AChRs. During this period, new receptors were continuously inserted into the plasma membrane, but there was no evidence of a local insertion at sites of new cluster formation. Concanavalin A (Con A) at a concentration of 100 micrograms/ml caused a fivefold decrease in the fraction of mobile AChRs and a large decrease in their diffusion coefficient. Pretreatment of cells with Con A suppressed clustering of preexisting AChRs, but left intact the contribution of the mobile newly inserted AChRs. Succinyl Con A, the divalent derivative of Con A which affected the mobility to a much less extent than Con A, had little effect on the clustering process. These results show that the formation of AChR clusters in Xenopus is mediated by lateral migration of AChRs within the plasma membrane and are consistent with the diffusion-trap hypothesis, which depicts freely diffusing AChR aggregating at the bead-muscle contacts where they bind to other localized molecular specializations induced by the beads.  相似文献   

12.
The formation of acetylcholine receptor (AChR) clusters at the neuromuscular junction was investigated by observing the sequential changes in AChR cluster distribution on cultured Xenopus muscle cells. AChRs were labeled with tetramethylrhodamine-conjugated alpha-bungarotoxin (TMR-alpha BT). Before innervation AChRs were distributed over the entire surface of muscle cells with occasional spots of high density (hot spots). When the nerve contacted the muscle cell, the large existing hot spots disappeared and small AChR clusters (less than 1 micron in diameter) initially emerged from the background along the area of nerve contact. They grew in size, increased in number, and fused to form larger clusters over a period of 1 or 2 days. Receptor clusters did not migrate as a whole as observed during "cap" formation in B lymphocytes. The rate of recruitment of AChRs at the nerve-muscle junction varied from less than 50 binding sites to 1000 sites/hr for alpha BT. In this study the diffusion-trap mechanism was tested for the nerve-induced receptor accumulation. The diffusion coefficient of diffusely distributed AChRs was measured using the fluorescence photobleaching recovery method and found to be 2.45 X 10(-10) cm2/sec at 22 degrees C. There was no significant difference in these values among the muscle cells cultured without nerve, the non-nerve-contacted muscle cells in nerve-muscle cultures, and the nerve-contacted muscle cells. It was found that the diffusion of receptors in the membrane is not rate-limiting for AChR accumulation.  相似文献   

13.
Using optical imaging assays, we investigated the dynamics of acetylcholine receptors (AChRs) at laminin-associated clusters on cultured myotubes in the absence or presence of the nerve-derived clustering factor, agrin. Using fluorescence recovery after photobleaching (FRAP) on fluorescent bungarotoxin-labeled receptors, we found that approximately 9% of original fluorescence was recovered after 8 h as surface AChRs were recruited into clusters. By quantifying the loss of labeled receptors and the recovery of fluorescence after photobleaching, we estimated that the half-life of clustered receptors was approximately 4.5 h. Despite the rapid removal of receptors, the accumulation of new receptors at clusters was robust enough to maintain receptor density over time. We also found that the AChR half-life was not affected by agrin despite its role in inducing the aggregation of AChRs. Interestingly, when agrin was added to myotubes grown on laminin-coated substrates, most new receptors were not directed into preexisting laminin-induced clusters but instead formed numerous small aggregates on the entire muscle surface. Time-lapse imaging revealed that the agrin-induced clusters could be seen as early as 1 h, and agrin treatment resulted in the complete dissipation of laminin-associated clusters by 24 h. These results reveal that while laminin and agrin are involved in the clustering of receptors they are not critical to the regulation of receptor metabolic stability at these clusters, and further argue that agrin is able to rapidly and fully negate the laminin substrate clustering effect while inducing the rapid formation of new clusters.  相似文献   

14.
The high local concentration of acetylcholine receptors (AChRs) at the vertebrate neuromuscular junction results from their aggregation by the agrin/MuSK signaling pathway and their synthetic up-regulation by the neuregulin/ErbB pathway. Here, we show a novel role for the neuregulin/ErbB pathway, the inhibition of AChR aggregation on the muscle surface. Treatment of C2C12 myotubes with the neuregulin epidermal growth factor domain decreased the number of both spontaneous and agrin-induced AChR clusters, in part by increasing the rate of cluster disassembly. Upon cluster disassembly, AChRs were internalized into caveolae (as identified by caveolin-3). Time-lapse microscopy revealed that individual AChR clusters fragmented into puncta, and application of neuregulin accelerated the rate at which AChR clusters decreased in area without affecting the density of AChRs remaining in individual clusters (as measured by the fluorescence intensity/unit area). We propose that this novel action of neuregulin regulates synaptic competition at the developing neuromuscular junction.  相似文献   

15.
We have used interference reflection and fluorescence microscopy to investigate the relationship between cell-substrate contact and the location of clusters of acetylcholine receptors (AChRs) in cultures of rat myotubes. We have found that AChR clusters on the ventral myotube surfaces are always located within broad regions of close cell-substrate contact. Detailed analysis of the fine structure of the AChR cluster and its associated contact region showed that AChRs within a cluster are concentrated between the points of closest cell-substrate apposition. Vinculin, a recently discovered intracellular smooth muscle protein, is also concentrated in broad regions of close contact, interdigitating with AChRs within the clusters.  相似文献   

16.
We used transient transfection in COS cells to compare the properties of mouse muscle acetylcholine receptors (AChRs) containing alpha, beta, delta, and either gamma or epsilon subunits. gamma- and epsilon-AChRs had identical association rates for binding 125I-alpha-bungarotoxin, and identical curves for inhibition of toxin binding by d-tubocurarine, but epsilon-AChRs had a significantly longer half-time of turnover in the membrane than gamma-AChRs. A myasthenic serum specific for the embryonic form of the AChR reduced toxin binding to gamma-, but not epsilon-AChRs. The gamma-AChRs had channel characteristics of embryonic AChRs, whereas the major class of epsilon-AChR channels had the characteristics of adult AChRs. Two minor channel classes with smaller conductances were also seen with epsilon-AChR. Thus, some, but not all, of the differences between AChRs at adult endplates and those in the extrasynaptic membrane can be explained by the difference in subunit composition of gamma- and epsilon-AChRs.  相似文献   

17.
Nicotinic acetylcholine receptors (AChRs) are localized at high concentrations in the postsynaptic membrane of the neuromuscular junction. A peripheral membrane protein of Mr 43,000 (43K protein) is closely associated with AChRs and has been proposed to anchor receptors at postsynaptic sites. We have used the Xenopus oocyte expression system to test the idea that the 43K protein clusters AChRs. Mouse muscle AChRs expressed in oocytes after injection of RNA encoding receptor subunits are uniformly distributed in the surface membrane. Coinjection of AChR RNA and RNA encoding the mouse muscle 43K protein causes AChRs to form clusters of 0.5-1.5 microns diameter. AChR clustering is not a consequence of increased receptor expression in the surface membrane or nonspecific clustering of all membrane proteins. The 43K protein is colocalized with AChRs in clusters when the two proteins are expressed together and forms clusters of similar size even in the absence of AChRs. These results provide direct evidence that the 43K protein causes clustering of AChRs and suggest that regulation of 43K protein clustering may be a key step in neuromuscular synaptogenesis.  相似文献   

18.
Agrin induces discrete high-density patches of acetylcholine receptors (AChRs) and other synaptic components on cultured myotubes in a manner that resembles synaptic differentiation. Furthermore, agrin-like molecules are present at developing neuromuscular junctions in vivo. This provides us with a unique opportunity to manipulate AChR patching in order to examine the role of cytoskeletal components. Cultured chick myotubes were fixed and labeled to visualize the distributions of actin, alpha-actinin, filamin, tropomyosin, and vinculin. Overnight exposure to agrin caused a small amount of alpha-actinin, filamin, and vinculin to reorganize into discrete clusters. Double-labeling studies revealed that 78% of the AChR clusters were associated with detectable concentrations of filamin, 70% with alpha-actinin, and 58% with vinculin. Filamin even showed congruence to AChRs within clustered regions. By contrast, actin (visualized with fluorescein-phalloidin) and tropomyosin did not show specific associations with agrin-induced AChR clusters. The accumulation of cytoskeletal components at AChRs clusters raised the possibility that cytoskeletal rearrangements direct AChR clustering. However, a time course of agrin-induced clustering that focused on filamin revealed that most of the early AChR clusters (3-6 h) were not associated with detectable amounts of cytoskeletal material. The accumulation of cytoskeletal material at later times (12-18 h) may imply a role in maintenance and stabilization, but it appears unlikely that these cytoskeletal elements initiate AChR clustering on myotubes.  相似文献   

19.
We have investigated the role of acetylcholine receptors (AChRs) in an early step of postsynaptic assembly at the neuromuscular synapse, the clustering of postsynaptic proteins induced by nerve-released agrin. To achieve this, we used two variants of C2 myotubes virtually lacking AChRs and C2 cells in which surface AChRs were down-regulated by AChR antibodies. In all cases, agrin caused normal clustering of the agrin receptor component MuSK, alpha-dystrobrevin and utrophin, but failed to aggregate AChRs, alpha- and beta-dystroglycan, syntrophin isoforms and rapsyn, an AChR-anchoring protein necessary for postsynaptic assembly and AChR clustering. In C2 variants, the stability of rapsyn was decreased, whereas in antibody-treated cells, rapsyn efficiently co-localized with remaining AChRs in microaggregates. Upon ectopic injection into myofibers in vivo, rapsyn did not form clusters in the absence of AChRs. These results show that AChRs and rapsyn are interdependent components of a pre-assembled protein complex that is required for agrin-induced clustering of a full set of postsynaptic proteins, thus providing evidence for an active role of AChRs in postsynaptic assembly.  相似文献   

20.
A critical event in the formation of vertebrate neuromuscular junctions (NMJs) is the postsynaptic clustering of acetylcholine receptors (AChRs) in muscle. AChR clustering is triggered by the activation of MuSK, a muscle-specific tyrosine kinase that is part of the functional receptor for agrin, a nerve-derived heparan sulfate proteoglycan (HSPG). At the NMJ, heparan sulfate (HS)-binding growth factors and their receptors are also localized but their involvement in postsynaptic signaling is poorly understood. In this study we found that hepatocyte growth factor (HGF), an HS-binding growth factor, surrounded muscle fibers and was localized at NMJs in rat muscle sections. In cultured Xenopus muscle cells, HGF was enriched at spontaneously occurring AChR clusters (hot spots), where HSPGs were also concentrated, and, following stimulation of muscle cells by agrin or cocultured neurons, HGF associated with newly formed AChR clusters. HGF presented locally to cultured muscle cells by latex beads induced new AChR clusters and dispersed AChR hot spots, and HGF beads also clustered phosphotyrosine, activated c-Met, and proteins of dystrophin complex; clustering of AChRs and associated proteins by HGF beads required actin polymerization. Lastly, although bath-applied HGF alone did not induce new AChR clusters, addition of HGF potentiated agrin-dependent AChR clustering in muscle. Our findings suggest that HGF promotes AChR clustering and synaptogenic signaling in muscle during NMJ development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号