首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Periphyton stoichiometry can vary substantially as a result of differences in stream nutrient availability. A decrease in the periphyton carbon to phosphorus (C:P) ratio should decrease the demand for new P to be immobilized from stream water, but no studies to our knowledge have explored the relationship between periphyton stoichiometry and net P immobilization and release by periphyton. We sought to model biological P immobilization and release (flux) in streams by measuring periphyton stoichiometry and light availability. We measured P flux to and from intact periphyton on stream cobbles (20–100 mm diameter) in 1 L microcosms incubated with streamwater under variable light conditions. Net P immobilization occurred in 75% of microcosms, net P release occurred in only 5% of microcosms, and 20% of microcosms had neither net immobilization nor net release. When normalized to stream conditions, net P immobilization was highest when light availability was high (<60% canopy attenuation) and the periphyton C:P ratio was also high. In contrast, net P release occurred only when light availability was low (>60% canopy attenuation) and the periphyton C:P ratio was also low. A multiple regression model that included both periphyton stoichiometry and light availability from the growing season only, and the interaction term of these two variables, explained 99% of the variation in daily periphyton P flux observed in the study. These results indicate that in order to predict periphyton P immobilization, periphyton stoichiometry and light availability should be considered together. Furthermore, the results indicate that net P immobilization occurs even in very P-rich periphyton, which can act as a P sink when light availability is high.  相似文献   

2.
1. Streambed light regimes change dramatically when riparian trees gain leaves in spring and lose them in autumn. This study examined the effect of these changes on periphyton photosynthetic characteristics, primary production, and light utilisation efficiency in two eastern Tennessee streams. 2. Photosynthesis–irradiance responses were measured at intervals covering leaf emergence and abscission in spring and autumn. Photosynthetic efficiency (αchl) increased with declining streambed irradiances during spring leaf emergence, but returned to pre‐emergence values after autumn leaf fall. The onset of photosaturation (Ik) displayed the opposite pattern, decreasing during leaf emergence and increasing after leaf fall. Both αchl and Ik were closely associated (P < 0.01) with daily integrated streambed irradiance, as were periphyton carotenoids. Internal shading by photoprotective carotenoids is hypothesised to account for lower αchl when streambed irradiances are high. 3. An in situ shading experiment confirmed that the temporal changes observed in periphyton photosynthetic characteristics and carotenoids were primarily the result of changing light levels and not other environmental factors (e.g. nutrients, temperature). 4. Daily chlorophyll‐specific primary production (PPchl) was calculated with PI models and recorded streambed irradiances. In both streams, PPchl was the highest in early spring when trees were leafless, and then declined markedly as leaves emerged, reaching a minimum in summer. PPchl increased after leaf abscission, but was still lower than it was in early spring, when the sun was higher and daylength was longer. A hyperbolic tangent equation fit to PPchl and daily integrated irradiance (r2=0. 85) suggested that primary production was light saturated at 4–8 mol m–2 d–1. 5. Light utilisation efficiency (Ψ) increased 10‐fold during leaf emergence. Photosaturation at high irradiances and photoacclimation at lower irradiances were responsible for a negative hyperbolic relationship between Ψ and daily integrated irradiance.  相似文献   

3.
Hillebrand H  Frost P  Liess A 《Oecologia》2008,155(3):619-630
Ecological stoichiometry has been successful in enhancing our understanding of trophic interactions between consumer and prey species. Consumer and prey dynamics have been shown to depend on the nutrient composition of the prey relative to the nutrient demand of the consumer. Since most experiments on this topic used a single consumer species, little is known about the validity of stoichiometric constraints on trophic interactions across consumers and ecosystems. We conducted a quantitative meta-analysis on grazer–periphyton experiments to test (1) if benthic grazers have consistent effects on the nutrient composition of their prey, and (2) whether these effects can be aligned to the nutrient stoichiometry of grazer and periphyton, other environmental factors, or experimental constraints. Grazers significantly lowered periphyton C:N and C:P ratios, indicating higher N- and P-content of grazed periphyton across studies. Grazer presence on average increased periphyton N:P ratios, but across studies the effect size did not differ significantly from zero. The sign and strength of grazer effects on periphyton nutrient ratios was strongly dependent on the nutrient content of grazers and their food, but also on grazer biomass, the amount of biomass removal and water column nutrients. Grazer with low P-content tended to reduce periphyton P-content, whereas grazers with high P-content increased periphyton P-content. This result suggests that low grazer P-content can be an indication of physiological P-limitation rather than a result of having relatively low and fixed P-requirements. At the across-system scale of this meta-analysis, predictions from stoichiometric theory are corroborated, but the plasticity of the consumer nutrient composition has to be acknowledged. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
1. We investigated the effects of dissolved organic matter (DOM) and ultraviolet‐B (UVB) radiation on periphyton during a 30‐day experiment in grazer‐free, outdoor artificial streams. We established high [10–12 mg carbon (C) L−1] and low (3–5 mg C L−1) concentrations of DOM in artificial streams exposed to or shielded from ambient UVB radiation. Periphyton was sampled weekly for ash‐free dry mass (AFDM), chlorophyll (chl) a , algal biovolume, elemental composition [C, nitrogen (N) and phosphorus (P)], and algal taxonomic composition. 2. Regardless of the UVB environment, increased DOM concentration caused greater periphyton AFDM, chl a and total C content during the experiment. Increased DOM also significantly increased periphyton C : P and N : P (but not C : N) ratios throughout the experiment. Algal taxonomic composition was strongly affected by elevated stream DOM concentrations; some algal taxa increased and some decreased in biomass and prevalence in artificial streams receiving DOM additions. UVB removal, on the other hand, did not strongly affect periphyton biomass, elemental composition or algal taxonomic composition for most of the experiment. 3. Our results show strong effects of DOM concentration but few, if any, effects of UVB radiation on periphyton biomass, elemental composition and algal taxonomic composition. The effects of DOM may have resulted from its absorption of UVA radiation, or more likely, its provision of organic C and nutrients to microbial communities. The strong effects of DOM on periphyton biomass and elemental composition indicate that they potentially play a key role in food web dynamics and ecosystem processes in forested streams.  相似文献   

5.
1. Aquatic herbivores typically have much higher concentrations of nutrients (e.g. N and P) in their tissues than there is in the food they eat. These stoichiometric differences can cause herbivores to be limited by the elemental quality of their food, which could affect, in turn, the structure of consumer communities and even alter key ecosystem processes. 2. In streams and in the littoral zone of shallow lakes, periphyton is an important food resource for benthic animals. Studying the elemental composition of periphyton may help us to understand food‐web structure, and any reciprocal effect of this structure on periphyton stoichiometry. 3. To understand how alterations in the food‐web structure affect the elemental composition of periphyton in a eutrophic lake, we carried out a long‐term experiment (14 months) in large‐scale mesocosms (40 m3), in which we manipulated food‐web structure, and which were dominated either by planktivorous fish (Rutilus rutilus) or herbivorous invertebrates (without fish). Periphyton was sampled monthly at three depths (0.5, 1.5 and 2.5 m) to determine its biomass and elemental composition (C/N/P ratio). Food‐web structure, physical and chemical parameters were monitored throughout the experiment. 4. Fish had indirect positive effect on periphyton biomass, leading to twofold higher levels than in herbivore‐dominated mesocosms. This result was probably due to control of benthic consumers by fish, suggesting a strong top–down control on periphyton by their consumers in fishless enclosures. 5. The elemental ratios C/P and C/N were lower in deep water in both treatments, mainly mediated by light availability, in accordance with the light/nutrient ratio hypothesis. These ratios were also lower in fishless treatments, probably due to increases in inorganic nutrient availability and grazing pressure in herbivore‐dominated systems. During winter, periphyton elemental composition was similar in both treatments, and was unrelated to inorganic nutrient availability. 6. These results indicate that any alteration of food‐web structure in lakes, such as in biomanipulation experiments, is likely to modify both the biomass and elemental quality of periphyton. Resultant effects on the consumers of periphyton and macrophytes could play a key role in the success of biomanipulations and should be taken into account in further studies.  相似文献   

6.
姚洁  刘正文 《生态科学》2010,29(2):147-151
鱼类通过牧食和营养盐排泄可以对水体生态系统产生影响,杂食性鱼类由于可摄食不同生境中的食物,可使生境之间的耦合作用发生变化。罗非鱼是我国南方很多水体的优势种,食物包括敞水生境的浮游植物和基质表层生境的附着藻类等。为了解罗非鱼对浮游植物和附着藻类的影响,实验在室外模拟条件下,分别设置罗非鱼组和无鱼对照组的两组处理,分析了罗非鱼对附着藻类及浮游植物生物量(叶绿素a)等的影响。结果表明:(1)罗非鱼显著地降低了附着藻类生物量,罗非鱼组中的附着藻类叶绿素a的平均值为0.15 mg·cm-2,显著低于对照组中的1.26mg·cm-2;(2)罗非鱼显著地增加了浮游植物的生物量,罗非鱼组中的浮游植物叶绿素a平均值为31.99μg·L-1,显著高于对照组中的14.99μg·L-1。研究结果显示,杂食性的罗非鱼可以促进系统的附着藻类向浮游植物转化。从控制浮游植物生物量的角度看,湖泊等水体的管理应该对罗非鱼密度加以有效控制。  相似文献   

7.
Elser  James J.  Frost  Paul  Kyle  Marcia  Urabe  Jotaro  Andersen  Tom 《Hydrobiologia》2002,481(1-3):101-112
A field enclosure experiment was performed over 12 weeks in a P-limited lake to test the hypothesis that light:nutrient balance affects pelagic communities by altering the C:P stoichiometry of seston and by influencing exudation of labile DOC by algae. Three levels of light intensity (ambient, 50% of ambient, 25% of ambient) were cross-classified with three levels of nutrients in a factorial design (n=2). Dissolved nutrient concentrations, seston C concentration and C:P ratios in small (<1 m) and larger (1–85 m) size fractions were monitored, along with chlorophyll a concentration, abundance of bacteria and protozoa, and biomass and P-content of macrozooplankton. Algal exudation of recently-fixed C into the dissolved pool was also measured at the end of the experiment in selected enclosures. Treatments had no effect on seston C concentration but reduction of light intensity significantly decreased whole seston and large (1–85 m) seston C:P ratios. However, the magnitude of these effects was modest and not likely to be ecologically significant. There were no effects of nutrient addition or light×nutrient interaction on seston stoichiometry. Algae tended to release a higher percentage of fixed C as DOC in high light enclosures but this difference was not statistically significant. There were no effects of treatments on the abundance of bacteria or protozoa but nutrient enrichment led to a statistically significant but generally modest increase in macrozooplankton biomass. No effects on zooplankton community composition or P-content were observed. Comparison of effect sizes and treatment variances indicated a high probability of type II error and thus our confidence in failing to reject the null hypothesis in most of the above cases was low. Thus, our data provide support for only some aspects of the light:nutrient hypothesis but more appropriate tests of the hypothesis should involve stronger treatments and/or increased replication in order to be better able to evaluate its validity.  相似文献   

8.
Dickman EM  Vanni MJ  Horgan MJ 《Oecologia》2006,149(4):676-689
The stoichiometric composition of autotrophs can vary greatly in response to variation in light and nutrient availability, and can mediate ecological processes such as C sequestration, growth of herbivores, and nutrient cycling. We investigated light and nutrient effects on phytoplankton stoichiometry, employing five experiments on intact phytoplankton assemblages from three lakes varying in productivity and species composition. Each experiment employed two nutrient and eight irradiance levels in a fully factorial design. Light and nutrients interactively affected phytoplankton stoichiometry. Thus, phytoplankton C:N, C:P, and N:P ratios increased with irradiance, and slopes of the stoichiometric ratio versus irradiance relationships were steeper with ambient nutrients than with nutrients added. Our results support the light–nutrient hypothesis, which predicts that phytoplankton C:nutrient ratios are functions of the ratio of available light and nutrients; however, we observed considerable variation among lakes in the expression of this relationship. Phytoplankton species diversity was positively correlated with the slopes of the C:N and C:P versus irradiance relationships, suggesting that diverse assemblages may exhibit greater flexibility in the response of phytoplankton nutrient stoichiometry to light and nutrients. The interactive nature of light and nutrient effects may render it difficult to generate predictive models of stoichiometric responses to these two factors. Our results point to the need for future studies that examine stoichiometric responses across a wide range of phytoplankton communities.  相似文献   

9.
1. Nutrient diffusing substrata (NDS) were used to determine the relative importance of nutrients and light as potential limiting factors of periphyton biomass and nitrogen (N) uptake in Mediterranean streams subjected to different human impacts. The nutrients examined were phosphorus (P) and N, and we also further differentiated between the response of periphyton communities to N species (i.e. NO3‐N and NH4‐N). To examine the effect of light and nutrients on periphyton biomass, chlorophyll a accrual rates on NDS located at open and closed canopy sites were compared. The effect of nutrient availability on periphyton uptake was measured by 15N changes on the NDS after NO315N short‐term nutrient additions. 2. Results show that light was the main factor affecting algal biomass in the study streams. Algal biomass was in general higher at open than at closed canopy sites. Nutrient availability, as simulated with the NDS experiments, did not enhance algal biomass accrual in either of the 2 light conditions. 3. In the control treatments (i.e. ambient concentrations), periphyton NO3‐N uptake rates increased and C : N molar ratios decreased consistently with increases in N availability across streams. NO3‐N uptake rates were altered when ambient N concentrations were increased artificially in the N amended NDS. Periphyton assemblages growing on N enriched substrata seemed to preferentially take up N diffusing from the substratum rather than N from the water column. This response differed among streams, and depended on ambient N availability. 4. Periphyton biomass was not significantly different between substrata exposed to the two forms of available N sources. Nonetheless, we found differences in the effects of both N sources on the uptake of N from the water column. NH4‐N seemed to be the preferred source of N for periphyton growing on NDS. 5. Results suggest that the effect of riparian zones on light availability, although seldom considered by water managers, may be more important than nutrients in controlling eutrophication effects derived from human activities. Finally, our results confirm that not only increases in concentration, but also stoichiometric imbalances should be considered when examining N retention in human altered streams.  相似文献   

10.
1. This study investigated the combined effects of light and phosphorus on the growth and phosphorus content of periphyton. To investigate the potential for colimitation of algal growth by these two resources, diatom‐dominated periphyton communities in large flow‐through laboratory streams were exposed under controlled conditions to simultaneous gradients of light and phosphorus. 2. Periphyton growth rate was predictably light‐limited by the subsaturating irradiances (12–88 μmol photons m?2 s?1) used in this experiment. However, phosphorus concentration also limited growth rate: growth increased hyperbolically with increasing soluble reactive phosphorus (SRP), reaching a threshold of growth saturation between 22 and 82 μg L?1. 3. Periphyton phosphorus content was strongly and nonlinearly related with SRP, reaching a maximum at 82 μg L?1 SRP. Contrary to the Light : Nutrient Hypothesis, periphyton phosphorus content did not decrease with increasing light, even at the lowest concentrations of SRP. Periphyton phosphorus was highly correlated with periphyton growth rate (Spearman's ρ = 0.63, P < 0.005). 4. Multiple regression analysis reinforced evidence of simultaneous light and phosphorus limitation. Both light and periphyton phosphorus content were significant variables in multiple regressions with growth parameters as dependent variables. Light alone accounted for 67% of the variance in periphyton biomass, and the addition of periphyton phosphorus as an additional independent variable increased the total amount of variance explained to 81%. 5. Our results did not support the hypothesis that extra phosphorus is required for photoacclimation to low light levels. Rather, the effect of additional phosphorus may have been to accommodate increased requirements for P‐rich ribosomal RNA when growth was stimulated by increased light. The potential colimitation of periphyton growth by phosphorus and light at subsaturating irradiances has important implications in both theoretical and applied aquatic ecology.  相似文献   

11.
1. We examined the contribution of algal cells to periphytic organic carbon and assessed the effects of variable biomass composition on the carbon : phosphorus (C : P) ratio of periphyton. We compiled more than 5000 published and unpublished observations of periphytic carbon : chlorophyll a (C : Chl) ratios, an index of algal prevalence, from a variety of substrata collected from lake and low‐salinity coastal habitats. In addition, we converted estimates of algal biovolume into algal C to obtain an independent measure of cellular algal carbon in periphyton. This information was used in a model relating periphyton C : P ratio to algal cellular carbon, the algal C : P ratio, and the C : P ratio of non‐algal organic matter in periphyton. 2. The mean C : Chl ratio of periphyton (405) was relatively high with values in >25% of the samples exceeding 500. On average, 8.4% of total periphyton C was accounted for by C in algal cells. Only 15% of samples were found to have more than 15% periphyton C in cellular algal carbon. Our model showed a nonlinear relationship between periphytic C : P ratios and the C : P ratio of algal cells in the periphyton when non‐algal organic matter was present. However, even at relatively low cellular algal C (<10% of total C), algal C : P ratios can strongly affect the C : P ratio of periphyton as a whole (i.e. algal cells plus other organic matter). 3. The high C : Chl ratios and the low biovolume‐derived algal C of periphyton samples in our data set indicate that algal cells are typically a minor component of organic carbon in periphyton, However, this minor contribution would not preclude algal cellular stoichiometry from notably influencing periphyton C : P ratios.  相似文献   

12.
This article aims to test the light-nutrient hypothesis (LNH) in a periphytic community in a tropical black-water lake. Individual and interactive effects of light and nutrient availability were assessed with periphyton biomass accrual, nutrient content, and nutrient stoichiometry. We performed a manipulative field experiment with a 4 × 2 factorial design. We used nutrient diffusing substrates to produce four different nutrients treatments: Control (no nutrient added), nitrogen amended (N), phosphorus amended (P) and combined N and P amendment (NP). Two light levels were also considered: high light (near surface water) and low light (near bottom water). Light and nutrients individually and interactively caused significant changes in aggregate periphyton community properties. Total and autotrophic biomasses were significantly higher in high light conditions and in nutrient enriched treatments. Autotrophic biomass was significantly higher in N enriched treatment whereas total biomass was mainly affected by the joint addition of N and P. At lower light availability periphyton growth was limited, even in enriched treatments. Light also strongly affected periphyton nutrient content. Periphyton C, N and P in general increased when subjected to high light conditions. As predicted by the LNH, light promoted an increase in periphyton C:P ratios in P deprived treatments, but an opposite effect was observed on C:N ratios, especially in N-enriched treatments. This experiment revealed that light availability strongly limits the propagation of nutrient effects on periphyton growth. Such complex interdependencies on basal resources affect the proportion of autotrophic to total periphytic biomass that can be an important mechanism to explain variation in the nutrient stoichiometry of periphyton in nature.  相似文献   

13.
14.
1. Anthropogenic activities in prairie streams are increasing nutrient inputs and altering stream communities. Understanding the role of large consumers such as fish in regulating periphyton structure and nutritional content is necessary to predict how changing diversity will interact with nutrient enrichment to regulate stream nutrient processing and retention. 2. We characterised the importance of grazing fish on stream nutrient storage and cycling following a simulated flood under different nutrient regimes by crossing six nutrient concentrations with six densities of a grazing minnow (southern redbelly dace, Phoxinus erythrogaster) in large outdoor mesocosms. We measured the biomass and stoichiometry of overstory and understory periphyton layers, the stoichiometry of fish tissue and excretion, and compared fish diet composition with available algal assemblages in pools and riffles to evaluate whether fish were selectively foraging within or among habitats. 3. Model selection indicated nutrient loading and fish density were important to algal composition and periphyton carbon (C): nitrogen (N). Nutrient loading increased algal biomass, favoured diatom growth over green algae and decreased periphyton C : N. Increasing grazer density did not affect biomass and reduced the C : N of overstory, but not understory periphyton. Algal composition of dace diet was correlated with available algae, but there were proportionately more diatoms present in dace guts. We found no correlation between fish egestion/excretion nutrient ratios and nutrient loading or fish density despite varying N content of periphyton. 4. Large grazers and nutrient availability can have a spatially distinct influence at a microhabitat scale on the nutrient status of primary producers in streams.  相似文献   

15.
16.
The seasonal variation in periphyton dynamics has been studied upon artificial substratum (microscopic glass slides) under various light conditions during the periods May–October 1986 and May–September 1987, in Lake Veluwe. Some additional observations on the periphyton development upon leaves of Potamogeton pectinatus L. have been made simultaneously. Four different light conditions were created in an experimental setup by manipulating the photon flux density through artificial shading.Periphyton upon artificial substratum exhibited a relatively high abundance with a distinct seasonal pattern. Periphyton accrual rates were highest at the beginning of June and in August and September upon slides which were incubated for two weeks. Periphyton mass increased during May and June, decreased or remained about the same during July and subsequently increased until an upper plateau was reached upon slides which were incubated from the beginning of May onwards.Generally, periphyton mass was lower upon slides than upon P. pectinatus. The seasonal variation in periphyton mass was more pronounced upon P. pectinatus leaves than upon the slides.Attenuation by periphyton upon slides ranged from 5 to 65% after two weeks of incubation. Periphyton upon slides which had been incubated for more than two weeks demonstrated an attenuation of more than 85%.Water quality parameters other than photon flux density were probably more important in determining the periphyton dynamics, since only minor differences were observed in periphyton mass between the various light conditions. Chlorophyll-a content was higher with increased shading on various sampling dates.Periphyton, especially older periphyton consisted largely of settled silt and clay particles and to a lesser extent of detrital matter on both substrata. Living epiphytes were only a relatively small fraction.It is concluded that a reduction of resuspension of sediment particles, giving less suspended matter in the water column, will result in lower periphytic mass. Consequently, the quantity of photosynthetically active radiation reaching the submerged macrophytes is expected to increase considerably.  相似文献   

17.
SUMMARY. 1. Periphyton. measured as particulate phosphorus (PP) and expressed as periphyton PP, growing on vertically oriented substrata (polyvinyl impregnated nylon) under different nutrient loadings, light intensities (exposures), and grazer communities was examined in eight large enclosures (750 m3) where nutrients (N and P) and planktivorous fish (1+yellow perch) were added in a 2x2 factorial design.
2. During the first 3 weeks of the experiment (25 June to 15 July), there was a significantly higher accumulation of phosphorus into periphyton (periphyton PP) with fertilization, but fish addition had no effect. During the fourth to seventh weeks (16 July to 12 August), addition of fish was associated with lower abundance of amphipods and chironomids and higher concentration of periphyton PP. In the enclosures without fish, these invertebrates were over 25 times more abundant, and periphyton PP decreased substantially compared to the June-July period. Fertilization increased periphyton PP only at high exposures in the enclosures with fish.
3. Exposure had a significant effect on periphyton PP. In the enclosures with fish, high abundance of nanoplankton reduced water transparency, and periphyton PP was lower in the deeper waters which may have been due to limitation by low light. Lower periphyton PP was also observed at the surface on sunny sides of enclosures without fish, and therefore with high water transparency. This pattern may have been due to inhibitory effects of high light intensity.
4. Periphyton communities in the enclosures with fish had higher uptake rates for planktonic phosphorus, and lower rates of phosphorus release, suggesting that periphyton with high phosphorus demand may have high internal cycling of assimilated phosphorus.  相似文献   

18.
为全面了解着生藻类在建群中群落变化的生态学特性,揭示着生藻类的建群规律,在以丝状藻类为优势藻的生态塘中,采用花岗岩和瓷砖为附着材料,设置水体底部和中部为附着位点,进行频次为10d的采样分析。结果表明,生态塘中共检出8门73属117种着生藻类,其中以硅藻、蓝藻、绿藻为优势类群。同时不同人工基质和不同空间层次条件下着生藻类的建群特征较一致,早期以单细胞硅藻如舟形藻(Navicula sp.)、脆杆藻(Fragilaria sp.)、曲壳藻(Achnanthes sp.)等为优势,后期以丝状藻类如鞘丝藻(Lyngbya sp.)、颤藻(Oscillatoria sp.)、伪鱼腥藻(Pseudanabaena sp.)等为优势;研究结果发现不同人工基质(花岗岩和瓷砖)对着生藻类的种类组成、细胞密度、生物量和藻类多样性无显著影响,花岗岩和瓷砖上附着的着生藻类具有较高的相似性;但不同的空间层次对着生藻类建群特征影响明显,水体底部具有更多的硅藻种类数,中部具有更多的绿藻,随着建群时间的发展,蓝藻比例不断增加;就生物量而言,底部的着生藻类叶绿素a显著高于水体中部,但两者的细胞密度无显著性差异;随着建群过程的发展,水体底部的着生藻类生物量达峰值所需的时间比中部更长。通过相关性分析,生态塘中着生藻类的生长主要受总磷的影响。  相似文献   

19.
Arnegard  Matthew E.  McCormick  Paul V.  Cairns  John 《Hydrobiologia》1998,385(1-3):163-170
Chemical-diffusing substrates were designed to allow delivery of toxicants to mature periphyton communities under natural conditions without contaminating the surrounding environment. Artificial stream validation studies were conducted in which the effects of substrate-released copper (Cu) on periphyton communities were compared to those generated in a more conventional manner (via water column additions). Effects of copper on the following community parameters were assessed: total community biomass (measured as ash-free dry mass), relative chlorophyll a (chl a and adenosine triphosphate contents, and relative biomass of heterotrophic bacteria. Exposure of more laboratory periphyton communities to substrate-released Cu generated dose-response relationships and recovery models that were indistinguishable from those generated by the conventional route of exposure. The results of this study demonstrate the utility of chemical-diffusing substrates in field validations of laboratory toxicity tests and in investigations of the effects of stress history on periphyton tolerance to toxicants. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

20.
1. Irradiance strongly affects the abundance of stream periphyton communities that in turn influence patterns of instream nutrient uptake. We examined relationships between irradiance and periphyton nutrient uptake taking into account diel and seasonal variation in ambient irradiance. 2. Uptake of dissolved N, P and C by periphyton as areal uptake (U) and demand (Vf) was determined under 11 irradiance levels (0–100% of ambient conditions) using shallow stream‐side experimental channels. Experiments were conducted once per season over one annual cycle with both day and night uptake rates assessed, together with periphyton biomass and autotrophic production rates. 3. No consistent diel variation in areal uptake or demand was detected for the predominant inorganic or total dissolved nutrients even at the highest irradiances. Lack of variation may indicate nutrient limitation, with photosynthetic sequestration and storage of C during the day for subsequent utilisation at night. Alternatively, oxygen consumption by photoautotrophs at night may stimulate compensatory heterotrophic uptake (e.g. denitrification). 4. In all seasons, release of dissolved organic N was detected during the day but to a lesser extent at night. This was not directly related to irradiance levels, indicating that heterotrophic metabolism (e.g. microbial decomposition) contributes to this phenomenon. 5. Areal uptake and demand for the predominant inorganic and total dissolved nutrients increased in response to increasing irradiance in some or all seasons, but rates were typically higher during the spring and summer. Saturation of areal uptake and demand at elevated irradiances was evident during the spring. demand was also saturated at higher irradiances in the summer and autumn. Maximum demand was comparable during spring and summer, but saturation occurred at lower irradiance in summer (24 h average 135–145 μmol m?2 s?1) relative to spring (312–424 μmol m?2 s?1), indicating more efficient nutrient uptake in summer. Higher total periphyton biomass in summer, but comparable autotrophic biomass (chlorophyll a), implies that heterotrophic metabolism may contribute to this greater efficiency. In spring, autotrophic biomass peaked at an irradiance level of 225 μmol m?2 s?1, also suggesting a role for heterotrophic metabolism in demand at higher irradiances. 6. The results of this study show that irradiance levels exert a strong influence on the nature and quantity of instream nutrient uptake with N demand saturated at elevated irradiance levels during the spring, summer and autumn. Our results also suggest that heterotrophic metabolism makes a measurable contribution to instream nutrient uptake even under higher irradiances that favour autotrophic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号