首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Fluorescence properties of plasma membranes from dark-grown oat shoots ( Avena saliva L. cv. Sol II) and from cauliflower inflorescences ( Brassica oleracea L.) were investigated. Along with a flavin (with a possible connection to blue light physiology), a blue fluorescing component was present. The effect of NaN3, phenyl acetic acid (PAA), KI (flavin inhibitors) and salicylhydroxamic acid (SHAM; inhibitor of e.g. the blue light-induced cytochrome b reduction) were followed with regard to the fluorescence properties of the two components as well as with regard to the light-induced cytochrome b reduction (LIAC). A change in flavin fluorescence and LIAC occurred at about the same concentration of PAA and SHAM, while LIAC was much more sensitive to KI and NaN3 than was the fluorescence. Rapid freezing and thawing did not change the relative fluorescence emission from the flavin and blue fluorescing component, respectively, but storage at -20°C for one or two days increased the fluorescence, especially from the latter. There did not seem to be a tight coupling between the fluorescence properties of the blue fluorescing component (spectrally similar to a pteridine) and the flavin. Therefore, no conclusions could be drawn concerning their connection in blue light physiology, i.e. in processes such as phototropism.  相似文献   

2.
The distribution of divalent cation stimulated ATPase activity in relation to the distribution of other enzyme activities was studied for membrane fractions from wheat roots ( Tritium aestivum L . cv. Svenno). A homogenate from dark grown plants was fractionated by differential centrifugation at 1000 g , 10,000 g , 30,000 g and 60,000 g (1, 10, 30 and 60 KP fractions), followed by partition in an aqueous polymer two-phase system, using polyethylene glycol 4000/dextran T500 concentrations of 5.7/5.7, 5.9/5.9, 6.1/6.1, 6.3/6.3 and 6.5/6.5% (w/w). The 30 KP fraction was also separated by counter-current distribution id a 6.3/6.3% two-phase system. Protein and activities of Ca2+, Mg2+, and Mn2+ stimulated ATPases. cytochrome oxidase, light induced absorbance change (LIAC) related to cyt b reductions, inosine diphosphatase and NADH dependent antimycin A insensitive cytochrome c reductase were measured.
The partition of ATPase activities stimulated by Ca2+, Mg2+ or Mn2+ was similar at all polymer concentrations tested, indicating: a low cation specificity of the dominating ATPases. The distribution of ATPases. agreed with different marker enzymes in different centrifuge fractions. Divalent cation stimulated ATPases were evidently related to several of the organelles. In the different fractions the distribution of ATPase activity should then follow that of the marker enzyme of the dominant organelle. From studies with different polymer concentrations the 6.3/6.3-system was selected for further separation of the membranes in the 30 KP fraction by counter-current distribution. By this method one fraction was obtained, which probably consisted of plasmalemma and was free from mitochondrial material. Indications for plasmalemma in this fraction were a) similar partition as protoplasts and b) high LIAC activity.  相似文献   

3.
It was previously demonstrated that photoexcited methylene blue can act as electron donor in red light induced reduction of a particulate b-type cytochrome in fraction from etiolated corn coleoptiles (Zea mays L. WF 9 × Bear 38). It was postulated that the same cytochrome as the one active in blue light photoprocesses was involved. This study describes the effect of detergents upon such red light induced reductions in corn coleoptile preparations fractionated after differential centrifugation into 9 KP, 21 KP and 50 KP (500–9000 g pellet, 9000–21,000 g pellet and 21,000–50,000 g pellet, spun for 20, 20, and 45 min, respectively). Both Triton X-100 (more effective) and deoxycholate (less effective and somewhat destructive) could be used as solubilizers if concentrations above the critical micellar concentration were chosen. Tween 40 was ineffective and dodecyl sulphate affected the cytochrome so that it lost its accessibility to electrons from photoexcited methylene blue. The recovery, measured as the ratio between light induced absorbance change (LIAC) in the Soret region after and before solubilization, was highest in 9 KP (70%) and lower in 21 and 50 KP fractions (50% and 43% respectively). The band in the Soret region in light minus dark spectra had its peak at longer wavelengths compared to the dithionite reduced minus no addition absorption difference band, whether the sample was solubilized or not. Similar results were obtained when the material was separated on a discontinuous sucrose gradient (15/28/33/45% w/w sucrose). In such a separation, the distribution of LIAC between fractions (collected at the interfaces) was about the same after solubilization as before (solubilization brought about a slight shift towards heavier fractions). The ratios of LIAC to the dithionite reduced minus no addition absorbance difference decreased upon detergent treatment. The LIAC still had its peak at longer wavelengths compared to the peak obtained upon dithionite reduction. The usefulness of detergents in the purification of the particulate b-type cytochrome is discussed.  相似文献   

4.
Light-induced absorbance changes (LIAC), indicating the reversible reduction of a b-type cytochrome, and with a possible connection to blue light photomorphogenesis, have been found in a presumptive plasma membrane rich centrifuge fraction from LIAC could be due to plasma membrane vesicles turned inside out or to cytochromes localized in other organelles. Phase partition proved to be a rapid method (results technique membrane particles are separated according to differences in surface properties rather than size and density. LIAC could be separated into two fractions: one partitioning into the polyethylene glycol rich upper phase and another preferring the dextram rich lower phase. Mitochondria (cytochrome c oxidase) were recovered in the lower phase. A dual distribution of LIAC was found with all materials tested: corn coleoptiles, corn shoots, barley shoots and cauliflower inflorescences. About 80–90% of the cytochromes in the upper phase were related to LIAC, whereas only 10–15% of those in the lower phase were of this kind. The LIAC preferring the upper phase was probably bound to the plasma membrane, since plasma membrane vesicles are known to have a high partition in these phase systems. The lower phase LIAC could be due to plasma membrane vesicles turned inside out or to cytochromes localized in other organelles. Phase partition proved to be a rapid method (results within one hour after the initial pelleting) for purification of presumptive plasma membranes, yielding a preparation which contained five times less mitochondrial contamination than the preparation obtained with sucrose gradient centrifugation (the 33/45% w/w sucrose interface fraction).  相似文献   

5.
Effects of CO2 on stomatal movements of Commelina communis L. were studied with plants, epidermal strips and guard cell protoplasts. With plants, the stomatal response induced by a blue light pulse was studied for different ambient CO2 concentration ranging from CO2-deprived air to 100 Pa in darkness or under red light. It was observed that the blue light response could be obtained not only under a red light background but also in darkness and CO2-free air, the two responses being quite similar.
With epidermal strips, the effect of CO2 on ferricyanide reductase activity at the guard cell plasmalemma was studied by transmission electron microscopy. In the presence of ferric ions, reduced ferricyanide gives an electron dense precipitate of Prussian Blue. In darkness and air, no precipitate was observed. In darkness and CO2-free air as well as under light and normal air, a precipitate was found along the plasmalemma of the guard cells, indicating a ferricyanide reductase activity. With guard cell protoplasts suspended in a medium either in equilibrium with air or in a CO2-free medium the H+ extrusion induced by a blue light pulse added to a red light background was measured. A low CO2 content was obtained by adding photosynthetic algae to the suspension of guard cell protoplasts. In a CO2-free medium the rate of H+ extrusion was enhanced.
The results are discussed on the basis of a possible competition for reducing power between CO2 fixation and a putative blue light dependent redox chain located on the plasma membrane.  相似文献   

6.
The role of plasma membrane redox activity in light effects in plants   总被引:1,自引:0,他引:1  
Stimulations by light of electron transport at the plasma membrane make it possible that redox activity is involved in light-induced signal transduction chains. This is especially true in cases where component(s) of the chain are also located at the plasma membrane. Photosynthetic reactions stimulate transplasma membrane redox activity of mesophyll cells. Activity is measured as a reduction of the nonpermeating redox probe, ferricyanide. The stimulation is due to production of a cytosolic electron donor from a substance(s) transported from the chloroplast. It is unknown whether the stimulation of redox activity is a requirement for other photosynthetically stimulated processes at the plasma membrane, but a reduced intermediate may regulate proton excretion by guard cells. Blue light induces an absorbance change (LIAC) at the plasma membrane whose difference spectrum resembles certainb-type cytochromes. This transport of electrons may be due to absorption of light by a flavoprotein. The LIAC has been implicated as an early step in certain blue light-mediated morphogenic events. Unrelated to photosynthesis, blue light also stimulates electron transport at the plasma membrane to ferricyanide. The relationship between LIAC and transmembrane electron flow has not yet been determined, but blue light-regulated proton excretion and/or growth may depend on this electron flow. No conclusions can be drawn regarding any role for phytochrome because of a paucity of information concerning the effects of red light on redox activity at the plasma membrane.  相似文献   

7.
The involvement of phytochrome in stomatal movement in Commelina communis L. is indicated by the following observations: 1) Short irradiation with red or blue light causes opening, of isolated stomata and swelling of guard cell protoplasts. This is reversed by subsequent far red irradiation. 2) In a similar way, stomatal response to prolonged irradiation with red or blue light is decreased by concomitant far red irradiation. 3) Pretreatment with filipin, which interferes with phytochrome binding to membranes, decreases stomatal opening in red and blue light. The stomatal responses to blue and red light are modified by DCMU, N2, CO2-enriched atmosphere, and CO2-free air, which are known to affect, among other processes, chlorophyll fluorescence. Increased chlorophyll fluorescence by DCMU, N2 and CO2-enriched atmosphere enhanced stomatal opening in blue light and inhibited it in red light. CO2-free air, which decreases chlorophyll fluorescence, had the opposite effect.  相似文献   

8.
Abstract Cytochromes d and b 595 were studied by low temperature photodissociation of CO-ligated Azotobacter vinelandii membranes. White light or He-Ne laser irradiation revealed 436 and 594–597 nm absorption bands to be due to Fe11 cytochrome b 595. Oxy-cytochrome d (648 nm) was formed when the CO adduct was photolysed in the presence of oxygen. This was followed by ligand recombination (presumably oxygen) to the high-spin cytochrome b 595, with a distinctive shift to shorter wavelengths of the α-band of the cytochrome, and a decrease in the oxygenated form. All spectral changes were light-reversible. We demonstrate the light-reversible binding of CO to both cytochromes b 595 and d , and suggest migration of oxygen from cytochrome d to cytochrome b 595 at a haem-haem binuclear centre during the oxidase reaction.  相似文献   

9.
The detergent Tween-20 solubilized preferentially portions of the marginal regions of Spinacea oleracea L. thylakoid membranes and, thus, opened the inside of the grana to the external media. Differential centrifugation. following Tween-20 solubilization. enabled separate fractions of grana and stromal-exposed membranes to be isolated. Analysis of Tween-20 solubilized material, after pelleting all membrane material by centrifugation at 100 000 g, revealed polypeptides associated with the coupling factor (CF1) particles, cytochrome b6/f and photosystem II complexes, suggesting that the marginal membranes contain these proteins. Concomitantly, the 100 000 g pellet was depleted in cytochrome b6/f and P700, determined spectroscopically, Thus. our results reveal the margin to be a distinct membrane region, which does not contain the light-harvesting centers of photosystem II (LHC II). The implication of these results, in terms of the energetic interaction of components of granal and stromalexposed membrane regions, is discussed.  相似文献   

10.
Toxic Cu (II) effect on cytochrome b 559 under aerobic photoinhibitory conditions was examined in two different photosystem II (PSII) membrane preparations active in oxygen evolution. The preparations differ in the content of cytochrome b 559 redox potential forms. Difference absorption spectra showed that the presence of Cu (II) induced the oxidation of the high-potential form of cytochrome b 559 in the dark. Addition of hydroquinone reduced the total oxidized high-potential form of cytochrome b 559 present in Cu (II)-treated PSII membranes indicating that no conversion to the low-potential form took place. Spectroscopic determinations of cytochrome b 559 during photoinhibitory treatment showed slower kinetics of Cu (II) effect on cytochrome b 559 in comparison with the rapid loss of oxygen evolution activity in the same conditions. This result indicates that cytochrome b 559 is affected after PSII centres are photoinhibited. The high-potential form was more sensitive to toxic Cu (II) action than the low-potential form under illumination at pH 6.0. The content of the high-potential form of cytochrome b 559 was completely lost; however, the low-potential content was unaffected in these conditions. This loss did not involve cytochrome protein degradation. The results are discussed in terms of different binding properties of the heme iron to the protonated or unprotonated histidine ligand in the high-potential and low-potential forms of cytochrome b 559, respectively.  相似文献   

11.
Arabidopsis thaliana (L.) Heynh. race Columbia plants were grown in red. blue, red + far-red, blue + far-red and various light mixtures of red + blue + far-red light under 14 h light/10 h dark photoperiods. Each single light source and light mixture maintained a constant irradiance (50 μmol m−2 s−1) and the mixtures of red + blue + far-red maintained a constant ratio of red/far-red light, but varied in the ratio of blue to red + far-red light. Depending on the method used for calculation, values of the fraction of phytochrome in the far-red absorbing form (Pfr/Ptot) for these light mixtures were either constant or decreased slightly with increasing percentage of blue light in the mixtures. Arabidopsis flowered early (20 days) in blue, blue + far-red and red + far-red light and late (55 days) in red light. In mixtures of red + blue + far-red light, each of which established a nearly constant Pfr/Ptot flowering was in direct relation to time and irradiance level of blue light. Leaf area and petiole length were also correlated with blue light irradiance levels.  相似文献   

12.
Abstract. The response of stomatal conductance to broadband blue and red light was measured in whole shoots of Scots pine and Sitka spruce, two species which have low stomatal sensitivity to CO2. In Scots pine, blue light was more than three times more effective than red light (on an incident quantum basis) in opening stomata, particularly at low quantum flux densities (<100μmiol m−2 s−1). However, the apparent quantum yield of net CO2 assimilation rate in blue light was only half that in red light. The contrasting effects of red and blue light on conductance and assimilation led to higher intercellular CO2 concentrations (Ci) in blue light (up to 100 μmol mol−1 higher) than in red light. Similar results were obtained with Sitka spruce shoots, though differences in the effectiveness of red and blue light were less marked. In both species, both red and blue light increased conductance in normal and CO2-free air, indicating that neither red nor blue light exert effects through changes in Ci or mesophyll assimilation. However, decreases in Ci caused increases in conductance in both red and blue light, suggesting that these direct effects of light are not wholly independent of CO2.  相似文献   

13.
Abstract The role of cytochrome b 562, a fragile constituent of the respiratory terminal oxidase supercomplex of the thermoacidophilic archaeon, Sulfolobus sp. strain 7, was investigated spectroscopically in the membrane-bound state. Cytochrome b 562 did not react with CO or cyanide in the membrane-bound state, while it was irreversibly modified to a CO-reactive form ( b 562) upon solubilization in the presence of cholate and LiCl. Cyanide titration analyses with the succinate-reduced membrane suggested that cytochrome b 562 was upstream of both the ' g y= 1.89' Rieske FeS cluster and the a -type cytochromes. These results show that the b -type cytochrome functions as an intermediate electron transmitter in the terminal oxidase supercomplex.  相似文献   

14.
Abstract Cytochrome components which participate in the oxidation of nitrite in Nitrobacter winogradskyi have been highly purified and their properties studied in detail. Cytochrome a 1 c 1 is an iron-sulphur molybdoenzyme which has haems a and c and acts as a nitrite-cytochrome c oxidoreductase. Cytochrome c -550 is homologous to eukaryotic cytochrome c and acts as the electron mediator between cytochrome a 1 c 1 and aa 3-type cytochrome c oxidase. The oxidase is composed of two kinds of subunits, has two molecules of haem a and two atoms of copper in the molecule, and oxidizes actively eukaryotic ferrocytochrome c as well as its own ferrocytochrome c -550. Further, a flavoenzyme has been obtained which has transhydrogenase activity and catalyses reduction of NADP+ with benzylviologen radical. This enzyme may be responsible for production of NADPH in N. winogradskyi . The electron transfer against redox potential from NO2 to cythochrome c could be pushed through prompt removal by cytochrome aa 3 of H+ formed by the dehydrogenation of NO2+ H2O. As cytochrome c in anaerobically kept cell-free extracts is rapidly reduced on addition of NO2, a membrane potential does not seem necessary for the reduction of cytochrome c by cytochrome a 1 c 1 with NO2 in vivo.  相似文献   

15.
Maize ( Zea mays L. hybrid ZP-704) and black pine ( Pinus nigra Arn.) were grown for five days at low fluence rate (0.4–4.0, μmol m–2 s−1) in blue or red light. Compared to red light of the same fluence rate, blue light effects in maize were repressive for the accumulation of Chita, b , carotenoids and light-harvesting complex-2 (LHC-2) proteins. The maximal reduction of proteins bound to the light-harvesting complex of photosystem 2 and pigments was attained at different fluence rate levels. In black pine, blue light compared to the red of the same fluence rate level either activated or reduced accumulation of pigments and LHC proteins, the effect being dependent on its fluence rate level. At fluence less than 3.0 μmol m−2 s−1 blue light was more efficient for the synthesis of Chi a, b and carotenoids, hut for LHC-2 complexes, fluence rates between 0.4 and 1.5 [μmol m−2 s−1 were more effective. In pine the effects of the two lights on the accumulation of pigments and LHC proteins were demonstrated separately and were dependent on fluence rate level. This suggests irradianoe-controlled activation/deactivation of the photoreceptor at the level of the cell.  相似文献   

16.
Levels of pigment-proteins and mRNA coding for proteins associated with the light-harvesting complex of photosystem 2 (LHCP2) were reduced in maize ( Zea mays L. cv. OP Golden Bantum) plants grown for 14 days in 8.0 nmol m-2s-1 of blue light compared to those in plants grown under an equal irradiance of red light. At the same time, there was a small increase in steady state levels of mRNA for the Dl protein of PS2 (psbA) in blue-grown plants. The reduction of LHCP2 mRNA and the increase in psbA mRNA were observed in both 5- and 10-day-old blue-light-grown leaves, but the degree of reduction or increase was much greater in 10-day-old leaves. Maize grown under 6 different mixtures of blue and red light, each with a total irradiance level of 8.0 μmol m-2 s-1, showed the same degree of LHCP2 mRNA reduction relative to red light. This is different from the behavior of psbA which increased in a linear manner with increasing amounts of blue light. The amounts of Chi a and Chi b in these mixed-light samples were not significantly different froi those found in pure red light. This indicates that a low fluence level of blue light, even when combined with red light, is sufficient to reduce equilibrium levels of proteins and mRNA of LHCP2, and this reduction is independent of pigment formation. It also suggests that the mechanisms of blue-light regulation of mRNA may operate differently at the nuclear and chloroplast levels.  相似文献   

17.
Guard cell responses to light are mediated by guard cell chlorophyll and by a specific blue light photoreceptor. Gas exchange and epidermal peel techniques were employed to investigate these responses in the facultative Crassulacean acid metabolism (CAM) species, Portulacaria afra (L.) Jacq. In P. afra individuals performing C3 metabolism, red light stimulated an increase in leaf conductance in intact leaves and stomatal opening in isolated epidermal peels, indicating the presence in guard cells of the chlorophyll-mediated response to light. Under a background of continuous red illumination, conductance exhibited transient increases following pulses of blue but not red light, indicating that the specific stomatal response to blue light was also operative. In contrast, in CAM individuals, conductance in gas exchange experiments and stomatal opening in epidermal peel experiments were not stimulated by red light. In CAM plants, conductance did not increase following blue light pulses administered over a range of temperatures, vapor pressure differences (VPD), ambient CO2 concentrations and background red light intensities. These results indicate that P. afra does possess typical guard cell responses to light when performing C3 metabolism. The metabolic pathways mediating these responses are either lost or inhibited when CAM is induced.  相似文献   

18.
By rapid scan spectrometry, spectral changes of redox components have been followed during the oxidation of substrates by coupled potato ( Solanum luberosum L. cv . Bintje) mitochondria under different redox conditions. The redox changes of the b cytochromes, the changes in the base line level and in the slope of the spectra during aerobiosis appear to be connected with changes of the membrane potential. As the latter does not collaps at anaerobiosis, cytochrome o3 remains in an oxidized state. Collapse of the membrane potential by uncouplers induces partial oxidation of the b cytochromes and reduction of cytochrome a 3, so that toe resulting redox states derive from thermodynamic equilibrium with the redox conditions of the substrates. However, in aerobiosis as well as in anaerobiosis, the amplitude changes of the b cytochromes vary with the substrate oxidized as if these components were not always completely connected with the cytochrome oxidase complex. The b cytochromes become fuliy reduced only after dithionite reduction.  相似文献   

19.
Light effects on in vitro adventitious root formation in axillary shoots of a 95-year-old black cherry ( Prunus serotina Ehrh.) were examined using microcuttings derived from cultured vegetative buds. Three studies were performed: 1) complete darkness and 4 levels of continuous white light irradiance were tested at 70, 278, 555 and 833 μmol m−2 s−1; 2) white, red, yellow and blue light were tested to assess the importance of spectral quality; and 3) the effect of blue light at intensities of 7,15, 22 and 30 μmol m−2 s−1 was also studied, Measurements included rooting percentage, total number of roots per shoot, and shoot and root dry weight. There was a strong negative effect of white light intensity upon root formation. Blue light between 15 and 22 μmol m−2: s−1 significantly retarded root formation and completely inhibited it at 36 μmol m−2 s−1. Shoots treated with yellow light exhibited the highest rooting percentage, mean number of roots per shoot, and root dry weight.  相似文献   

20.
The plasma membrane H+-ATPase (EC 3.6.1.35) was purified by washing red beet ( Beta vulgaris L.) plasma membranes with sodium deoxycholate and separating the ATPase, solubilized with lysophosphatidylcholine, by centrifugation in a glycerol gradient. The purified H+-ATPase had a sedimentation coefficient of about 8S. In the absence of exogenous protein substrates, the purified ATPase preparation did not present protein kinase activity. Compared with the H+-ATPase in the plasma membrane, the purified ATPase presented a higher affinity for adenosine 5'-triphosphate (ATP) and a lower sensitivity to the inhibitors vanadate and inorganic phosphate. These changes in the kinetics of the ATPase could also be observed by treating the membranes with lysophosphatidylcholine, without purifying the enzyme. These results can be explained assuming that lysophosphatidylcholine interacts with the ATPase altering its kinetics probably by stimulating the transformation from the inhibitor-binding conformation E2 into the ATP-binding conformation E1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号