首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycation of horse heart metmyoglobin with d-ribose 5-phosphate (R5P), d-2-deoxyribose 5-phosphate (dR5P), and d-ribose with inorganic phosphate at 37 °C generates an altered protein (Myo-X) with increased SDS–PAGE mobility. The novel protein product has been observed only for reactions with the protein myoglobin and it is not evident with other common sugars reacted over a 1 week period. Myo-X is first observed at 1–2 days at 37 °C along with a second form that is consistent in mass with that of myoglobin attached to several sugars. MALDI mass spectrometry and other techniques show no evidence of the cleavage of a peptide from the myoglobin chain. Apomyoglobin in reaction with R5P also exhibited this protein form suggesting its occurrence was not heme-related. While significant amounts of O2 and H2O2 are generated during the R5P glycation reaction, they do not appear to play roles in the formation of the new form. The modification is likely due to an internal cross-link formed during a glycation reaction involving the N-terminus and an internal amine group; most likely the neighboring Lys133. The study shows the unique nature of these common pentose sugars in spontaneous glycation reactions with proteins.  相似文献   

2.
Ribose 5-phosphate (R5P) is a sugar known to undergo the Maillard reaction (glycation) at a rapid rate. In a reaction with the lysines of bovine heart cytochrome c, R5P generates superoxide () that subsequently reduces ferri-cytochrome c to ferro-cytochrome c. The rate equation for the observed cytochrome c reduction is first order in respect to cytochrome c and half order in respect to R5P. The addition of amines to the cytochrome c-R5P system greatly increases the generation with rates of approximately 1.0 μM min−1 being observed with millimolar levels of R5P and amine at 37 °C. Pre-incubation of R5P with the amine prior to cytochrome c addition further enhances the rate of cytochrome c reduction approximately twofold for every 30 min of incubation. While clearly accounting for a portion of the reduction of cytochrome c, is not the sole reductant of the system as the use of superoxide dismutase only partially limits cytochrome c reduction, and the contribution of proportionally decreases with longer amine-R5P incubation times. The remainder of the cytochrome c reduction is attributed to either the Amadori product or a cross-linked Schiff base created when a Maillard reaction-derived dicarbonyl compound(s) reacts with the amine. It is believed that these compounds directly transfer electrons to ferri-cytochrome c and subsequently become stable free-radical cations. ATP, a putative regulator of cytochrome c activity, does not inhibit electron transport from or the cross-linked Schiff base but does prevent R5P from reacting with surface lysines to generate superoxide. The spontaneous reaction between R5P and amines could serve as an alternative system for generating in solution.  相似文献   

3.
Howe DL  Sundaram AK  Wu J  Gatti DL  Woodard RW 《Biochemistry》2003,42(17):4843-4854
Escherichia coli 3-deoxy-D-manno-octulosonate 8-phosphate (KDO8-P) synthase is able to utilize the five-carbon phosphorylated monosaccharide, 2-deoxyribose 5-phosphate (2dR5P), as an alternate substrate, but not D-ribose 5-phosphate (R5P) nor the four carbon analogue D-erythrose 4-phosphate (E4P). However, E. coli KDO8-P synthase in the presence of either R5P or E4P catalyzes the rapid consumption of approximately 1 mol of PEP per active site, after which consumption of PEP slows to a negligible but measurable rate. The mechanism of this abortive utilization of PEP was investigated using [2,3-(13)C(2)]-PEP and [3-F]-PEP, and the reaction products were determined by (13)C, (31)P, and (19)F NMR to be pyruvate, phosphate, and 2-phosphoglyceric acid (2-PGA). The formation of pyruvate and 2-PGA suggests that the reaction catalyzed by KDO8-P synthase may be initiated via a nucleophilic attack to PEP by a water molecule. In experiments in which the homologous enzyme, 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAH7-P) synthase was incubated with D,L-glyceraldehyde 3-phosphate (G3P) and [2,3-(13)C(2)]-PEP, pyruvate and phosphate were the predominant species formed, suggesting that the reaction catalyzed by DAH7-P synthase starts with a nucleophilic attack by water onto PEP as observed in E. coli KDO8-P synthase.  相似文献   

4.
Ribose-5-phosphate isomerase A (RpiA) plays an important role in interconverting between ribose-5-phosphate (R5P) and ribulose-5-phosphate in the pentose phosphate pathway and the Calvin cycle. We have determined the crystal structures of the open form RpiA from Vibrio vulnificus YJ106 (VvRpiA) in complex with the R5P and the closed form with arabinose-5-phosphate (A5P) in parallel with the apo VvRpiA at 2.0 Å resolution. VvRpiA is highly similar to Eschericihia coliRpiA, and the VvRpiA-R5P complex strongly resembles the E. coli RpiA-A5P complex. Interestingly, unlike the E. coli RpiA-A5P complex, the position of A5P in the VvRpiA-A5P complex reveals a different position than the R5P binding mode. VvRpiA-A5P has a sugar ring inside the binding pocket and a phosphate group outside the binding pocket: By contrast, the sugar ring of A5P interacts with the Asp4, Lys7, Ser30, Asp118, and Lys121 residues; the phosphate group of A5P interacts with two water molecules, W51 and W82.  相似文献   

5.
Ribose-5-phosphate isomerase (RPI) catalyses the interconversion of ribose-5-phosphate and ribulose-5-phosphate in the reductive and oxidative pentose phosphate pathways in plants. RPI from spinach chloroplasts was purified and microsequenced. Via PCR with degenerate primers designed against microsequenced peptides, a hybridisation probe was obtained and used to isolate several cDNA clones which encode RPI. The nuclear-encoded 239 amino acid mature RPI subunit has a predicted size of 25.3 kDa and is translated as a cytosolic precursor possessing a 50 amino acid transit peptide. The processing site of the transit peptide was identified from protein sequence data. Spinach leaves possess only one type of homodimeric RPI enzyme which is localized in chloroplasts and is encoded by a single nuclear gene. Molecular characterization of RPI supports the view that a single amphibolic RPI enzyme functions in the oxidative and reductive pentose phosphate pathways of spinach plastids.Abbreviations RPI ribose-5-phosphate isomerase - OPPP oxidative pentose phosphate pathway - CNBr cyanogen bromide - R5P ribose-5-phosphate - Ru5P ribulose-5-phosphate  相似文献   

6.
Abstract

The Trypanosoma cruzi ribose-5-phosphate isomerase B (TcRpiB) is a crucial piece in the pentose phosphate pathway and thus is a potential drug target for treatment of Chagas’ disease. TcRpiB residues, such as Cys69, Asp45, Glu149 and Pro47, have confirmed their roles in substrate recognition, catalytic reaction and binding site conformation. However, the joint performance of His11 and His102, in the D-ribose-5-phosphate (R5P) in the catalysis is not well understood. In this work, we probed the influence of different protonation states of His11 and His102 on the behavior of the ligand R5P using molecular dynamics simulations, network analysis and thermodynamic integration. Simulations revealed that a protonated His11 combined with a neutral His102 (His11+?His102) was able to stabilize the ligand R5P in the binding site. Moreover, calculated relative free energy differences showed that when protonated His11 was coupled to a neutral His102 an exergonic process takes place. On the other hand, neutral His11 combined with a protonated His102 (His11?His102+), sampled conformations that resembled the catalyzed product D-ribulose-5-phosphate (Ru5P). Network analysis also demonstrated some peculiarities for these systems with some negatively correlated nodes in the binding site for His11?His102+, and exclusive suboptimal paths for His11+?His102. Therefore, the combined approach presented in this paper proposes two suitable protonation states for the TcRpiB catalytic mechanism, where an extra proton in either histidines might favor R5P binding or influence isomerization reaction to Ru5P. Our results may guide further in silico drug discovery studies.

Communicated by Ramaswamy H. Sarma  相似文献   

7.
W. M. Kaiser  J. A. Bassham 《Planta》1979,144(2):193-200
The conversion of U-labelled [14C]glucose-6-phosphate into other products by a soluble fraction of lysed spinach chloroplasts has been studied. It was found that both an oxidative pentose phosphate cycle and a glycolytic reaction sequence occur in this fraction. The formation of bisphosphates and of triose phosphates was ATP-dependent and occurred mainly via a glycolytic reaction sequence including a phosphofructokinase step. The conversion, of glucose-6-phosphate via the oxidative pentose phosphate cycle stopped with the formation of pentose monophosphates. This was found not to be because of a lack in transaldolase (or transketolase) activity, but because of the high concentration ratios of hexose monophosphate/pentose monophosphate used in our experiments for simulating the conditions in whole chloroplasts in the dark. Some regulatory properties of both the oxidative pentose phosphate cycle and of the glycolytic pathway were studied.Abbreviations DHAP dihydroxyacetone phosphate - GAP 3-phosphoglyceraldehyde - PGA 3-phosphoglycerate - HMP hexose monophosphates - including F6P fructose-6-phosphate - G6P glucose-6-phosphate - GIP glucose-1-phosphate - 6-PGL phosphogluconate - PMP pentose monophosphates - including R5P ribose-5-phosphate - Ru5P ribulose-5-phosphate - X5P xylulose-5-phosphate - E4P erythrose-4-phosphate - S7P sedoheptulose-7-phosphate - FBP fructose-1,6-bisphosphate - SBP sedoheptulose-1,7-bisphosphate - RuBP ribulose-1,5-bisphosphate  相似文献   

8.
Interactions between the phosphate group of 4-deoxypyridoxine 5′-phosphate and different protonated amines were quantitatively measured by means of {31P}-1H nuclear magnetic double resonance technique combined with pD titration. An interaction of the phosphate group with added amine resulted in a measurable difference in the 31P chemical shift of these phosphate-containing samples with and without amine [Δδ(31P)]. Basic amino acids and biogenic amines had significant measurable Δδ(31P) values. No interactions were observed for acidic or neutral α, β and γ-amino acids.  相似文献   

9.
NMR is ideal for characterizing non-enzymatic protein glycation, including AGEs (advanced glycation endproducts) underlying tissue pathologies in diabetes and ageing. Ribose, R5P (ribose-5-phosphate) and ADPR (ADP-ribose), could be significant and underinvestigated biological glycating agents especially in chronic inflammation. Using [U-13C]ribose we have identified a novel glycoxidation adduct, 5-deoxy-5-desmethylpronyl-lysine, ‘norpronyl-lysine’, as well as numerous free ketones, acids and amino group reaction products. Glycation by R5P and ADPR proceeds rapidly with R5P generating a brown precipitate with PLL (poly-L-lysine) within hours. ssNMR (solid-state NMR) 13C–13C COSY identifies several crosslinking adducts such as the newly identified norpronyl-lysine, in situ, from the glycating reaction of 13C5-ribose with collagen. The same adducts are also identifiable after reaction of collagen with R5P. We also demonstrate for the first time bio-amine (spermidine, N-acetyl lysine, PLL) catalysed ribose 2-epimerization to arabinose at physiological pH. This work raises the prospect of advancing understanding of the mechanisms and consequences of glycation in actual tissues, in vitro or even ex vivo, using NMR isotope-labelled glycating agents, without analyses requiring chemical or enzymatic degradations, or prior assumptions about glycation products.  相似文献   

10.
Interconversion of d-ribose-5-phosphate (R5P) and d-ribulose-5-phosphate is an important step in the pentose phosphate pathway. Two unrelated enzymes with R5P isomerase activity were first identified in Escherichia coli, RpiA and RpiB. In this organism, the essential 5-carbon sugars were thought to be processed by RpiA, while the primary role of RpiB was suggested to instead be interconversion of the rare 6-carbon sugars d-allose-6-phosphate (All6P) and d-allulose-6-phosphate. In Mycobacterium tuberculosis, where only an RpiB is found, the 5-carbon sugars are believed to be the enzyme's primary substrates. Here, we present kinetic studies examining the All6P isomerase activity of the RpiBs from these two organisms and show that only the E. coli enzyme can catalyze the reaction efficiently. All6P instead acts as an inhibitor of the M. tuberculosis enzyme in its action on R5P. X-ray studies of the M. tuberculosis enzyme co-crystallized with All6P and 5-deoxy-5-phospho-d-ribonohydroxamate (an inhibitor designed to mimic the 6-carbon sugar) and comparison with the E. coli enzyme's structure allowed us to identify differences in the active sites that explain the kinetic results. Two other structures, that of a mutant E. coli RpiB in which histidine 99 was changed to asparagine and that of wild-type M. tuberculosis enzyme, both co-crystallized with the substrate ribose-5-phosphate, shed additional light on the reaction mechanism of RpiBs generally.  相似文献   

11.
We investigated the relationship between the concentration of pyridoxal-5′-phosphate (PLP) and biogenic amine in mouse brain. The production of PLP from pyridoxal (PL) by pyridoxal kinase (PLK) was inhibited by the addition of dopamine (DA), norepinephrine (NE) and 5-hydroxytryptamine (5-HT), but not by that of epinephrine and N-acetyl-serotonin. DA and NE were combined with PLP by a non-enzymatic reaction, whereas 5-HT was bound only slightly with PLP. The conjugated product of PLP with DA was also detected by HPLC analysis when PLK activity was assayed using PL as a substrate in the presence of DA. In an in vivo investigation, the depletion of DA and 5-HT in mouse brain after an intraperitoneal injection of 5 mg/kg reserpine, led to slight elevation of the PLP level to 120% of the control level. By contrast, the increase in DA in the brain caused by intraperitoneal administration of 150 mg/kg L-DOPA caused the PLP concentration to decrease to 70% of the control level. However, no change in PLK activity in the brain was observed when the mice were treated with either reserpine or L-DOPA. These results suggested that the level of PLP in mouse brain was partly regulated by the concentration of biogenic amines, such as DA, NE and 5-HT, without apparent induction of PLK.  相似文献   

12.
2-Deoxyribose 5-phosphate production through coupling of the alcoholic fermentation system of baker’s yeast and deoxyriboaldolase-expressing Escherichia coli was investigated. In this process, baker’s yeast generates fructose 1,6-diphosphate from glucose and inorganic phosphate, and then the E. coli convert the fructose 1,6-diphosphate into 2-deoxyribose 5-phosphate via D-glyceraldehyde 3-phosphate. Under the optimized conditions with toluene-treated yeast cells, 356 mM (121 g/l) fructose 1,6-diphosphate was produced from 1,111 mM glucose and 750 mM potassium phosphate buffer (pH 6.4) with a catalytic amount of AMP, and the reaction supernatant containing the fructose 1,6-diphosphate was used directly as substrate for 2-deoxyribose 5-phosphate production with the E. coli cells. With 178 mM enzymatically prepared fructose 1,6-diphosphate and 400 mM acetaldehyde as substrates, 246 mM (52.6 g/l) 2-deoxyribose 5-phosphate was produced. The molar yield of 2-deoxyribose 5-phosphate as to glucose through the total two step reaction was 22.1%. The 2-deoxyribose 5-phosphate produced was converted to 2-deoxyribose with a molar yield of 85% through endogenous or exogenous phosphatase activity.  相似文献   

13.
A new assay for 5-enolpyruvylshikimate-3-phosphate synthase is described. This enzyme of the shikimate pathway of aromatic amino acid biosynthesis generates 5-enolpyruvylshikimate 3-phosphate and orthophosphate from phosphoenolpyruvate and shikimate 3-phosphate. The shikimate pathway is present in bacteria and plants but not in mammals. The assay employs a paper-chromatographic separation of radiolabeled substrate from product. The method is specific, is sensitive to 50 pmol of product, and is suitable for use in crude extracts of bacteria. This enzyme appears to be the primary target site of the commercial herbicide glyphosate (N-phosphonomethyl glycine). A procedure for the enzymatic synthesis of [14C]shikimate 3-phosphate from the commercially available precursor [14C]shikimic acid is also described.  相似文献   

14.
Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase (G6PD) was isolated in high yield and purified to homogeneity from a newly constructed strain of Escherichia coli which lacks its own glucose 6-phosphate dehydrogenase gene. Lys-21 is one of two lysyl residues in the enzyme previously modified by the affinity labels pyridoxal 5'-phosphate and pyridoxal 5'-diphosphate-5'-adenosine, which are competitive inhibitors of the enzyme with respect to glucose 6-phosphate (LaDine, J.R., Carlow, D., Lee, W.T., Cross, R.L., Flynn, T.G., & Levy, H.R., 1991, J. Biol. Chem. 266, 5558-5562). K21R and K21Q mutants of the enzyme were purified to homogeneity and characterized kinetically to determine the function of Lys-21. Both mutant enzymes showed increased Km-values for glucose 6-phosphate compared to wild-type enzyme: 1.4-fold (NAD-linked reaction) and 2.1-fold (NADP-linked reaction) for the K21R enzyme, and 36-fold (NAD-linked reaction) and 53-fold (NADP-linked reaction) for the K21Q enzyme. The Km for NADP+ was unchanged in both mutant enzymes. The Km for NAD+ was increased 1.5- and 3.2-fold, compared to the wild-type enzyme, in the K21R and K21Q enzymes, respectively. For the K21R enzyme the kcat for the NAD- and NADP-linked reactions was unchanged. The kcat for the K21Q enzyme was increased in the NAD-linked reaction by 26% and decreased by 30% in the NADP-linked reaction from the values for the wild-type enzyme. The data are consistent with Lys-21 participating in the binding of the phosphate group of the substrate to the enzyme via charge-charge interaction.  相似文献   

15.
Glucose-6-phosphate dehydrogenase undergoes in vitro a decrease of its isoelectric pH in the presence of its coenzyme NADP+, and of either a NAD(P) glycohydrolase or an excess of its substrate, glucose-6-phosphate at acidic pHs.The mechanism of in vitro production of hyperanodic bands of glucose-6-phosphate dehydrogenase has been studied. It consists in a covalent fixation of phosphoadenosine diphosphoribose or of a degradation product of NADPH. In the case of P-ADP-Rib, the reaction is stoichiometric, one molecule of ligand being bound to one subunit of enzyme. The bond between enzyme and P-ADP-Rib was characterized as a Schiff's base.  相似文献   

16.
Two types of new Sepharose-bound pyridoxal 5′-phosphate, N-immobilized and 3-0-immobilized pyridoxal 5′-phosphate analogues, were prepared by reacting pyridoxal 5′-phosphate with a bromoacetyl derivative of Sepharose 4B in dimethylformamide (50% v/v) and in potassium phosphate buffer (pH 6.0) for approx. 70 h at room temperature in the dark, respectively. The properties of these immobilized pyridoxal 5′-phosphate derivatives including their catalytic activities in the non-enzymatic cleavage reaction of tryptophan were studied in comparison with those of the 6-immobilized pyridoxal 5′-phosphate analogue reported previously by the present authors. The usefulness of these pyridoxal 5′-phosphate analogues in the preparation of immobilized tryptophanase was demonstrated.  相似文献   

17.
Rüdiger Cerff 《Phytochemistry》1978,17(12):2061-2067
Substrate interaction and product inhibition kinetics of the forward reaction of glyceraldehyde-3-phosphate dehydrogenase (NADP) (EC 1.2.1.13) from Sinapis alba suggest an Uni Uni Uni Bi Ping Pong mechanism (NAD(P)H on, glyceraldehyde-3-phosphate off, 1,3-diphosphoglycerate on, phosphate off, NAD(P)+ off) with an apparent Theorell Chance displacement between 1,3-diphosphoglycerate and phosphate. The proposed mechanism predicts the existence of stable enzyme-NAD(P)+ and acyl-enzyme complexes as obligatory intermediates. A comparison of the present findings on the NADP-enzyme with an earlier kinetic analysis of the NAD-specific enzyme from plants (EC 1.2.1.12) by other authors shows that the kinetic mechanisms for the two enzymes, although similar in principle (both show Ping Pong kinetics), differ in some details.  相似文献   

18.
Jakas A  Horvat S 《Biopolymers》2003,69(4):421-431
Reactions between biological amines and reducing sugars (the Maillard reaction) are among the most important of the chemical and oxidative changes occurring in biological systems that contribute to the formation of a complex family of rearranged and dehydrated covalent adducts that have been implicated in the pathogenesis of human diseases. In this study, chemistry of the Maillard reactions was studied in four model systems containing fructosamines (Amadori compounds) obtained from the endogenous opioid pentapeptide leucine-enkephalin (Tyr-Gly-Gly-Phe-Leu), leucine-enkephalin methyl ester, structurally related tripeptide (Tyr-Gly-Gly), or from amino acid (Tyr). The degradation of model compounds as well as their ability to develop Maillard fluorescence was investigated under oxidative conditions in methanol and phosphate buffer pH 7.4 at two different temperatures (37 and 70 degrees C). At 37 degrees C, glycated leucine-enkephalin degraded slowly in methanol (t(1/2) approximately 13 days) and phosphate buffer (t(1/2) approximately 9 days), producing a parent peptide compound as a major product throughout a three-week incubation period. Whereas fluorescence slowly increased over time at 37 degrees C, incubations off all studied Amadori compounds at 70 degrees C resulted in a rapid appearance of a brown color and sharp increase in AGE (advanced glycation end products)-associated fluorescence (excitation 320 nm/emmision 420 nm) as well as in distinctly higher amounts of fragmentation products. The obtained data indicated that the shorter the peptide chain the more degradation products were formed. These studies have also helped to identify a new chemical transformation of the peptide backbone in the Maillard reaction that lead to beta-scission of N-terminal tyrosine side chain and p-hydroxybenzaldehyde formation under both aqueous and nonaqueous conditions.  相似文献   

19.
Chan KK  Fedorov AA  Fedorov EV  Almo SC  Gerlt JA 《Biochemistry》2008,47(36):9608-9617
Enzymes that share the (beta/alpha) 8-barrel fold catalyze a diverse range of reactions. Many utilize phosphorylated substrates and share a conserved C-terminal (beta/alpha) 2-quarter barrel subdomain that provides a binding motif for the dianionic phosphate group. We recently reported functional and structural studies of d-ribulose 5-phosphate 3-epimerase (RPE) from Streptococcus pyogenes that catalyzes the equilibration of the pentulose 5-phosphates d-ribulose 5-phosphate and d-xylulose 5-phosphate in the pentose phosphate pathway [J. Akana, A. A. Fedorov, E. Fedorov, W. R. P. Novack, P. C. Babbitt, S. C. Almo, and J. A. Gerlt (2006) Biochemistry 45, 2493-2503]. We now report functional and structural studies of d-allulose 6-phosphate 3-epimerase (ALSE) from Escherichia coli K-12 that catalyzes the equilibration of the hexulose 6-phosphates d-allulose 6-phosphate and d-fructose 6-phosphate in a catabolic pathway for d-allose. ALSE and RPE prefer their physiological substrates but are promiscuous for each other's substrate. The active sites (RPE complexed with d-xylitol 5-phosphate and ALSE complexed with d-glucitol 6-phosphate) are superimposable (as expected from their 39% sequence identity), with the exception of the phosphate binding motif. The loop following the eighth beta-strand in ALSE is one residue longer than the homologous loop in RPE, so the binding site for the hexulose 6-phosphate substrate/product in ALSE is elongated relative to that for the pentulose 5-phosphate substrate/product in RPE. We constructed three single-residue deletion mutants of the loop in ALSE, DeltaT196, DeltaS197 and DeltaG198, to investigate the structural bases for the differing substrate specificities; for each, the promiscuity is altered so that d-ribulose 5-phosphate is the preferred substrate. The changes in k cat/ K m are dominated by changes in k cat, suggesting that substrate discrimination results from differential transition state stabilization. In both ALSE and RPE, the phosphate group hydrogen bonds not only with the conserved motif but also with an active site loop following the sixth beta-strand, providing a potential structural mechanism for coupling substrate binding with catalysis.  相似文献   

20.
The decomposition of 5-phosphoribosyl-alpha-1-pyrophosphate (PRPP) in the presence of Mg2+ at pH=7.8 yields a combination of products including ribose 5-phosphate, ribose 1-phosphate, 5-phosphoribosyl 1,2 cyclic phosphate, inorganic phosphate, and pyrophosphate. Hydrogen decoupled 31P NMR analysis of the product mixture also exhibits a sharp peak (+2.6 ppm from phosphocreatine) in a chemical shift region which includes phosphodiester bonds. Alkaline phosphatase treatment of the product mixture results in cleavage of monophosphate esters such as ribose 1-phosphate and ribose 5-phosphate, but does not affect the unidentified peak. Homonuclear (1H) correlation spectroscopy (COSY) of a partially purified sample was successful in identifying the hydrogen spectra of this compound. Combined with results from the splitting patterns of selectively decoupled 31P spectra, the COSY data indicate that several hydrogens are directly coupled to the unknown phosphate group with J value matches to the hydrogen on carbon one and to the two hydrogens on carbon five. Heteronuclear (1H-31P) chemical shift correlation studies confirm these couplings and further substantiate the formation of a ribose 1-5 phosphate linkage during the degradation of PRPP under these conditions. It is presently unknown whether this is an intramolecular or intermolecular phosphodiester linkage, although some spectroscopic evidence suggest the intramolecular bond formation, i.e. a ribose 1,5-cyclic phosphate (R-1,5cP). The formation of R-1,5cP helps explain the observation that the 5-phosphate group from PRPP becomes labile during the spontaneous degradation of PRPP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号