首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The “gravity vector” theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates.  相似文献   

2.
《Behavioural processes》1997,39(2):137-147
A new device, the direction-recorder, offered the possibility to extend earlier studies of homing behaviour of pigeons when relevant topographical elements (mountains and large tracts of water) interpose between the release site and the home loft. Three series of experiments were carried out at three different sites to investigate intraindividual and interindividual variability in subsequent tosses from the same locality. Two release sites were chosen behind a mountain chain with respect to home; at the third site homeward directed route crosses the sea. From our results it turns out that homing pigeons may adopt different strategies. Moreover, a wide intraindividual variability was observed in repeated tosses at the same site; some pigeons remained faithful to the first route, whereas other birds tried successive new routes which, in most cases, were significantly shorter than previous ones. This result indicates that pigeons try, and are actually able, to improve their performance in subsequent releases from the same site.  相似文献   

3.
Summary In order to test whether stimuli perceived during passive displacement are important for the subsequent homing, pigeons were transported in an apparatus designed to prevent them from receiving relevant information: The experimental birds were continuously rotated quite rapidly (1.5 cps, radial acceleration about 4 g); in addition, they were exposed to an artificial magnetic field and supplied with bottled air. Control birds were transported in open-air cages on top of the van with free view to all sides.Five pairs of releases from equal distances in opposite directions were conducted. Experienced birds were released at distances of about 15, 90, and 300 km from the loft, inexperienced birds at distances of about 180km. In each pair of releases both groups of pigeons were significantly homeward oriented. Neither in initial orientation nor in homing performance nor in the distribution of recoveries were the experimental birds inferior to the controls or in any perceptable way different from them.It is concluded that homing of passively displaced pigeons is not primarily based on information gathered during the outward journey.Abbreviations EP experimental pigeon(s) - CP control pigeon(s) The possibility to maintain our pigeon loft in a building that belongs to the Zoological Institute (Prof. M. Lindauer) of the University of Würzburg is gratefully acknowledged.  相似文献   

4.

Background

Tracks of pigeons homing to the Frankfurt loft revealed an odd phenomenon: whereas birds returning from the North approach their loft more or less directly in a broad front, pigeons returning from the South choose, from 25 km from home onward, either of two corridors, a direct one and one with a considerable detour to the West. This implies differences in the navigational process.

Methodology/Principle Findings

Pigeons released at sites at the beginning of the westerly corridor and in this corridor behave just like pigeons returning from farther south, deviating to the west before turning towards their loft. Birds released at sites within the straight corridors, in contrast, take more or less straight routes. The analysis of the short-term correlation dimension, a quantity reflecting the complexity of the system and with it, the number of factors involved in the navigational process, reveals that it is significantly larger in pigeons choosing the westerly corridor than in the birds flying straight - 3.03 vs. 2.85. The difference is small, however, suggesting a different interpretation of the same factors, with some birds apparently preferring particular factors over others.

Conclusions

The specific regional distribution of the factors which pigeons use to determine their home course seems to provide ambiguous information in the area 25 km south of the loft, resulting in the two corridors. Pigeons appear to navigate by deriving their routes directly from the locally available navigational factors which they interpret in an individual way. The fractal nature of the correlation dimensions indicates that the navigation process of pigeons is chaotic-deterministic; published tracks of migratory birds suggest that this may apply to avian navigation in general.  相似文献   

5.
How pigeons return home from unfamiliar release sites is a long-standing puzzle in animal behaviour. Walker (1998, 1999) has described a "vector summation model" which "identifies a novel coordinate that pigeons could use with magnetic total intensity to determine position". The model is not applicable in a magnetic field generated simply by a geocentric dipole, but requires a field perturbed by higher-order sources. Tests are devised to simulate the addition of both regional and local magnetic anomalies to a geocentric dipole field, and to calculate the directions of the home loft from a number of release sites. The results indicate that a pigeon would be unlikely to derive useful information from the model.  相似文献   

6.
Abstract Roads often negatively affect terrestrial wildlife, via habitat loss or fragmentation, noise, and direct mortality. We studied moose (Alces alces) behavior relative to a road network, in an area with a history of moose-vehicle accidents, to determine when moose were crossing roadways or using areas near roads and to investigate if environmental factors were involved in this behavior. We tracked 47 adult moose with Global Positioning System collars in a study area crossed by highways and forest roads. We hypothesized that moose would avoid crossing roads but would make occasional visits to roadsides to feed on sodium-rich vegetation and avoid biting insects. Further, we expected moose avoidance to be greater for highways than forest roads. We recorded 196,710 movement segments but only observed 328 highway and 1,172 forest-road crossings (16 and 10 times lower than expected by chance). Moose usually avoided road proximity up to ≥500 m on each side but 20% of collared moose made visits to areas within 50 m of highways, which might have resulted from moose searching for sodium in vegetation and roadside salt pools. In fact, vegetation along highways had higher sodium concentrations and was browsed in similar proportions to vegetation in adjacent forest, despite moose avoidance of these zones. Moose, however, did not use areas near roads more during periods of biting insect abundance. Our results supported the hypothesis of scale-dependent selection by moose; avoidance of highways at a coarse scale may confer long-term benefits, whereas selection of highway corridors at finer scales may be part of a strategy to overcome short-term limiting factors such as sodium deficiency. We found a positive relationship between home-range size and the proportion of road axes they contained, suggesting that moose either compensated for habitat loss or made specific movements along highways to gather sodium. The presence of sodium along highways likely increases moose-vehicle accident risks. Removal of salt pools or use of a de-icing salt other than sodium chloride should render highway surroundings less attractive to moose.  相似文献   

7.
Summary At four sites in the cardinal directions from the home loft in about 180 km distance, 135 experimental pigeons (EPs) and 171 control pigeons (CPs) were released. The EPs had been made anosmic by bilateral olfactory nerve section. All birds were completely inexperienced in homing.Homeward orientation was clearly established in the CPs of which 19% returned to the loft. The performances of the EPs were significantly worse in (a) initial orientation, (b) vanishing intervals, (c) distribution of recoveries, and (d) homing success (none of them homed).The EPs still showed the loft-specific preferred compass direction (PCD).The recoveries of the EPs are much more widely scattered in direction than those of the rather well homeward oriented CPs, even if the distances from the release site are the same in both groups. It is concluded that the navigational capability rather than the motivation to fly or to return home is affected by olfactory deprivation. It is further concluded that homing of pigeons depends on olfactory stimuli perceived at the remote sites even at distances as large as 180km.In the data of the anosmic pigeons a non-olfactory component of homeward orientation persists which is much more pronounced on the W-E axis than on the N-S axis. This component alone appears to be insufficient for a return to the loft.Earlier results and conclusions that gave rise to some controversy are critically examined.The present as well as earlier findings are discussed with respect to two alternative hypotheses of olfactory navigation, the mosaic hypothesis (favoured by Papi) and the gradient hypothesis (favoured by the author).Abbreviations EP experimental pigeon(s) - CP control pigeon(s) - CLCP cueless transported control pigeon(s) (see p. 210) - PCD preferred compass direction I gratefully acknowledge the possibility to maintain our pigeon loft in a building that belongs to the Zoological Institute (Prof. M. Lindauer) of the University of Würzburg. I thank B. and K. Brendle, E. Thiele, and K. Wielander for the releasing of pigeons and for other technical assistance.  相似文献   

8.
Road barrier effect is among the foremost negative impacts of roads on wildlife. Knowledge of the factors responsible for the road barrier effect is crucial to understand and predict species’ responses to roads, and to improve mitigation measures in the context of management and conservation. We built a set of hypothesis aiming to infer the most probable cause of road barrier effect (traffic effect or road surface avoidance), while controlling for the potentially confounding effects road width, traffic volume and road age. The wood mouse Apodemus sylvaticus was used as a model species of small and forest-dwelling mammals, which are more likely to be affected by gaps in cover such as those resulting from road construction. We confront genetic patterns from opposite and same roadsides from samples of three highways and used computer simulations to infer migration rates between opposite roadsides. Genetic patterns from 302 samples (ca. 100 per highway) suggest that the highway barrier effect for wood mouse is due to road surface avoidance. However, from the simulations we estimated a migration rate of about 5% between opposite roadsides, indicating that some limited gene flow across highways does occur. To reduce highway impact on population genetic diversity and structure, possible mitigation measures could include retrofitting of culverts and underpasses to increase their attractiveness and facilitate their use by wood mice and other species, and setting aside roadside strips without vegetation removal to facilitate establishment and dispersal of small mammals.  相似文献   

9.
Observations of the flight paths of pigeons navigating from familiar locations have shown that these birds are able to learn and subsequently follow habitual routes home. It has been suggested that navigation along these routes is based on the recognition of memorized visual landmarks. Previous research has identified the effect of landmarks on flight path structure, and thus the locations of potentially salient sites. Pigeons have also been observed to be particularly attracted to strong linear features in the landscape, such as roads and rivers. However, a more general understanding of the specific characteristics of the landscape that facilitate route learning has remained out of reach. In this study, we identify landscape complexity as a key predictor of the fidelity to the habitual route, and thus conclude that pigeons form route memories most strongly in regions where the landscape complexity is neither too great nor too low. Our results imply that pigeons process their visual environment on a characteristic spatial scale while navigating and can explain the different degrees of success in reproducing route learning in different geographical locations.  相似文献   

10.
Metabolic responses of homing pigeons to flight and subsequent recovery   总被引:1,自引:0,他引:1  
This study examines metabolic changes occurring during short to endurance flights and during subsequent recovery in free-flying pigeons, in particular the change towards lipid utilization with increasing flight duration, lipid supply to the flight muscles, protein utilization and the time needed to metabolically recover. Eight plasma metabolite concentrations were measured in homing pigeons released from sites 20–200 km from the loft (0.3–4.8 h flight duration) just after landing and after keeping birds fasting at rest for 30 and 60 min, respectively, after their return. Birds kept in the loft fasting at rest were used as controls. Plasma free fatty acid and glycerol concentrations increased rapidly with flight duration and leveled off after about 1.5 h. This indicates a marked change towards a high and stable lipid utilization from adipose tissues within 1–2 h of flight. Plasma triglyceride levels and very-low-density lipoproteins were decreased after short flights, but subsequently regained or surpassed fasting levels at rest. This indicates that re-esterification of free fatty acids and delivery as very-low-density lipoproteins to the flight muscles to circumvent constraints of fatty acid supply, as described previously for small passerines, is not as significant in the pigeon which has a much lower mass-specific energy rate. An initial increase in plasma glucose levels and a transient decrease to fasting levels at rest was observed and may reflect the initial use and subsequent exhaustion of glycogen stores. Contrary to other birds and mammals, -hydroxy-butyrate levels increased markedly with flight duration. This may suggest a more important sparing of carbohydrates and protein as gluconeogenic precursors in the pigeon than in other species. Plasma uric acid levels increased linearly up to about 4 h flight duration. This indicates an accelerated protein breakdown during flight which may primarily serve to deliver amino acids as glucogenic precursors and citrate cycle intermediates. With increasing flight duration, the energy sources change from an initial phase based primarily on carbohydrates to a lipid-based endurance phase. It is discussed whether this metabolic change depends on the level of power output or the performed work (energy spent) since the start of flight. During the first hour of recovery, most metabolites reached or approached fasting levels at rest, indicating a marked reduction in lipolysis and protein breakdown. -hydroxy-butyrate levels remained at flight levels and glucose levels increased slightly, indicating a restoration of glycogen stores.Abbreviations VLDL very-low-density lipoproteins - FFA free fatty acids  相似文献   

11.

Background

Understanding the ecological consequences of roads and developing ways to mitigate their negative effects has become an important goal for many conservation biologists. Most mitigation measures are based on road mortality and barrier effects data. However, studying fine-scale individual spatial responses in roaded landscapes may help develop more cohesive road planning strategies for wildlife conservation.

Methodology/Principal Findings

We investigated how individuals respond in their spatial behavior toward a highway and its traffic intensity by radio-tracking two common species particularly vulnerable to road mortality (barn owl Tyto alba and stone marten Martes foina). We addressed the following questions: 1) how highways affected home-range location and size in the immediate vicinity of these structures, 2) which road-related features influenced habitat selection, 3) what was the role of different road-related features on movement properties, and 4) which characteristics were associated with crossing events and road-kills. The main findings were: 1) if there was available habitat, barn owls and stone martens may not avoid highways and may even include highways within their home-ranges; 2) both species avoided using areas near the highway when traffic was high, but tended to move toward the highway when streams were in close proximity and where verges offered suitable habitat; and 3) barn owls tended to cross above-grade highway sections while stone martens tended to avoid crossing at leveled highway sections.

Conclusions

Mortality may be the main road-mediated mechanism that affects barn owl and stone marten populations. Fine-scale movements strongly indicated that a decrease in road mortality risk can be realized by reducing sources of attraction, and by increasing road permeability through measures that promote safe crossings.  相似文献   

12.
How homing pigeons (Columba livia) return to their loft from distant, unfamiliar sites has long been a mystery. At many release sites, untreated birds consistently vanish from view in a direction different from the home direction, a phenomenon called the release-site bias. These deviations in flight direction have been implicated in the position determination (or map) step of navigation because they may reflect local distortions in information about location that the birds obtain from the geophysical environment at the release site. Here, we performed a post hoc analysis of the relationship between vanishing bearings and local variations in magnetic intensity using previously published datasets for pigeons homing to lofts in Germany. Vanishing bearings of both experienced and naïve birds were strongly associated with magnetic intensity variations at release sites, with 90 per cent of bearings lying within ±29° of the magnetic intensity slope or contour direction. Our results (i) demonstrate that pigeons respond in an orderly manner to the local structure of the magnetic field at release sites, (ii) provide a mechanism for the occurrence of release-site biases and (iii) suggest that pigeons may derive spatial information from the magnetic field at the release site that could be used to estimate their current position relative to their loft.  相似文献   

13.
《Animal behaviour》1988,36(1):150-158
Despite being the most studied of all avian orientation systems, important questions still remain about the sun compass of homing pigeons, Columba livia. White it is well-documented that the sun compass is usually learned by young pigeons during the first 10–12 weeks of life, the mechanism by which it is calibrated to adjust for seasonal changes in the sun's azimuth is not known with certainty. Previous experiments using short-term deflector loft pigeons indicated that the sun compass may be calibrated by referencing celestial polarization patterns. The present paper describes important measurable changes in the previously reported orientation behaviour of short-term deflector loft birds, and suggests a correlation between these changes and the presence of a massive upper-atmospheric dust cloud of volcanic origin which significantly altered natural skylight polarization patterns in 1982 and 1983. Moreover, it is shown that when the short-term effect was absent (at times when data from previous years suggested it should be present), the birds were also not using sun compass orientation, as demonstrated by their failure to show the standard ‘clockshift’ response to a 6-h fast shift of their internal clocks. These results support the hypothesis that reflected light cues, rather than odours, are the basis of the deflector loft effect in pigeon homing.  相似文献   

14.
We assessed the magnitude, composition, and spatial and temporal patterns of road mortality of native vertebrates on two highways in southern Brazil from 18 January 2003 to 26 January 2004. The highways cross remnants of the Atlantic Rainforest, a global biodiversity hotspot, and differ in vehicle traffic and surrounding landscape. We compared the road-kill magnitude and composition of birds, mammals, and reptiles between roads and seasons. We used a modified K statistic to depict the spatial patterns of roadkills of these groups and tested the association between vehicle traffic and road mortality through linear regression. We recorded 869 kills of 92 species. The two roads differed regarding the abundance and composition of roadkills. Reptile road mortality was higher in summer than winter, but all other groups did not show significant difference in the magnitude of mortality between seasons. The composition of killed assemblages differed significantly for some of the taxonomic groups among seasons. We found only one positive association between roadkills and vehicle traffic (reptiles on one of the roads), suggesting that vehicle flow does not explain the road-kill temporal variation on these roads. Total vertebrate, bird, and mammal roadkills showed significant spatial aggregations possibly due to variation in vehicle traffic, highway design, and local landscape condition and arrangement. With expected expansion of the road network, mitigation measures for multi-species assemblages should include habitat protection, soil use regulation, road crossing structures, speed reducers, and campaigns to raise people’s awareness about road impacts on wildlife.  相似文献   

15.
Major roads and highways disrupt ecological flows and create barriers or filters to the movement of many species of wildlife, including gliding mammals. Mitigating these impacts presents major challenges for road authorities. One approach has been the retention of forest vegetation in median strips to serve as ‘stepping stones’ for gliding mammals to cross road gaps otherwise beyond their glide capacity. A recently upgraded section of the Pacific Highway through tall open forest near Bonville in north‐east New South Wales retained forest within two 10‐ to 45‐m‐wide median strips separating each carriageway and a service road. We investigated whether Sugar Gliders (Petaurus breviceps) used these median strips to cross an 85 to 135 m‐wide road corridor. Three radio‐collared Sugar Gliders (one male and two females) moved between both highway medians and forest on either side of the road corridor during 32 days of radio‐tracking. Although the sample size is small, these results suggest that highway median strips, featuring mature vegetation with a major den tree, can provide ‘stepping stones’ for gliding mammals to cross a highway that would otherwise function as a movement barrier or filter. Longer‐term research with greater numbers of animals at this and other sites is required to determine whether such strips would be commonly used when den trees are absent and whether gliding via median strips may also increase road mortality of the species.  相似文献   

16.
This study compares the initial orientation and homing performance of young inexperienced pigeons following their transportation to near and distant places in total darkness (treatment) and their subsequent release. The birds were housed in two lofts at the Lisbon Zoo. Each loft had its own specific features: the H-loft was exposed to prevailing winds and allowed an unhindered view of the surrounding landscape; the L-loft was protected from the wind and allowed only a partial view of the surroundings. Pigeons used in the release tests were between 6 and 7 weeks old. We found that, in general, the initial orientation of the pigeons was affected by the treatment: following release at near places, there was an increase in the scatter and a decrease the homeward component, suggesting that light-dependent information collected en route was used by young pigeons. The effect of the treatment was only temporary based on the observation that the homing performance was not affected. However, the distance of the release site strongly influenced the homing performances as pigeons appeared to be unable to home when released at locations distant from the loft. Based on the scatter or the homeward component, inter-loft differences were apparent with respect to different median vanishing intervals and the reactions of specific pigeons when subjected to the same treatment (transport in darkness) following release at near and distant places. These findings suggest that light-dependent information collected en route is a component of the young pigeon’s navigational system but that, at the young age of the birds tested here, it is preferentially used in familiar areas. In addition, the importance of the light-dependent information appears to depend upon prior experience obtained in the lofts.  相似文献   

17.
Roads and highways represent one of the most important anthropogenic impacts on natural areas and contribute to habitat fragmentation, because they are linear features that can inhibit animal movement, thereby causing barrier effects subdividing the populations adjacent to the roads. The paper examines to what extent a narrow (2-lane) and a wide (4-lane) highways represent barriers for two small mammal species: bank volesClethrionomys glareolus Schreber, 1780 and yellow-necked miceApodemus flavicollis Melchior, 1834, and whether displaced rodents are able to return across roads of different widths. The study was performed at four sites in the Czech Republic. The capture-mark-recapture method was used to determine crossing rates. At two sites, the animals captured close to the road were transferred to the other side and released, to compare return movements across the roads with the movements made by the non-transferred animals. We found that the narrow highway did not prevent movement of neither of the species, although voles crossed only after they had been transferred. Wide highways, on the other hand, completely prevened crossing of both species. While the narrow highways acted at individuals level, the wide highways affected the population subvision.  相似文献   

18.
Tracks of pigeons, recorded with the help of GPS-receivers from two sites 30 km north and south of the Frankfurt loft, were analyzed in view of an influence of irregular fluctuations of the geomagnetic field. The data obtained were correlated with indices characterizing different aspects of these fluctuations. We found the best correlations with the index quantifying the average amplitude of the magnetic disturbance, and with an index that quantifies the average variability of the magnetic field on the day of release: stronger and more variable fluctuations lead to a counter-clockwise shift of the mean headings during the initial phase at the release site and the following departure phase, but not during the final homing phase leading to the loft. The steadiness of flight was not affected during the initial phase; however, during the later parts of the homing flight, stronger fluctuations, as well as higher variability in the magnetic field led to a marked decrease in steadiness. This continuing effect of magnetic fluctuations indicates that magnetic factors not only affect the beginning, but remain an integral part of the pigeons’ navigational processes during the entire homing flight.  相似文献   

19.
Multi-modal Orientation Cues in Homing Pigeons   总被引:4,自引:0,他引:4  
How homing pigeons displaced into unfamiliar territory findtheir way home has been the subject of extensive experimentationand debate. One reason for the controversy is that pigeons seemto use multiple cues. Clock-shifting experiments show that experiencedpigeons use the sun as a preferred compass; when it is not availablethey rely on magnetic cues. That pigeons can home successfullywhile wearing frosted lenses suggests that landmarks, whilenot an essential navigational cue, are important in the finalstages. The sensory basis of the "map" or position finding systemis probably equally or even more complicated. When conditionsaround the loft are suitable, pigeons may use olfactory cuesto find their way or might use some feature of the earth's magneticfield for their navigation. The Wiltschkos (1989) showed thatpigeons raised without free access to ambient odors are notdisoriented when anosmic while their siblings raised with freeaccess to the prevailing wind were disoriented. Similarly, siblingpigeons from two lofts in Lincoln, Massachusetts. were welloriented or totally disoriented when released at magnetic anomaliesunder sunny skies depending upon which of the two lofts theyhad been reared in. All of these experiments and many more suggestthat pigeons use multiple and redundant cues to find their wayhome. Further, there is the suggestion that which cues theyadopt may well be influenced by the characteristics of the areaaround the home loft in which they were reared.  相似文献   

20.
Feral pigeons (Columba livia, Gmelin 1789) cause different problems for building owners when using structures for daytime perching, sleeping, and breeding. Problems include fouling of building facades and pavements, transmission of allergens and pathogenic microorganisms, and infestations with ectoparasites emanating from breeding sites. Owners are primarily interested in keeping away unwanted pigeons from their property. Pest control companies offer different deterrent systems, of widely varying efficacy, for proofing buildings against feral pigeons. A better solution is avoiding attractive structures during building design or subsequent alterations of existing structures used by feral pigeons. With our study, we elaborate the relevant structural data to help to maintain a building free of pigeons. We performed experiments with free ranging feral pigeons in a feral pigeon loft in the City of Basel, Switzerland. The maximum outlet width a pigeon is not able to pass through is 4 cm; the respective outlet height is 5 cm and a pigeon-safe square opening is not larger than 6 × 6 cm. The maximum ledge width a pigeon is not able to sit on is 4 cm. The pigeon-safe angle of inclination for smooth construction materials (tinplate, glass, plastics) is 25°, for medium rough materials (wood, plane concrete) 35°, and for rough materials (sandstone, rough concrete) at least 50°. Additionally, we studied the behavioral strategies used by feral pigeons to surmount our experimental constructional restrictions, ledge width, and ledge inclinations. Our data provide the essential data to prevent feral pigeons from using building structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号