首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of Mucor miehei protease with concanavalin A was followed by a turbidimetric assay in the pH range 5-8. At pH 4.0, no turbidity developed but binding of the enzyme to concanavalin A could be demonstrated by gel filtration. Two fractions of apparent molecular weight 65000 and 52000 were isolated, the 65000 molecular weight species apparently representing a protomer of concanavalin A (24000) bound to the enzyme. An analysis of the circular dichroism spectrum of this complex suggested that protomer binding results in a conformational change in the enzyme which is associated with a 30% increase in proteolytic activity. At pH 6.0, the enzyme was strongly bound to columns of concanavalin A Sepharose but could be removed by including alpha-methyl D-glucoside and NaC1 in the elution buffer. Some column degradation occurred at room temperature but was not detectable at 4 degrees C where rapid elution of the enzyme resulted in a greater than 90% yield of highly active protein. Periodate-oxidized Mucor miehei protease and Mucor renin did not react with concanavalin A and were not bound to the affinity column.  相似文献   

2.
A cytotoxic factor, produced by a human lymphoblastoid cell line [Karpas (1977) Br. J. Cancer 35, 152--160; Karpas (1977) Br. J. Cancer 36, 437--445], was purified both from the cell extracts and from the culture medium containing the cell lysate, by using ammonium sulphate precipitation, DEAE-cellulose chromatography, gel filtration and affinity chromatography on concanavalin A--Sepharose and on [3H]amino-ethanol--glass beads. Two factors, Factor I and Factor II, were separated by DEAE-cellulose chromatography. Factor I was eluted from this column at 30 mM-aminoethanol/HCl buffer, pH 8.0, whereas Factor II was bound strongly to DEAE-cellulose and was eluted only at 325 mM-aminoethanol/HCl buffer, pH 8.0. The purified Factor I migrated as a single band on polyacrylamide-gel electrophoresis. Its isoelectric point, pI, was 8.0 +/- 0.3. Its sedimentation coefficient, S20,w, was 3.5 +/- 0.1 S and its apparent molecular weight, Mr, was 65 000 +/- 1000 as determined by sedimentation-velocity and sedimentation-equilibrium measurements. A linear relationship between molecular weight and concentration was found in equilibrium runs, suggesting a non-spherical shape of the molecule. Factor I is not a glycoprotein, inasmuch as it does not bind to concanavalin A--Sepharose. It consists of two subunits (Mr 32 000 +/- 4000), migrating on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis as a single band. Factor II had pI 6.0 +/- 0.4 and Mr 75 000 +/- 3000. Factors I and II are thus different proteins.  相似文献   

3.
Alpha 2 acute-phase macroglobulin was isolated from plasma of turpentine-injected rats. In the method conditions known to damage the biological activities of alpha 2 macroglobulin are avoided. The procedure successively involves: rivanol precipitation, concanavalin A-Sepharose chromatography and ion-exchange chromatography on DEAE-cellulose. Proteolytic activities were minimized throughout the purification. Thus alpha 2 macroglobulin was obtained in a 20% yield and was pure by biochemical and immunological criteria. Its molecular weight appeared to be 760 000 and it consisted of four subunits (Mr 190 000). The protein has an A1cm 1% = 8.8 and an isoelectric point = 4.8. The amino acid and carbohydrate compositions were determined. Our preparations bound 1 molecule of trypsin or 1 molecule of plasmin/molecule of alpha 2 macroglobulin. Kinetic parameters for alpha 2 macroglobulin-bound trypsin and plasmin were determined and compared with those of free trypsin and plasmin using butoxycarbonyl-L-valylglycyl-L-arginine-2-naphthylamide and benzoyl-L-arginine ethylester as substrates.  相似文献   

4.
Demetallized concanavalin A is degraded rapidly at pH 7.0 and 8.2 by alpha-chymotrypsin, thermolysin or trypsin, yielding peptide fragments devoid of ability to bind to Sephadex G-75. Addition of Ni2+ and of Ca2+ confers on concanavalin A high resistance towards proteolytic attack so that even after long periods of exposure to the enzymes, almost all of the saccharide-binding capacity is preserved. Ni2+ alone protects strongly at pH 7.0 but not at pH 8.2. Apparently, both the transition metal ion and Ca2+ play an important role in stabilizing the native conformation of the protein molecule. Digestion of demetallized concanavalin A with alpha-chymotrypsin or thermolysin readily yields small peptide fragments (Mr less than 10 000), while trypsin yields as the major product(s) larger peptide(s) (Mr approximately 20 000) of appreciable resistance to further fragmentation.  相似文献   

5.
The native structures of protein phosphatases have not been clearly established. Several tissues contain high molecular weight enzymes which are converted to active species of Mr approximately 35,000 by denaturing treatments or partial proteolysis. We have used a monoclonal antibody directed against purified bovine cardiac Mr = 38,000 protein phosphatase to determine whether this species is the native catalytic subunit or a proteolytic product of a larger polypeptide. Monoclonal antibody was obtained from a cloned hybrid cell line produced by the fusion of Sp2 myeloma cells with spleen cells from a mouse immunized with phosphatase coupled to hemocyanin. This antibody was specific for the Mr = 38,000 phosphatase as determined by immunoblot analysis of purified enzyme or cardiac tissue extracts after native or sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A single immunoreactive protein of Mr = 38,000 was present in cardiac tissue extracts including extracts prepared from freeze-clamped rat heart rapidly denatured in hot sodium dodecyl sulfate buffer. Precipitation of cardiac extract with 80% ethanol did not alter the Mr of the phosphatase nor did it liberate new immunoreactive material not observed in the extract. Ethanol precipitation caused the dissociation of both phosphatase activity and immunoreactivity from a high Mr form to a form of Mr between 30,000 and 40,000. An immunoreactive protein of Mr = 38,000 was identified in several bovine and rat tissues as well as tissues from rabbits, mice and chickens and human HT-29 cells. From these data we conclude that the Mr = 38,000 cardiac phosphatase is a native catalytic subunit of higher molecular complexes which are dissociated by ethanol precipitation. A very similar, or identical, protein is present in several tissues and species suggesting that this catalytic subunit is a ubiquitous enzyme important in many dephosphorylation reactions.  相似文献   

6.
Alpha 1-Microglobulin (alpha 1-m), or protein HC, a low molecular weight plasma protein with immunoregulatory properties, was isolated from rat serum by affinity chromatography using Sepharose-coupled monoclonal anti-alpha 1-m antibodies. High molecular weight forms of alpha 1-m were then separated from the low molecular weight alpha 1-m by gel chromatography of the eluted proteins. The apparent Mr (28,000), the charge heterogeneity, the N-linked carbohydrate, and yellow-brown chromophore suggest that the low molecular weight alpha 1-m is the serum counterpart to urinary alpha 1-m, which was purified previously. A high molecular weight complex of alpha 1-m was also isolated by the gel chromatography. It was homogeneous as judged by nondenaturing polyacrylamide gel electrophoresis. The molecule was bound by antibodies against human alpha 2-macroglobulin, and experiments with antisera against the three alpha-macroglobulin variants in rat serum, alpha 1-macroglobulin, alpha 2-macroglobulin, and alpha 1-inhibitor-3 (alpha 1I3) suggested that alpha 1I3 was the complex-partner of alpha 1-m. An antiserum raised against high molecular weight alpha 1-m was then used to isolate the complex-partner of alpha 1-m from rat serum with affinity chromatography, and this molecule was positively identified as alpha 1I3 by its physicochemical properties. Gel chromatography of the alpha 1I3.alpha 1-m complex suggested a molecule with an Mr of 266,000. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, however, it migrated as three major molecular species with apparent molecular weights of 224,000, 205,000, and 194,000 and several minor species of both higher and lower molecular weights, suggesting a complex subunit structure. alpha 1-m and alpha 1I3 could be detected in all three major species by Western blotting, and NH2-terminal amino acid sequencing suggested a molar ratio of 1:1 of alpha 1-m and alpha 1I3 in all three species. alpha 1I3.alpha 1-m was colorless, did not show light absorbance beyond 300 nm which is typical of low molecular weight alpha 1-m and was electrophoretically homogeneous, suggesting that it lacks the chromophore. Finally, the serum concentrations of the alpha 1I3.alpha 1-m complex and free alpha 1-m were determined as 0.16 and 0.010 g/liter, respectively. Thus, alpha 1I3.alpha 1-m constitutes 1-3% of the total alpha 1I3 in rat serum (w/w) and approximately 60% of the total alpha 1-m.  相似文献   

7.
The structure of the saccharide-binding site of concanavalin A.   总被引:15,自引:1,他引:14       下载免费PDF全文
A complex of concanavalin A with methyl alpha-D-mannopyranoside has been crystallized in space group P212121 with a = 123.9 A, b = 129.1 A and c = 67.5 A. X-ray diffraction intensities to 2.9 A resolution have been collected on a Xentronics/Nicolet area detector. The structure has been solved by molecular replacement where the starting model was based on refined coordinates of an I222 crystal of saccharide-free concanavalin A. The structure of the saccharide complex was refined by restrained least-squares methods to an R-factor value of 0.19. In this crystal form, the asymmetric unit contains four protein subunits, to each of which a molecule of mannoside is bound in a shallow crevice near the surface of the protein. The methyl alpha-D-mannopyranoside molecule is bound in the C1 chair conformation 8.7 A from the calcium-binding site and 12.8 A from the transition metal-binding site. A network of seven hydrogen bonds connects oxygen atoms O-3, O-4, O-5 and O-6 of the mannoside to residues Asn14, Leu99, Tyr100, Asp208 and Arg228. O-2 and O-1 of the mannoside extend into the solvent. O-2 is hydrogen-bonded through a water molecule to an adjacent asymmetric unit. O-1 is not involved in any hydrogen bond and there is no fixed position for its methyl substituent.  相似文献   

8.
We have purified beta-galactosidase and beta-glucuronidase from macrophages of thioglycollate-treated mice using concanavalin A chromatography and immunoprecipitation. The apparent molecular weight of the beta-galactosidase subunit, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, changed during a long term pulse-chase experiment. Following a 1-h pulse with [3H]leucine, radiolabel was present exclusively in an Mr = 82,000 form. However, after a 3-h chase in medium containing unlabeled leucine, most label migrated at Mr = 63,000, and at 24 h, all label was in the Mr = 63,000 form. Electrophoresis of peptides produced by cyanogen bromide cleavage of immunoprecipitates demonstrated structural similarities between precursor and mature forms. A mutation in the mouse, which is known to depress the rate of synthesis of beta-galactosidase in many cell types, proportionately decreased incorporation of [3H]leucine into both the Mr = 82,000 and 63,000 forms. Therefore, by kinetic, structural, and genetic evidence, the large molecular weight beta-galactosidase is a precursor of mature macrophage enzyme. No precursor of the Mr = 75,000 subunit of beta-glucuronidase was detected.  相似文献   

9.
A human isolate of Salmonella enteritidis which displayed strong pellicle formation during static broth culture and mannose-sensitive hemagglutination produced fimbriae which were morphologically indistinguishable from type 1 fimbriae of members of the family Enterobacteriaceae. Fimbrin was purified to homogeneity, and the apparent molecular weight (Mr, 14,400) was markedly lower than that reported for the type 1 fimbrin of Salmonella typhimurium (Mr, 22,100). This fimbrin contained 40% hydrophobic amino acids and lacked cysteine. The sequence of the N-terminal 64 amino acids was determined, and sequence alignment revealed that although the 18 N-terminal residues of the S. enteritidis molecule shared considerable homology with Escherichia coli and S. typhimurium type 1 fimbrins, the S. enteritidis fimbrin lacked a 6- to 9-residue terminal sequence present in the other type 1 fimbrins and, after residue 18, shared little homology with the E. coli sequence. Antibodies raised to the purified S. enteritidis fimbrin bound to surface-exposed conformational epitopes on the native fimbriae and displayed pronounced serospecificity. These antibodies were used in the isolation of a nonfimbriated Tn10 insertion mutant which was unable to hemagglutinate.  相似文献   

10.
Homogenous regulatory subunit from rabbit skeletal muscle cAMP-dependent protein kinase (isozyme I) was partially hydrolyzed with low (1 g/1300 g) or high (1 g/6 g) concentrations of trypsin. After treatment with low trypsin two main peptides (Mr = 35,000 and 12,000) were produced. The cAMP-binding activity (2 mol cAMP/mol of subunit monomer) was recovered in the monomeric Mr = 35,000 peptide. The ability of either fragment to inhibit catalytic subunit activity was lost. Treatment of the regulatory subunit with a high concentration of trypsin yielded three main fragments (Mr = 32,000, 16,000, and 6,000) which could be resolved by Sephadex G-75 and purified further on DEAE-cellulose columns. One of the peptides (Mr = 32,000) bound 2 mol cAMP/mol fragment. The Mr = 16,000 fragment was very labile and bound cAMP with an undetermined stoichiometry. Cyclic AMP dissociation curves for the native regulatory subunit and its Mr = 32,000 component were similar and suggested the presence of two nonidentical binding sites in each monomer. Using the same procedure, the Mr = 16,000 fragment or homogenous cGMP-dependent protein kinase appeared to contain a single type of binding site. Purified Mr = 32,000 fragment was readily converted to the Mr = 16,000 fragment using high trypsin as assessed by protein bands on SDS-disc gels or by following transfer of radioactivity from Mr = 32,000 peptide covalently labeled with 8-N3-[32P] cAMP to radiolabeled Mr = 16,000 fragment. The smallest regulatory subunit fragment (Mr = 6,000) did not bind cAMP, but was dimeric and could be part of the dimerization domain in the native protein. A model is presented to explain the possible structural-functional relationships of the regulatory subunit.  相似文献   

11.
A commercially available, purified preparation of avidin was found to comprise two polypeptide bands (Mr 18,000 and Mr 15,500 respectively). Both bands bound biotin as assessed by biotin overlays of protein blots. The Mr 15,500 polypeptide was found to differ from the Mr 18,000 polypeptide only in its sugar content. When the commercial preparation was applied to a concanavalin A affinity column, the glycosylated forms were retarded as expected, and homotypic nonglycosylated avidin tetramers which failed to bind selectively to the column were collected in the effluent. The biotin-binding properties of the nonglycosylated avidin were equivalent to those obtained for the native (glycosylated) avidin molecule, indicating that the oligosaccharide moiety is not essential for the binding activity.  相似文献   

12.
The effects of pH, Mn2+ and Ca2+ and urea denaturation on the interaction of monolayers of concanavalin A on saline with the polysaccharide dextran B-1355 and the monosaccharides methyl alpha-D-mannopyranoside and D-galactose have been investigated. Infrared absorption spectra of compressed monolayers of the protein and the protein-dextran complex coated on a germanium plate have been obtained by means of attenuated total reflectance spectroscopy. Except in one case of denaturation, the amide I absorption of concanavalin A peaked around 1631 cm-1, indicating a predominance of the beta-pleated sheet conformation, in agreement with its secondary structure in the solution and crystalline phases. The contribution to the absorbance of the concanavalin A-dextran films at 3300 cm-1 due to absorption by the O-H stretching modes of the polysaccharide is a measure of its binding. Increasing the pH from 6.1 to 7.5 appreciably reduced the dextran binding, at pH 9.3 the binding was zero. Adding 1 mM Mn2+ and Ca2+ to the subphase at pH 7.5 restored both the dextran binding and the affinity of concanavalin A for methyl alpha-D-mannopyranoside to that of the native protein at pH 6.1. At this latter pH, the weak binding of dextran to monolayers of demetallized concanavalin A (apo-concanavalin A) was also restored to that for the native molecule by the addition of these divalents. This indicates the requirement of concanavalin A for these ions to maintain the integrity of the saccharide-binding site. The loss of dextran binding with urea denaturation was also observed. These results parallel those for solutions of the protein, indicating the validity of the monolayer system for the study of these interactions.  相似文献   

13.
Two major high molecular weight proteins of human platelets are highly susceptible to proteolytic degradation by endogenous calcium-activated protease activities. Of the two proteins, one has been identified as filamin (Mr = 250,000 subunit); the second, a Mr = 235,000 subunit protein contributing 3-8% of the total platelet proteins, has not been previously characterized. We have now purified this protein, designated P235, to apparent homogeneity (greater than 95%). P235 was extracted by a Triton X-100 and EDTA containing buffer at pH 9.0 and purified by a series of DEAE-cellulose, phosphocellulose, and gel filtration chromatographies. Purified P235 is a dimer of Mr = 235,000 subunit. Its Stokes radius (67 A) and frictional ratio of 1.3 suggest that P235 is approximately globular. Despite this similarity in subunit and molecular weight of P235 to filamin, spectrin, fibronectin, and myosin, its amino acid composition, immunological properties, and peptide map are distinctly different and showed no precursor-product relationship to these proteins. Calcium-activated protease(s) in crude platelet extract rapidly degrade P235 into a Mr = 200,000 stable fragment. Upon prolonged storage at 4 degrees C, purified P235 partially degrades into a Mr = 220,000 and a Mr = 200,000 fragment. This degradation pattern suggests that P235 contains a large Mr = 200,000 protease-resistant domain. The availability of pure P235 will be useful in elucidating the functional role of this platelet protein, as well as the role of calcium-activated proteases in platelet function.  相似文献   

14.
Cyclic AMP-dependent protein kinase from human erythrocyte plasma membranes was solubilized with Triton X-100, partially purified, and systematically characterized by a series of physicochemical studies. Sedimentation and gel filtration experiments showed that the 6.6 S holoenzyme had a Stokes radius (a) of 5.7 nm and was dissociated into native 4.8 S cAMP-binding (a = 4.5 nm) and 3.2 S catalytic (a = 2.6 nm) subunits. A minimum subunit molecular weight of 48,000 was established for the regulatory subunit by photoaffinity labeling with 8-azido[32P]cAMP, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and autoradiography. These data suggest an asymmetric tetrameric (R2C2) structure (Mr approximately equal to 160,000) for the membrane-derived enzyme. Membrane-derived protein kinase was characterized as a type I enzyme on the basis of its R subunit molecular weight, pI values (R, 4.9; holoenzyme, 5.75 and 5.95), dissociation by 0.5 M NaCl and 50 microgram/ml of protamine, 20-fold reduced affinity for cAMP in the presence of 0.3 mM MgATP, elution from DEAE-cellulose at low ionic strength, and kinetic and cAMP-binding properties. The physicochemical properties of the membrane protein kinase closely parallel the characteristics of erythrocyte cytosolic protein kinase I but are clearly dissimilar from those of the soluble type II enzyme. Moreover, regulatory subunits of the membrane-associated and cytosolic type I kinases were indistinguishable in size, shape, subunit molecular weight, charge, binding and reassociation properties, and peptide maps of the photoaffinity-labeled cAMP-binding site, suggesting a high degree of structural and functional homology in this pair of enzymes. In view of the predominant occurrence of particulate type II protein kinases in rabbit heart and bovine cerebral cortex, the present results suggest that the distribution of membrane-associated protein kinases may be tissue- or species-specific, but not isoenzyme-specific.  相似文献   

15.
A 75Se-labeled hydrogenase was purified to near homogeneity from extracts of Methanococcus vannielii cells grown in the presence of [75Se]selenite. The molecular weight of the enzyme was estimated as 340,000 by gel filtration. The enzyme tends to aggregate and occurs also as a larger protein species (Mr = 1.3 x 10(6)). The same phenomenon was observed on native gel electrophoretic analysis. Hydrogenase activity exhibited by these two protein bands was proportional to protein and 75Se content. Both molecular species reduce the natural cofactor, 8-hydroxy-5-deazaflavin, and tetrazolium dyes with molecular hydrogen. Sodium dodecyl sulfate-gel electrophoresis of 75Se-labeled enzyme showed that 75Se is present exclusively in an Mr = 42,000 subunit. A value of 3.8 g atoms of selenium/mol of enzyme (Mr = 340,000) was determined by atomic absorption analysis. The chemical form of selenium in the enzyme was shown to be selenocysteine. This was identified as the [75Se]carboxymethyl and [75Se]carboxyethyl derivatives in acid hydrolysates of alkylated 75Se-labeled protein. The hydrogenase is extremely oxygen-sensitive but can be reactivated by incubation with molecular hydrogen and dithiothreitol.  相似文献   

16.
The synthesis of nitric oxide (.NO) from L-arginine has been demonstrated in a number of cell types and functions either as a cell signaling agent or as a key component of the cell-mediated immune response. Both constitutive and inducible activities have been described. Herein we report the purification of inducible .NO synthase (EC 1.14.23) from activated murine macrophages using a two-column procedure. Crude 100,000 x g supernatant was passed through a 2'-5'-ADP-Sepharose 4B affinity column followed by a DEAE-Bio-Gel A anion exchange column. The .NO synthase ran as a band of Mr = 130,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Gel filtration experiments using a Superose 6 HR 10/30 column estimated the native molecular weight to be 260 +/- 30 kDa, indicating that the native enzyme exists as a dimer. Activity was dependent upon L-arginine (Km = 16 +/- 1 microM at 37 degrees C and pH 7.5) and NADPH. Both (6R)-tetrahydro-L-biopterin and FAD enhanced activity, whereas Mg2+ and FMN had no effect on activity. Fluorescence studies demonstrated the presence of one bound FAD and one bound FMN per subunit.  相似文献   

17.
Hemocyanin from the blue crab, Callinectes sapidus, sediments at 25.7 S and has a native molecular weight of 940 000 +/- 20 000. Under solution conditions of increased pH (approximately 10) or ionic strength, the native molecule dissociates to a 17 S species. Reversal of this dissociation was unsuccessful. At pH 10 and with the removal of Mg2+, the 17 S species reversibly dissociates to form a subunit species which sediments at 6 S. A comparison of the circular dichroic spectra of the 25.7 S and 6 S hemocyanins suggests that little happens to the structural integrity of the polypeptide backbone upon the two dissociations. Molecular weight estimations under reducing and denaturing conditions indicate that the 6 S hemocyanin species represents the constituent polypeptide chain of the protein molecule. Chemical analysis suggests the presence of a small amount, less than 3%, of carbohydrate bound to the polypeptide chain. Electrophoresis of the hemocyanin in the presence of sodium dodecyl sulfate or urea reveals two major electrophoretic species of either slightly different chemical composition or slightly different polypeptide chain length.  相似文献   

18.
Heavy riboflavin synthase of Bacillus subtilis was purified by a simplified procedure. The enzyme is a complex protein containing about 3 alpha-subunits (23.5 X 10(3) Mr) and 60 beta-subunits (16 X 10(3) Mr). The 10(6) Mr protein dissociates upon exposure to pH values above neutrality. Phosphate ions increase the stability at neutral pH. The dissociation induced by exposure of the enzyme to elevated pH is reversible in phosphate buffer at neutral pH. The stability of the enzyme at elevated pH values is greatly enhanced by the substrate analogue, 5-nitroso-6-ribitylamino-2,4(1H, 3H)-pyrimidinedione. Electron micrographs of negatively stained enzyme specimens show spherical particles with a diameter of 15.6 nm. Various immunochemical methods show that the alpha-subunits are not accessible to antibodies in the native molecule. The native enzyme is not precipitated by anti-alpha-subunit serum, and riboflavin synthase activity is not inhibited by the serum. However, these tests become positive at pH values that lead to dissociation of the enzyme. Subsequent to dissociation of the native enzyme at elevated pH values, the beta-subunits form high molecular weight aggregates. These aggregates form a complex mixture of different molecular species, which sediment at velocities of about 48 S and 70 S. The average molecular weight was approximately 5.6 X 10(6). Homogeneous preparations have not been obtained. Electron micrographs show hollow, spherical vesicles with diameters of about 29 nm. The substrate analogue 5-nitroso-6-ribitylamino-2,4(1H, 3H)-pyrimidinedione can induce the reaggregation of isolated beta-subunits with formation of smaller molecules, which are structurally similar to native riboflavin synthase. A homogeneous preparation of reaggregated molecules was obtained by renaturation of beta-subunits from 6.4 M-urea in the presence of the ligand. The sedimentation velocity of this aggregate is about 7% smaller than that of the native enzyme. The molecular weight is 96 X 10(4). Electron micrographs show spherical particles with a diameter of about 17.4 nm. Inspection of the micrographs tentatively suggests the presence of a central cavity. It appears likely that these molecules, which are devoid of alpha-subunits, have the same number and spatial arrangement of beta-subunits as the native enzyme. All data are consistent with the hypothesis that the native enzyme consists of a central core of alpha-subunits surrounded by a capsid-like arrangement of beta-subunits. The number of beta-subunits and the shape of the protein suggest a capsid-like arrangement of beta-subunits.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The effects of pH, Mn2+ and Ca2+ and urea denaturation on the interaction of monolayers of concanavalin A on saline with the polysaccharide dextran B-1355 and the monosaccharides methyl α-d-mannopyranoside and d-galactose have been investigated. Infrared absorption spectra of compressed monolayers of the protein and the protein-dextran complex coated on a germanium plate have been obtained by means of attenuated total reflectance spectroscopy. Except in one case of denaturation, the amide I absorption of concanavalin A peaked around 1631 cm?1, indicating a predominance of the β-pleated sheet conformation, in agreement with its secondary structure in the solution and crystalline phases. The contribution to the absorbance of the concanavalin A-dextran films at 3300 cm?1 due to absorption by the O-H stretching modes of the polysaccharide is a measure of its binding. Increasing the pH from 6.1 to 7.5 appreciably reduced the dextran binding, at pH 9.3 the binding was zero. Adding 1 mM Mn2+ and Ca2+ to the subphase at pH 7.5 restored both the dextran binding and the affinity of concanavalin A for methyl α-d-mannopyranoside to that of the native protein at pH 6.1. At this latter pH, the weak binding of dextran to monolayers of demetallized concanavalin A (apo-concanavalin A) was also restored to that for the native molecule by the addition of these divalents. This indicates the requirement of concanavalin A for these ions to maintain the integrity of the saccharide-binding site. The loss of dextran binding with urea denaturation was also observed. These results parallel those for solutions of the protein, indicating the validity of the monolayer system for the study of these interactions.  相似文献   

20.
In the preceding paper (Aiyer, R. A. (1983) J. Biol. Chem. 258, 14992-14999), the hydrodynamic properties of insulin receptors from turkey erythrocyte plasma membranes solubilized in nondenaturing detergents (Triton X-100 and sodium deoxycholate) were characterized. Two specific insulin-binding species are observed after velocity sedimentation in linear sucrose density gradients: peak II whose protein molecular weight (Mp) is 180,000 +/- 45,000 and its disulfide-linked dimer, peak I (Mp, 355,000 +/- 65,000). This paper describes the subunit composition of these species determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Insulin receptors were covalently attached to [125I]iodoinsulin with disuccinimidyl suberate. After solubilization in Triton X-100 or deoxycholate, peaks I and II were separated by sedimentation and subjected to SDS-PAGE; the constituent polypeptides were then identified by autoradiography. Under reducing conditions, both peaks I and II yield a major band of apparent molecular weight (Mapp) of 135,000; this band most likely represents the insulin-binding subunit (alpha). Minor bands of lower molecular weight are also seen whose significance is not entirely obvious. Under nonreducing conditions, peak I yields bands at Mapp = 230,000 and at greater than 240,000, while peak II yields bands at Mapp = 120,000 and 200,000. When these bands were cut out of the gel and subjected to SDS-PAGE following reduction with 10% beta-mercaptoethanol, all of them produced a single band that migrated with Mapp = 135,000. These results indicate that the alpha subunit is linked by disulfide bonds to at least one more subunit (beta). It is also apparent that the alpha subunit travels with higher mobility (Mapp = 120,000) under nonreducing conditions, suggesting the presence of intrachain disulfide bonds. Thus, peak II has a minimum subunit composition of alpha beta, where alpha is the insulin-binding subunit with a minimum Mr = 120,000-135,000 and beta has a minimum Mr = 80,000-90,000. And peak I, the disulfide-linked dimer of peak II, has a minimum subunit composition of alpha 2 beta 2. These results were further confirmed by cross-linking of protein subunits with glutaraldehyde, an (alpha, omega)-dialdehyde that reacts with amino groups. Within the limits of error, these molecular weights are in agreement with those estimated from the hydrodynamic properties of the detergent-solubilized, native receptor species reported in the preceding paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号