首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
Diapause hormone (DH) and pheromone biosynthesis activating neuropeptide (PBAN) are encoded by a single mRNA in the suboesophegeal ganglion (SG) and are responsible for induction of embryonic diapause in Bombyx mori and sex pheromone biosynthesis in lepidopteran insects. PBAN cDNA analyses revealed that the DH-like peptide is present in several species that have a pupal diapause. However, the function of the DH-like peptide remains unknown. In the present study, we cloned the cDNA encoding DH-PBAN in Helicoverpa armigera utilizing the rapid amplification of the cDNA ends method. The nucleotide se quence analysis revealed that the longest open reading frame of this cDNA encodes a 194-amino acid precursor protein that con tains a 33-aa PBAN, a 24-aa DH-like peptide, and three other neuropeptides, all of which have a common C-terminal pentapeptide motif FXPR/KL ( X=G, T, S). A homology search showed that H. armigera DH-like and PBAN are highly homologous to those from other insects. Northern blot analysis demonstrated a single message RNA corresponding to the size of Har-DH-PBAN cDNA from pupal SG with significantly higher expression in the SG of nondiapause pupae than diapausing pupae. Western blot analysis showed DH-like peptide expression from SG of both males and females. When DH-like peptide was injected into nondiapause larvae and pupae, it did not induce diapause, but rather efficiently broke pupal diapause in H. armigera. The ED(50) of DH to terminate pupal diapause is 20 pmol/pupae. The other four FXPRLamide neuropeptides from the DH-PBAN polyprotein precursor have cross activity for diapause termination. These observations therefore suggest a potential role for these FXPRL family peptides in promoting continuous development in several noctuid species. The high expression of this gene in pharate adults and adults indicates that the FXPRL family peptides may have multiple physiological functions.  相似文献   

2.
3.
4.
5.
家蚕滞育激素-性信息素合成激活肽基因的表达徐卫华(中国农业科学院蚕业研究所,江苏镇江,212000)山下兴亚(名古屋大学农学院,日本名古屋,464-01)关键词滞育激素-性信息素合成激活肽基因;发育阶段;表达;家蚕昆虫是地球上最繁盛的物种,占地球上生...  相似文献   

6.
7.
In the female turnip moth, Agrotis segetum, a pheromone biosynthesis activating neuropeptide (PBAN) stimulates sex pheromone biosynthesis which exhibits a daily rhythm. Here we show data supporting a circadian rhythm in PBAN release from the corpora cardiaca, which we propose regulates the endogenous rhythm in sex pheromone biosynthesis. This conclusion is drawn as the observed daily rhythm in PBAN-like immunoreactivity in the hemolymph is persistent in constant darkness and is phase-shifted by an advanced light:dark cycle. PBAN-like immunoreactivity was found in the brain, the optic lobe, the suboesophageal ganglion and in the retrocerebral complex. In each hemisphere ca. 10 immunopositive neurons were observed in the pars intercerebralis and a pair of stained somata in the dorso-lateral protocerebrum. A cluster of cells containing PBAN-like immunoreactive material was found in the tritocerebrum and three clusters of such cells were found in the SOG. Their processes reach the corpora cardiaca via nervi corporis cardiaci and the dorsal surface of the corpora allata via the nervi corporis allati.  相似文献   

8.
A [3H]-PBAN (pheromone biosynthesis-activating neuropeptide) analog was synthesized, and binding of the radioligand to a specific PBAN-antiserum was achieved. The inhibition of binding of the radioligand by unlabeled PBAN, several PBAN analogs, and other competitors was studied and a specific radio-immunoassay was developed. Using this radioimmunoassay we found PBAN-like immunoreactivity in methanol extracts of hemolymph and neural tissues from females. Higher levels of PBAN-like immunoreactivity in extracts of brain-suboesophageal ganglion complexes, corpora cardiaca, thoracic ganglia, and abdominal ganglia were observed during the 4-5th h scotophase when compared to the PBAN-like immunoactivity levels during the 6-11th h photophase. On the other hand, the concentrations of PBAN-like immunoreactivity, in the terminal abdominal ganglion were higher during the photophase relative to minimal levels observed during the scotophase, indicating an accumulation before the onset of pheromone production. These differences in concentrations of PBAN were also reflected in the stimulation of in vitro pheromone glands, whereby significant stimulations were obtained by scotophase and photophase brain extracts, scotophase thoracic ganglia extracts, and photophase terminal abdominal ganglia extracts. No detectable levels of PBAN were found in hemolymph extracts during the sampling periods.  相似文献   

9.
Production of sex pheromones, Z9-14:OAc and Z11-14:OAc, of the smaller tea tortrix, Adoxophyes sp. was stimulated by injection of the female or male head extracts as well as synthetic pheromone biosynthesis activating neuropeptide (PBAN) into decapitated females. The amount of pheromone produced reached a maximum level 3 h after injection of synthetic PBAN into females. A cDNA isolated from brain-suboesophageal ganglion complex (Br-SEG) of A. sp. females contained an ORF of 576 nucleotides encoding 192 amino acids. Based on endoproteolytic sites, it can be predicted to be cleaved into five putative peptide domains including PBAN and four other neuropeptides. Ado-PBAN consisting of 31-amino acids is the shortest PBAN so far reported. Four other putative PBAN-encoding gene neuropeptides (PGN) are predicted with PGN-24, PGN-7, PGN-20, and PGN-8 amino acids. All of the peptides are amidated in their C-termini with a FXPR(or I, K)L structure, except for PGN-8 (TVKLTPRLamide). PBAN-like immunoreactive material was observed in Br, SEG and ventral nerve cord (VNC) of the female adult. In the brain, 5-7 pairs of neurons containing PBAN-like immunoreactivity were found in each protocerebral hemisphere. Three groups of cell clusters found in the SEG corresponded to the mandibular, maxillary and labial neurons as in other moths. PBAN-like immunoreactive neurons in the VNC were found in thoracic (three pairs) and abdominal ganglia (two pairs). As compared to other moths, a relatively low similarity of peptide sequences deduced from Ado-PBAN gene and a different expression pattern of PBAN-like immunoreactivity could indicate phylogenetical distance from the other species.  相似文献   

10.
Sun JS  Zhang TY  Zhang QR  Xu WH 《Regulatory peptides》2003,116(1-3):163-171
Recent studies in Helicoverpa armigera report a novel role for diapause hormone (DH), pheromone biosynthesis activating neuropeptide (PBAN) and three other FXPRLamide neuropeptides secreted from suboesophageal ganglion (SG) in terminating pupal diapause. In the present paper, we investigated the role of these five FXPRLamide family neuropeptides on pupal development. Although removal of SG could not make nondiapause-destined pupae enter diapause-like status, it did make them eclose approximately 0.6-1.2 days later when compared with the controls. The results of competitive ELISAs showed a high level of FXPRLamide titer in the hemolymph of the SG-removed pupae and this may be due to the expression of the DH-PBAN gene in tissues other than SG. DH-PBAN mRNA and peptides were also detected in the thoracic ganglia (TGs) by RT-PCR and immunocytochemistry. The expression of DH-PBAN gene in the TGs of the SG-removed pupae is significantly higher than that in normal pupae by quantitative PCR and immunocytochemistry. Decerebration experiments proved that the decerebrated pupae could enter diapause-like status through down-regulation of FXPRLamide titer in hemolymph. Our studies confirm that the brain plays an important role in the determination of pupal development by regulating the synthesis and release of FXPRLamide neuropeptides in H. armigera. Thus, the function of FXPRLamide peptides in H. armigera is closely correlated with pupal development.  相似文献   

11.
The pyrokinin/pheromone biosynthesis activating neuropeptide (PBAN) family of peptides found in insects is characterized by a 5-amino-acid C-terminal sequence, FXPRLamide. The pentapeptide is the active core required for diverse physiological functions, including stimulation of pheromone biosynthesis in female moths, stimulation of muscle contraction, induction of embryonic diapause in Bombyx mori, and stimulation of melanization in some larval moths. Recently, this family of peptides has been implicated in accelerating the formation of the puparium in a dipteran. Using bioassay and immunocytochemical techniques, we demonstrate the presence of pyrokinin/PBAN-like peptides in the central nervous system of Drosophila melanogaster. Pheromonotropic activity was shown in the moths Helicoverpa zeaand Helicoverpa armigera by using dissected larval nervous systems and adult heads and bodies of D. melanogaster. Polyclonal antisera against the C-terminal ending of PBAN revealed the location of cell bodies and axons in the central nervous systems of larval and adult flies. Immunoreactive material was detected in at least three groups of neurons in the subesophageal ganglion of 3rd instar larvae, pupae, and adults. The ring gland of both larvae and adults contained immunoreactivity. Adult brain-subesophageal ganglion complex possessed additional neurons. The fused ventral ganglia of both larvae and adults contained three pairs of neurons that sent their axons to a neurohemal organ connected to the abdominal nervous system. These results indicate that the D. melanogasternervous system contains pyrokinin/PBAN-like peptides and that these peptides could be released into the hemolymph.  相似文献   

12.
Pheromone biosynthesis activating neuropeptide (PBAN) stimulates sex pheromone production in several species of moths. We have used an antiserum to PBAN to map the distribution of PBAN-like immunoreactivity (PLI) in the subesophageal ganglion (SEG) of the larval and pupal stages of the corn earworm, Helicoverpa zea, and compared this distribution with that of the adult. The distribution of PLI within the SEG of larvae and pupae was quite similar to that found in adults, suggesting a function for PBAN other than the stimulation of pheromone biosynthesis. In all developmental stages studied, three groups of nerve cells in the SEG, and their projections, contained PLI. In adults and larvae, most of the cells containing PLI also had FMRFamide-like immunoreactivity (FLI). In pupae, however, a number of cells which appeared to have PLI and FLI in both larvae and adults, did not contain andy detectable FLI, while the PLI appeared unchanged. The FLI returns to these cells during adult development. These immunocytochemical observations were corroborated by quantifying PLI and FLI by competitive ELISA; the level of extractable FLI in pupae was about 25% of that found in larvae, while PLI levels were unchanged. © 1992 Wiley-Liss, Inc.  相似文献   

13.
Selected tissues presumably involved in the control of sex pheromone production were analyzed by ELISA for the presence of PBAN-like immunoreactivity (PBAN-IR) in Spodoptera littoralis. The temporal distribution pattern of PBAN-IR in the hemolymph is similar to that of pheromone production in the gland. On the other hand, analysis of the retrocerebral complex, brain-subesophageal ganglion complex, and terminal abdominal ganglion (TAG) revealed similar PBAN-IR levels in both photophase and scotophase periods. Pheromonotropic activity exhibited by both hemolymph and TAG, as determined by a modified in vitro bioassay, agrees with the results of the immunochemical analyses. Severing the ventral nerve cord anterior to the TAG impaired normal sex pheromone production by second-scotophase females. These results are discussed in the context of how sex pheromone biosynthesis is regulated by PBAN in S. littoralis. © 1996 Wiley-Liss, Inc.  相似文献   

14.
Lee DW  Boo KS 《Peptides》2005,26(12):2404-2411
Pheromone biosynthesis activating neuropeptide (PBAN) produced in the subesophageal ganglion stimulates pheromone production in the pheromone gland. A cDNA isolated from female adult heads of the diamondback moth (Plutella xylostella (L.)) encodes 193 amino acids including PBAN, designated as Plx-PBAN, and four other neuropeptides (NPs): diapause hormone (DH) homologue, -NP, β-NP and γ-NP. All of the peptides are amidated in their C-termini and shared a conserved motif, FXPR(or K)L structure, as reported from other PBAN cDNAs. Plx-PBAN consists of 30 amino acids, the shortest PBAN so far reported. Plx-PBAN exhibited below 50% homology, compared with other known PBANs. The Plx-DH homologue is structurally different from DH of Bombyx mori. The length of Plx-β-NP (16 amino acids) was the shortest and showed relatively low similarity, whereas γ-NP (10 amino acids in length) was the longest among examined γ-NPs. When female adults were injected with synthetic Plx-PBAN, pheromone production showed a maximal increase 1 h post-injection. RT-PCR screening revealed that Plx-PBAN cDNA was expressed in all examined body parts, with the highest expression level in the head of female adults. Analysis of RT-PCR products indicated the Plx-PBAN sequence was identical in all examined body parts of both sexes. Phylogenetic analysis revealed that the Plx-PBAN gene is distantly related to other PBANs, demonstrated by the relatively low similarity.  相似文献   

15.
16.
家蚕滞育激素-性信息素合成激活肽基因表达的调节   总被引:7,自引:0,他引:7  
滞育激素和性信息素合成激活肽是两个重要的昆虫神经肽,这两个神经肽由一个基因编码.利用分子杂交和RT-PCR技术,确定了滞育激素-性信息素合成激活肽基因表达的调节不属于转录后的调节,推定为翻译后形成一个大的前体多肽再剪接为几个成熟的神经肽分子.  相似文献   

17.
Our understanding of insect chemical communication including pheromone identification, synthesis, and their role in behavior has advanced tremendously over the last half-century. However, endocrine regulation of pheromone biosynthesis has progressed slowly due to the complexity of direct and/or indirect hormonal activation of the biosynthetic cascades resulting in insect pheromones. Over 20 years ago, a neurohormone, pheromone biosynthesis activating neuropeptide (PBAN) was identified that stimulated sex pheromone biosynthesis in a lepidopteran moth. Since then, the physiological role, target site, and signal transduction of PBAN has become well understood for sex pheromone biosynthesis in moths. Despite that PBAN-like peptides (∼200) have been identified from various insect Orders, their role in pheromone regulation had not expanded to the other insect groups except for Lepidoptera. Here, we report that trail pheromone biosynthesis in the Dufour''s gland (DG) of the fire ant, Solenopsis invicta, is regulated by PBAN. RNAi knock down of PBAN gene (in subesophageal ganglia) or PBAN receptor gene (in DG) expression inhibited trail pheromone biosynthesis. Reduced trail pheromone was documented analytically and through a behavioral bioassay. Extension of PBAN''s role in pheromone biosynthesis to a new target insect, mode of action, and behavioral function will renew research efforts on the involvement of PBAN in pheromone biosynthesis in Insecta.  相似文献   

18.
In order to understand better the mechanism of regulation of pheromone production in moth species, we performed ELISA analyses to detect and follow pheromone biosynthesis activating neuropeptide-like immunoreactivity (PBAN-IR) in different tissues of the two noctuidae species, Spodoptera littoralis and Mamestra brassicae. Male S. littoralis and both male and female M. brassicae brain-subesophageal ganglion (Br-SEG), corpora cardiaca-corpora allata complex, and terminal abdominal ganglion extracts showed the presence of PBAN-IR during both the photophase and the scotophase. However, PBAN-IR was found only in scotophase in female hemolymph. Analysis of extracts of Br-SEG, terminal abdominal ganglion, and hemolymph after HPLC fractionation showed that the most immunoreactive fraction in all the extracts exhibited the same retention time as Hez-PBAN, suggesting that similar PBAN-like material is present in all these tissues. In vivo studies demonstrated that severing the ventral nerve cord in M. brassicae anterior to the terminal abdominal ganglion impaired normal sex pheromone production by third-scotophase females, as was previously shown in S. littoralis. Additionally, PBAN-IR levels were lower in hemolymph samples obtained at the peak of pheromone production in both S. littoralis and M. brassicae females that had the ventral nerve cord severed compared with sham operated animals. These results, along with earlier reported data, indicate that control of pheromone production in both species may involve both PBAN (or PBAN-like peptides) and the ventral nerve cord and support the hypothesis that a neural input from the ventral nerve cord triggers the release of the pheromonotropic peptide(s) into the hemolymph, which then acts directly on the pheromone gland to stimulate pheromone biosynthesis. Arch. Insect Biochem. Physiol. 37:295–304, 1998. © 1998 Wiley-Liss, Inc.
  • 1 We thank Germán Lázaro for insect rearing.
  •   相似文献   

    19.
    Virgin females of M. confusa, A. peponis, and C. eriosoma secrete (Z)-7-dodecenyl acetate as a common main pheromone component. Their pheromone titers decreased after decapitation, and increased in the decapitated females after injection of a synthetic hormone, pheromone biosynthetic activating neuropeptide (PBAN) of Bombyx mori. In addition, an extract of brain-subesophageal ganglion complexes of each Plusiinae species activated pheromone biosynthesis in decapitated females of not only the corresponding species, but also that of Mamestra brassicae. These results indicate that pheromone biosynthesis of the three Plusiinae species is also controlled by a PBAN-like substance. However, the Plusiinae females exceptionally contained remarkable amounts of the pheromone even 1 day after decapitation. Since it has been reported that pheromones completely disappear at least 1 day after decapitation in females of many other lepdidoptran species including B. mori and M. brassicae, a different mechanism is likely regarding the regulation of the studied Plusiinae pheromone biosynthesis. Furthermore, an incorporation experiment with a labeled pheromone precursor, D9-(Z)-7-dodecenoic acid, showed that moderate biosynthesis still proceeded in the pheromone glands of M. confusa females 1 day after decapitation, providing an evidence why complete disappearance of the pheromone was not observed in the females which otherwise lacked a source of the pheromonotropic neuropeptide.  相似文献   

    20.
    The pyrokinin/pheromone-biosynthesis-activating neuropeptide (PBAN) family of peptides found in insects is characterized by a 5-amino-acid C-terminal sequence, FXPRLamide. The pentapeptide is the active core required for diverse physiological functions, including the stimulation of pheromone biosynthesis in female moths, muscle contraction, induction of embryonic diapause, melanization, acceleration of puparium formation, and termination of pupal diapause. We have used immunocytochemical techniques to demonstrate the presence of pyrokinin/PBAN-like peptides in the central nervous system of the fire ant, Solenopsis invicta. Polyclonal antisera against the C-terminal end of PBAN have revealed the location of the peptide-producing cell bodies and axons in the central nervous system. Immunoreactive material is detectable in at least three groups of neurons in the subesophageal ganglion and corpora cardiaca of all adult sexual forms. The ventral nerve cord of adults consists of two segmented thoracic ganglia and four segmented abdominal ganglia. Two immunoreactive pairs of neurons are present in the thoracic ganglia, and three neuron pairs in each of the first three abdominal ganglia. The terminal abdominal ganglion has no immunoreactive neurons. PBAN immunoreactive material found in abdominal neurons appears to be projected to perisympathetic organs connected to the abdominal ganglia. These results indicate that the fire ant nervous system contains pyrokinin/PBAN-like peptides, and that these peptides are released into the hemolymph. In support of our immunocytochemical results, significant pheromonotropic activity is found in fire ant brain-subesophageal ganglion extracts from all adult fire ant forms (queens, female and male alates, and workers) when extracts are injected into decapitated females of Helicoverpa zea. This is the first demonstration of the presence of pyrokinin/PBAN-like peptides and pheromonotropic activity in an ant species. This research was supported in part by a US-Israel Binational Science Foundation Grant (no. 2003367).  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号