首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
2.
3.
微生物硫代谢及其驱动下建立的生物生态关系   总被引:1,自引:0,他引:1  
硫在环境中广泛存在,是生物细胞的主要构成元素,微生物、动物和植物的硫基础代谢途径之间存在着广泛联系.本文以微生物硫代谢为主线,全面总结了硫在3类生物中的4条主要代谢途径,并重点阐明了其共性、区别及联系.微生物参与了所有硫的主要代谢,是驱动硫生物循环的主要动力.微生物异化硫还原降低了环境中甲烷的挥发,微生物、植物实施的同...  相似文献   

4.
The oxidation of hydrogen sulfide is essential to sulfur cycling in marine habitats. However, the role of microbial sulfur oxidation in marine sediments and the microorganisms involved are largely unknown, except for the filamentous, mat‐forming bacteria. In this study we explored the diversity, abundance and activity of sulfur‐oxidizing prokaryotes (SOP) in sulfidic intertidal sediments using 16S rRNA and functional gene sequence analyses, fluorescence in situ hybridization (FISH) and microautoradiography. The 16S rRNA gene analysis revealed that distinct clades of uncultured Gammaproteobacteria are important SOP in the tidal sediments. This was supported by the dominance of gammaproteobacterial sequences in clone libraries of genes encoding the reverse dissimilatory sulfite reductase (rDSR) and the adenosine phosphosulfate reductase (APR). Numerous sequences of all three genes grouped with uncultured autotrophic SOP. Accordingly, Gammaproteobacteria accounted for 40–70% of all 14CO2‐incorporating cells in surface sediments as shown by microautoradiography. Furthermore, phylogenetic analysis of all three genes consistently suggested a discrete population of SOP that was most closely related to the sulfur‐oxidizing endosymbionts of the tubeworm Oligobrachia spp. FISH showed that members of this population (WS‐Gam209 group) were abundant, reaching up to 1.3 × 108 cells ml?1 (4.6% of all cells). Approximately 25% of this population incorporated CO2, consistent with a chemolithoautotrophic metabolism most likely based on sulfur oxidation. Thus, we hypothesize that novel, gammaproteobacterial SOP attached to sediment particles may play a more important role for sulfide removal and primary production in marine sediments than previously assumed.  相似文献   

5.
Several systems which generate persulfide sulfur promote in vitro proliferation of L1210 murine lymphoma cells. The systems include cysteine disulfides and pyridoxal, cystamine and diamine oxidase, beta-mercaptoalcohol disulfides and an alcohol dehydrogenase, and sulfide-treated proteins and a thiol. Persulfide sulfur is very unstable at pH near 7 and an essential feature of the growth-supporting systems is the ability to generate persulfide sulfur at a very low rate for long periods of time. Methyl disulfides (R--S--S--CH3) also support growth of L1210 cells and are more stable than persulfides (R--S--S--H). The requirement for these sulfur groups by L1210 cells may be related to the fact that these cells are defective in at least two enzymes of sulfur metabolism, cystathionase and 5'-methylthioadenosine phosphorylase. These findings provide the first evidence that persulfide sulfur may have a physiological role.  相似文献   

6.
Hydrogen is definitely one of the most acceptable fuels in the future. Some photosynthetic microorganisms, such as green algae and cyanobacteria, can produce hydrogen gas from water by using solar energy. In green algae, hydrogen evolution is coupled to the photosynthetic electron transport in thylakoid membranes via reaction catalyzed by the specific enzyme, (FeFe)-hydrogenase. However, this enzyme is highly sensitive to oxygen and can be quickly inhibited when water splitting is active. A problem of incompatibility between the water splitting and hydrogenase reaction can be overcome by depletion of algal cells of sulfur which is essential element for life. In this review the mechanisms underlying sustained hydrogen photoproduction in sulfur deprived C. reinhardtii and the recent achievements in studying of this process are discussed. The attention is focused on the biophysical and physiological aspects of photosynthetic response to sulfur deficiency in green algae.  相似文献   

7.
Rational design and massive production of bifunctional catalysts with superior oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activities are essential for developing metal–air batteries and fuel cells. Herein, controllable large‐scale synthesis of sulfur‐doped CaMnO3 nanotubes is demonstrated via an electrospinning technique followed by calcination and sulfurization treatment. The sulfur doping can not only replace oxygen atoms to increase intrinsic electrical conductivity but also introduce abundant oxygen vacancies to provide enough catalytically active sites, which is further demonstrated by density functional theory calculation. The resulting sulfur‐modified CaMnO3 (CMO/S) exhibits better electrocatalytic activity for ORR and OER in alkaline solution with higher stability performance than the pristine CMO. These results highlight the importance of sulfur treatment as a facile yet effective strategy to improve the ORR and OER catalytic activity of the pristine CaMnO3. As a proof‐of‐concept, a rechargeable Zn–air battery using the bifunctional catalyst exhibits a small charge–discharge voltage polarization, and long cycling life. Furthermore, a solid‐state flexible and rechargeable Zn–air battery gives superior discharge–charge performance and remarkable stability. Therefore, the CMO/S nanotubes might be a promising replacement to the Pt‐based electrocatalysts for metal–air batteries and fuel cells.  相似文献   

8.
The Gomori-positive glia are periventricular astrocytes with abundant cytoplasmic granular material, predominantly occupying a periventricular site in the brain. These granular inclusions are strongly stained with chrome hematoxylin in the Gomori's method as well as exhibit red autofluorescence and non-enzymatic peroxidase activity. The glial Gomori-positive material (GGPM) granules are positive in the performic acid Alcian blue method indicating the presence of protein-bound sulfur, what has been shown by our previous studies. The number of cells containing glial Gomori-positive granules dropped after administration of cyanide and increased under the influence of sulfane sulfur donor (diallyl disulfide). This suggests, that sulfur of these granules is a sulfane sulfur, possibly in the form of protein-bound cysteine persulfide. Sulfane sulfur is labile, reactive sulfur atom covalently bound to another sulfur atom. In this paper we present evidence that GGPM exhibit affinity to cyanolysis and its stainability in Gomori's method is due to the presence of protein-bound sulfane sulfur. The biological role of the Gomori-positive glia connected with protective properties of sulfane sulfur has been discussed.  相似文献   

9.
Transthyretin (TTR) amyloid fibrils are the main component of the amyloid deposits occurring in Familial Amyloidotic Polyneuropathy patients. This is 1 of 20 human proteins leading to protein aggregation disorders such as Alzheimer's and Creutzfeldt-Jakob diseases. The structural details concerning the association of the protein molecules are essential for a better understanding of the disease and consequently the design of new strategies for diagnosis and therapeutics. Disulfide bonds are frequently considered essential for the stability of protein aggregates and since in the TTR monomers there is one cysteine residue, it is important to determine unambiguously the redox state of sulfur present in the fibrils. In this work we used x-ray spectroscopy to further characterize TTR amyloid fibrils. The sulfur K-edge absorption spectra for the wild type and some amyloidogenic TTR variants in the soluble and fibrillar forms were analyzed. Whereas in the soluble proteins the thiol group from cysteine (R-SH) and the thioether group from methionine (R-S-CH(3)) are the most abundant forms, in the TTR fibrils there is a significant oxidation of sulfur to the sulfonate form in the cysteine residue and a partial oxidation of sulfur to sulfoxide in the methionine residues. Further interpretation of the data reveals that there are no disulfide bridges in the fibrillar samples and suggest conformational changes in the TTR molecule, namely in strand A and/or in its vicinity, upon fibril formation.  相似文献   

10.
Soil communities are intricately linked to ecosystem functioning, and a predictive understanding of how communities assemble in response to environmental change is of great ecological importance. Little is known about the assembly processes governing abundant and rare fungal communities across agro‐ecosystems, particularly with regard to their environmental adaptation. By considering abundant and rare taxa, we tested the environmental thresholds and phylogenetic signals for ecological preferences of fungal communities across complex environmental gradients to reflect their environmental adaptation, and explored the factors influencing their assembly based on the large‐scale soil survey in agricultural fields across eastern China. We found that the abundant taxa exhibited remarkably broader response thresholds and stronger phylogenetic signals for the ecological preferences across environmental gradients compared to the rare taxa. Neutral processes played a key role in shaping the abundant subcommunity compared to the rare subcommunity. Null model analysis revealed that the abundant subcommunity was less clustered phylogenetically and governed primarily by dispersal limitation, while homogeneous selection was the major assembly process in the rare subcommunity. Soil available sulfur was the major factor mediating the balance between stochastic and deterministic processes of both the abundant and rare subcommunities, as indicated by an increase in stochasticity with higher available sulfur concentration. Based on macroecological spatial scale datasets, our study revealed the potential broader environmental adaptation of abundant fungal taxa compared to rare fungal taxa, and identified the factors mediating their distinct community assembly processes in agricultural fields. These results contribute to our understanding of the mechanisms underlying the generation and maintenance of fungal diversity in response to global environmental change.  相似文献   

11.
12.
Sulfur is an essential macro-element in plant and animal nutrition. Plants assimilate inorganic sulfate into two sulfur-containing amino acids, cysteine and methionine. Low supply of sulfate leads to decreased sulfur pools within plant tissues. As sulfur-related metabolites represent an integral part of plant metabolism with multiple interactions, sulfur deficiency stress induces a number of adaptive responses, which must be coordinated. To reveal the coordinating network of adaptations to sulfur deficiency, metabolite profiling of Arabidopsis has been undertaken. Gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry techniques revealed the response patterns of 6,023 peaks of nonredundant ion traces and relative concentration levels of 134 nonredundant compounds of known chemical structure. Here, we provide a catalogue of the detected metabolic changes and reconstruct the coordinating network of their mutual influences. The observed decrease in biomass, as well as in levels of proteins, chlorophylls, and total RNA, gives evidence for a general reduction of metabolic activity under conditions of depleted sulfur supply. This is achieved by a systemic adjustment of metabolism involving the major metabolic pathways. Sulfur/carbon/nitrogen are partitioned by accumulation of metabolites along the pathway O-acetylserine to serine to glycine, and are further channeled together with the nitrogen-rich compound glutamine into allantoin. Mutual influences between sulfur assimilation, nitrogen imbalance, lipid breakdown, purine metabolism, and enhanced photorespiration associated with sulfur-deficiency stress are revealed in this study. These responses may be assembled into a global scheme of metabolic regulation induced by sulfur nutritional stress, which optimizes resources for seed production.  相似文献   

13.
14.
Aiming to identify novel phosphorylation sites in response to DNA double-strand breaks (DSB) inducers, we have isolated a phosphorylation site on KU70. Unexpectedly, a rabbit antiserum raised against this site cross-reacted with a 120 kDa protein in cells treated by DNA DSB inducers. We identified this protein as SAF-A/hnRNP U, an abundant and essential nuclear protein containing regions binding DNA or RNA. The phosphorylation site was mapped at S59 position in a sequence context favoring a "S-hydrophobic" consensus model for DNA-PK phosphorylation site in vivo. This site was exclusively phosphorylated by DNA-PK in response to DNA DSB inducers. In addition, the extent and duration of this phosphorylation was in inverse correlation with the capacity of the cells to repair DSB by nonhomologous end joining. These results bring a new link between the hnRNP family and the DNA damage response. Additionaly, the mapped phospho-site on SAF-A might serve as a potential bio-marker for DNA-PK activity in academic studies and clinical analyses of DNA-PK activators or inhibitors.  相似文献   

15.
New antibiotic targets are urgently needed to tackle the multidrug resistant and latent Mycobacterium tuberculosis, the causative agent of the most formidable infectious disease tuberculosis. Sulfur metabolism is essential for the survival and virulence of many pathogens including M. tuberculosis. The absence of most genes involved in microbial sulfur metabolism in human beings suggests abundant novel potential antibiotic targets in pathogen sulfur metabolism. In this article, a comparative genomic landscape of Mycobacterium sulfur metabolism, such as the uptake, activation, and reduction of sulfate and allied enzymes, the biosynthesis pathway of some sulfated metabolites, and the enzymes involved in these pathways were presented. Novel clues for antibiotic targets are put forward.  相似文献   

16.
17.
SYNOPSIS. Lucinid bivalves occur widely in habitats rangingfrom subtidal to deep ocean basins. The evidence reported todate supports the contention that all lucinids contain intracellular,sulfur-oxidizing bacterial symbionts which contribute substantiallyto the nutrition of the intact association. These burrowingbivalves are found in both high and low sulfide habitats. Examinationsof sulfur compounds in the hemolymph of lucinids reveal thatthiosulfate may be a key intermediate in the metabolism of sulfidein all members of this family. The presence of free sulfidein the hemolymph of both freshly collected and experimentalclams suggests that the total sulfide oxidation/detoxificationcapacity of the lucinids may be substantially lower than thatfound in other sulfur bacteria/invertebrate symbioses. Intracellulargranules catalyze the oxidation of sulfide in L. floridana,one apparent line of sulfide toxicity defense in this species.These electron-dense granules occur in high densities in thebacteriocytes (bacteria-containing gill cells) of all lucinids.Thiosulfate produced during this detoxification may be availablefor further oxidation by the abundant symbionts housed in thesesame cells. Hemolymph thiol and elementalsulfur levels in clamsfrom low sulfide habitats suggest that these animals have evolvedmechanisms for sulfur acquisition. In sulfur-free seawater,sulfur-starved Lucina floridana are infrequent, periodic ventilators,but in the presence of sulfur show a significant increase inventilation frequency. This periodic ventilation may be a traitof all lucinids that plays a substantial role in reducing metaboliccosts during low nutrient availability.  相似文献   

18.
19.
Cadmium is very toxic at low concentrations, but the basis for its toxicity is not clearly understood. We analyzed the proteomic response of yeast cells to acute cadmium stress and identified 54 induced and 43 repressed proteins. A striking result is the strong induction of 9 enzymes of the sulfur amino acid biosynthetic pathway. Accordingly, we observed that glutathione synthesis is strongly increased in response to cadmium treatment. Several proteins with antioxidant properties were also induced. The induction of nine proteins is dependent upon the transactivator Yap1p, consistent with the cadmium hypersensitive phenotype of the YAP1-disrupted strain. Most of these proteins are also overexpressed in a strain overexpressing Yap1p, a result that correlates with the cadmium hyper-resistant phenotype of this strain. Two of these Yap1p-dependent proteins, thioredoxin and thioredoxin reductase, play an important role in cadmium tolerance because strains lacking the corresponding genes are hypersensitive to this metal. Altogether, our data indicate that the two cellular thiol redox systems, glutathione and thioredoxin, are essential for cellular defense against cadmium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号