共查询到20条相似文献,搜索用时 0 毫秒
1.
Hepatitis B virus precore and core proteins are related. The precore protein contains the entire sequence of the core protein plus an amino-terminal extension of 29 amino acids. The amino-terminal extension of the precore protein contains a signal sequence for the secretion of the precore protein. This signal sequence is removed after the translocation of the precore protein across the endoplasmic reticulum membrane to produce the precore protein derivative named P22. We demonstrate that both P22 and the core protein can be phosphorylated in cells. Microsomal fractionation and trypsin digestion experiments demonstrate that a fraction of phosphorylated P22 is located in the endoplasmic reticulum lumen. Phosphorylation of P22 likely occurs in the carboxy terminus, since the P22 derivative P16, which lacks the carboxy terminus of P22, is not phosphorylated. Linking the carboxy terminus of the precore-core protein to heterologous secretory and cytosolic proteins led to the phosphorylation of the resulting chimeric proteins. These results indicate that phosphorylation of P22 and the core protein is likely mediated by cellular kinases. 相似文献
2.
The arginine-rich domain of hepatitis B virus precore and core proteins contains a signal for nuclear transport. 总被引:4,自引:11,他引:4 下载免费PDF全文
Precore and core proteins are two related co-carboxy-terminal proteins of hepatitis B virus. Precore protein contains the entire sequence of core protein plus an amino-terminal extension of 29 amino acid residues. Both proteins can display a common antigenic determinant known as core antigen (HBcAg). Clinically, HBcAg is detected in the nucleus, cytoplasm, or both of hepatitis B virus-infected hepatocytes. In order to understand the mechanism that regulates nuclear transport of HBcAg, various portions of precore and core proteins were linked to a reporter protein, human alpha-globin, and expressed in mammalian cells. Our results indicate that the precore protein-specific sequence, although important for nuclear transport, does not contain a nuclear localization signal. Instead, a signal for nuclear transport is located near the carboxy termini of precore and core proteins in the arginine-rich domain. This signal is made up of a set of two direct PRRRRSQS repeats and is highly conserved among mammalian hepadnaviruses. 相似文献
3.
Expression of hepatitis B virus surface and core antigens: influences of pre-S and precore sequences. 总被引:10,自引:27,他引:10 下载免费PDF全文
A McLachlan D R Milich A K Raney M G Riggs J L Hughes J Sorge F V Chisari 《Journal of virology》1987,61(3):683-692
Amphotropic retroviral expression systems were used to synthesize hepatitis B virus surface antigen (HBsAg) and core antigen. The vectors permitted establishment of cell lines which expressed antigen from either the retroviral long terminal repeat or the mouse metallothionein-I promoter. HBsAgs were synthesized containing no pre-S sequences, pre-S(2) sequences alone, or pre-S(1) plus pre-S(2) sequences. Inclusion of pre-S(2) sequences did not affect the secretion or density of HBsAg particles but did reduce their mass by approximately 30%. Addition of pre-S(1) sequences almost completely abolished secretion of HBsAg and resulted in its localization in an aqueous-nonextractable pre- or early-Golgi cellular compartment. HBsAg was localized to the cytoplasm of the cell. This localization was unaffected by the presence of pre-S sequences in the antigen. Cell lines synthesizing hepatitis B antigens from core DNA fragments, containing or not containing precore sequences, secreted hepatitis B e antigen. However, the absence of precore DNA sequences resulted in additional synthesis of hepatitis core antigen, which was predominantly nuclear in localization. 相似文献
4.
5.
6.
7.
8.
9.
Recombinant plasmids were constructed by fusing the gene fragments encoding the full-length (1-191aa) and the truncated (1-40aa and l-69aa) HCV core proteins (HCc) respectively to the core gene of HBV at the position of amino acid 144 and expressed inE. coli. The products were analyzed by ELISA, Western blotting as well as the immunization of the mice. The results showed that those fusion proteins (B144C191, B144C69, B144C40) possessed the dual antigenicity and immunogenicity of both hepatitis B virus core antigen (HBcAg) and hepatitis C virus core protein (HCc). Analysis by electron microscopy and CsCI density gradient ultra-centrifugation revealed that similar to the HBcAg itself, all fusion proteins were able to form particles. Comparison of the antigenicity and immunogenicity of those fusion proteins showed that the length of HCc gene fused to HBcAg had no much effect on the antigenicity and immunogenicity of HBcAg, however, B144C69 and B144C40 induced higher titres antibodies against HCc than B144C191. Using those fusion proteins, ELISA for screening of antibodies against both HBV and HCV in human sera was also established. 相似文献
10.
Background
Mutations in the core promoter and precore regions of the hepatitis B virus (HBV) genome, notably the double substitution (AGG to TGA) at nt positions 1762-1764 in the core promoter, and the precore stop codon mutation G to A at nt 1896, can often explain the anti-HBe phenotype in chronic carriers. However, the A1896 mutation is restricted to HBV isolates that have T at nt 1858. The double substitution at positions 1762-1764 has been described to occur preferentially in patients infected with strains showing C instead of T at nt 1858. 相似文献11.
Recombinant plasmids were constructed by fusing the gene fragments encoding the full-length (1-191aa) and the truncated (1-40aa and 1-69aa) HCV core proteins (HCc) respectively to the core gene of HBV at the position of amino acid 144 and expressed in E. coli. The products were analyzed by ELISA, Western blotting as well as the immunization of the mice. The results showed that those fusion proteins (B144C191, B144C69, B144C40) possessed the dual antigenicity and immunogenicity of both hepatitis B virus core antigen (HBcAg) and hepatitis C virus core protein (HCc). Analysis by electron microscopy and CsCl density gradient ultra-centrifugation revealed that similar to the HBcAg itself, all fusion proteins were able to form particles. Comparison of the antigenicity and immunogenicity of those fusion proteins showed that the length of HCc gene fused to HBeAg had no much effect on the antigenicity and immunogenicity of HBcAg, however, B144C69 and B144C40 induced higher titres antibodies against HCc than B14d 相似文献
12.
Hepatitis B virus (HBV) is one of the most common DNA viruses that can cause aggressive hepatitis, cirrhosis and hepatocellular carcinoma. Although many people are persistently infected with HBV, the kinetics in serum levels of viral loads and the host immune responses vary from person to person. HBV precore/core open reading frame (ORF) encoding proteins, hepatitis B e antigen (HBeAg) and core antigen (HBcAg), are two indicators of active viral replication. The aim of this study was to discover a variety of amino acid covariances in responses to viral kinetics, seroconversion and genotypes during the course of HBV infection. A one year follow-up study was conducted with a total number of 1,694 clones from 23 HBeAg-positive chronic hepatitis B patients. Serum alanine aminotransferase, HBV DNA and HBeAg levels were measured monthly as criteria for clustering patients into several different subgroups. Monthly derived multiple precore/core ORFs were directly sequenced and translated into amino acid sequences. For each subgroup, time-dependent covariances were identified from their time-varying sequences over the entire follow-up period. The fluctuating, wavering, HBeAg-nonseroconversion and genotype C subgroups showed greater degrees of covariances than the stationary, declining, HBeAg-seroconversion and genotype B. Referring to literature, mutation hotspots within our identified covariances were associated with the infection process. Remarkably, hotspots were predominant in genotype C. Moreover, covariances were also identified at early stage (spanning from baseline to a peak of serum HBV DNA) in order to determine the intersections with aforementioned time-dependent covariances. Preserved covariances, namely representative covariances, of each subgroup are visually presented using a tree-based structure. Our results suggested that identified covariances were strongly associated with viral kinetics, seroconversion and genotypes. Moreover, representative covariances may benefit clinicians to prescribe a suitable treatment for patients even if they have no obvious symptoms at the early stage of HBV infection. 相似文献
13.
Background
Hepatitis B core protein (HBVc) has been extensively studied from both a structural and immunological point of view, but the evolutionary forces driving sequence variation within core are incompletely understood. 相似文献14.
The aim of this study is to detect the possible association of hepatitis B virus (HBV) core mutation, hepatitis B e antigen (HBeAg) status and the viral load in chronic hepatitis B (CHB) patients. Sixty-six patients with CHB were enrolled. Hepatitis markers and hepatitis C virus antibody (HCV-Ab) were tested using micro particle enzyme immunoassay kits. Viral load was measured by real-time polymerase chain reaction (PCR) and the mutation was analyzed by nested PCR followed by restriction fragment length polymorphism. Most of CHB patients were HBeAg (-ve). The HBeAg status did not have an influence on the presence or absence of T1762/A1764 mutation. HBV-DNA serum level was not significantly different in patients with core mutation and patients without core mutation in HBeAg (-ve) group, while in HBeAg (+ve) group HBV-DNA serum level was significantly higher in patients with core mutation. This study reports the predominance of HBeAg (-ve) and HBV core promoter mutation. 相似文献
15.
16.
Moraleda G Dingle K Biswas P Chang J Zuccola H Hogle J Taylor J 《Journal of virology》2000,74(12):5509-5515
The 195- and 214-amino-acid (aa) forms of the delta protein (deltaAg-S and deltaAg-L, respectively) of hepatitis delta virus (HDV) differ only in the 19-aa C-terminal extension unique to deltaAg-L. deltaAg-S is needed for genome replication, while deltaAg-L is needed for particle assembly. These proteins share a region at aa 12 to 60, which mediates protein-protein interactions essential for HDV replication. H. Zuccola et al. (Structure 6:821-830, 1998) reported a crystal structure for a peptide spanning this region which demonstrates an antiparallel coiled-coil dimer interaction with the potential to form tetramers of dimers. Our studies tested whether predictions based on this structure could be extrapolated to conditions where the peptide was replaced by full-length deltaAg-S or deltaAg-L, and when the assays were not in vitro but in vivo. Nine amino acids that are conserved between several isolates of HDV and predicted to be important in multimerization were mutated to alanine on both deltaAg-S and deltaAg-L. We found that the predicted hierarchy of importance of these nine mutations correlated to a significant extent with the observed in vivo effects on the ability of these proteins to (i) support in trans the replication of the HDV genome when expressed on deltaAg-S and (ii) act as dominant-negative inhibitors of replication when expressed on deltaAg-L. We thus infer that these biological activities of deltaAg depend on ordered protein-protein interactions. 相似文献
17.
Comparative immunogenicity of hepatitis B virus core and E antigens 总被引:14,自引:0,他引:14
D R Milich A McLachlan S Stahl P Wingfield G B Thornton J L Hughes J E Jones 《Journal of immunology (Baltimore, Md. : 1950)》1988,141(10):3617-3624
The nucleocapsid (hepatitis B core Ag (HBcAg] of the hepatitis B virus is a particulate Ag composed of a single polypeptide (p21). Although a non-particulate form of HBcAg designated hepatitis B e Ag (HBeAg) shares significant amino acid identity, the immune responses to these Ag appear to be regulated independently. This report describes the use of recombinant HBcAg and HBeAg to examine and compare murine T cell and B cell recognition of these related Ag. The HBcAg preparation was stable at pH 7.2 and 9.6 and expressed HBc antigenicity. However, the antigenicity of the HBeAg preparation was pH dependent. At pH 9.6 the HBeAg preparation was non-particulate and expressed HBe antigenicity exclusively; however, at pH 7.2 it was particulate and expressed both HBc and HBe antigenicities. Although this "hybrid" particle most likely does not exist naturally, it is a unique research reagent to investigate the interrelationship between HBcAg and HBeAg. HBcAg was significantly more immunogenic in terms of in vivo antibody production as compared to either the non-particulate or particulate forms of HBeAg. Nevertheless, in most murine strains HBcAg and HBeAg were equivalently immunogenic and crossreactive at the level of T cell activation. The disparity between anti-HBc and anti-HBe antibody production is best explained by the observation that HBcAg can function as a T cell-independent Ag whereas HBeAg is T cell dependent even when present within the same particulate structure as HBcAg. Furthermore, HBcAg was shown to function efficiently as an immunologic carrier moiety for the DNP hapten in athymic as well as euthymic mice in contrast to conventional carrier proteins. These results have implications relevant to the human immune responses to HBcAg and HBeAg during infection, and to vaccine development. 相似文献
18.
19.