首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reductive activation of carcinogenic Cr(VI) is required for the induction of DNA damage and mutations. Here, we examined the formation of Cr-DNA adducts in the reactions of Cr(VI) with its dominant biological reducer, vitamin C (ascorbate). Reductive conversion of Cr(VI) to Cr(III) by ascorbate produced stable Cr-DNA adducts, of which approximately 25% constituted ascorbate-Cr(III)-DNA cross-links. No evidence was found for the involvement of Cr(V) or Cr(IV) intermediates in the formation of either binary or ternary adducts. The cross-linking reaction was consistent with the attack of DNA by transient Cr(III)-ascorbate complexes. The yield of Cr(III)-DNA adducts was similar on dsDNA and AGT, ACT, or CT oligonucleotides and was strongly inhibited by Mg(2+), suggesting predominant coordination of Cr(III) to DNA phosphate oxygens. We also detected cross-linking of ascorbate to DNA in Cr(VI)-exposed human lung A549 cells that were preincubated with dehydroascorbic acid to create normal levels of intracellular ascorbate. Ascorbate-Cr-DNA cross-links accounted for approximately 6% of the total Cr-DNA adducts in A549 cells. Shuttle-vector experiments showed that ascorbate-Cr-DNA cross-links were mutagenic in human cells. Our results demonstrate that in addition to reduction of Cr(VI) to DNA-reactive Cr(III), vitamin C contributes to the genotoxicity of Cr(VI) via a direct chemical modification of DNA. The absence of Asc in A549 and other human cultured cells indicates that cells maintained under the usual in vitro conditions lack the most important reducing agent for Cr(VI) and would primarily display slow thiol-dependent activation of Cr(VI).  相似文献   

2.
Microorganisms can reduce toxic chromate to less toxic trivalent chromium [Cr(III)]. Besides Cr(OH)3 precipitates, some soluble organo-Cr(III) complexes are readily formed upon microbial, enzymatic, and chemical reduction of chromate. However, the biotransformation of the organo-Cr(III) complexes has not been characterized. We have previously reported the formation of a nicotinamide adenine dinucleotide (NAD+)-Cr(III) complex after enzymatic reduction of chromate. Although the NAD+-Cr(III) complex was stable under sterile conditions, microbial cells were identified as precipitates in a non-sterile NAD+-Cr(III) solution after extended incubation. The most dominant bacterium PTX1 was isolated and assigned to Leifsonia genus by phylogenetic analysis of 16S rRNA gene sequence. PTX1 grew slowly on NAD+ with a doubling time of 17 h, and even more slowly on the NAD+-Cr(III) complex with an estimated doubling time of 35 days. The slow growth suggests that PTX1 passively grew on trace NAD+ dissociated from the NAD+-Cr(III) complex, facilitating further dissociation of the complex and formation of Cr(III) precipitates. Thus, organo-Cr(III) complexes might be an intrinsic link of the chromium biogeochemical cycle; they can be produced during chromate reduction and then further mineralized by microorganisms.  相似文献   

3.
This paper reports on the experimental data supporting an essential role of extra-cellular reduction in chromate detoxification by baker’s and non-conventional yeasts. A decrease of chromate content in the yeast culture coincides with an increase of Cr(III) content in extra-cellular liquid. At these conditions, cell-bound chromium level was insignificant and a dominant part of extra-cellular Cr(III) species was detected in the reaction with chromazurol S only after mineralization of the cell-free samples. This phenomenon of chromium “disappearance” can be explained by the formation of Cr(III) stable complexes with extra-cellular yeast-secreted components which are “inaccessible” in the reaction with chromazurol S without mineralization. It was shown that increasing sucrose concentration in a growth medium resulted in an increase of chromate reduction. A strong inhibition of chromate reduction by 0.25 mM sodium azide, a respiration inhibitor and a protonophore, testifies that extra-cellular chromate detoxification depends on energetic status of the yeast cells. It was shown that Cr(III)-biochelates produced in extra-cellular medium are of a different chemical nature and can be separated into at least two components by ion-exchange chromatography on anionit Dowex 1x10. A total yield of the isolated Cr(III)-biocomplexes is approximately 65 % (from initial level of chromate) with a relative molar ratio 8:5.  相似文献   

4.
Reduction of carcinogenic Cr(VI) by vitamin C generates ascorbate-Cr(III)-DNA cross-links, binary Cr(III)-DNA adducts, and can potentially cause oxidative DNA damage by intermediate reaction products. Here, we examined the mutational spectrum and the importance of different forms of DNA damage in genotoxicity and mutagenicity of Cr(VI) activated by physiological concentrations of ascorbate. Reduction of Cr(VI) led to a dose-dependent formation of both mutagenic and replication-blocking DNA lesions as detected by propagation of the pSP189 plasmids in human fibroblasts. Disruption of Cr-DNA binding abolished mutagenic responses and normalized the yield of replicated plasmids, indicating that Cr-DNA adducts were responsible for both mutagenicity and genotoxicity of Cr(VI). The absence of DNA breaks and abasic sites confirmed the lack of a significant production of hydroxyl radicals and Cr(V)-peroxo complexes in Cr(VI)-ascorbate reactions. Ascorbate-Cr(III)-DNA cross-links were much more mutagenic than smaller Cr(III)-DNA adducts and accounted for more than 90% of Cr(VI) mutagenicity. Ternary adducts were also several times more potent in the inhibition of replication than binary complexes. The Cr(VI)-induced mutational spectrum consisted of an approximately equal number of deletions and G/C-targeted point mutations (51% G/C --> T/A and 30% G/C --> A/T). In Escherichia coli cells, Cr(VI)-induced DNA adducts were only highly genotoxic but not mutagenic under either normal or SOS-induced conditions. Lower toxicity and high mutagenicity of ascorbate-Cr(III)-DNA adducts in human cells may result from the recruitment of an error-prone bypass DNA polymerase(s) to the stalled replication forks. Our results suggest that phosphotriester-type DNA adducts could play a more important role in human than bacterial mutagenesis.  相似文献   

5.
Bioreduction of Cr(VI) to less toxic Cr(III) by chromate-reducing bacteria has offered an ecological and economical option for chromate detoxification. The present study reports isolation of chromate-resistant bacterial strain Cr8 from chromium slag, identified as Pseudomonas stutzeri, based on 16S rRNA gene sequencing and their potential use in Cr(VI) reduction. The reduced product associated with bacterial cell was characterized by scanning electron microscopy–energy-dispersive x-ray spectroscopy (SEM-EDS) and x-ray diffraction (XRD) analyses. At initial concentrations of 100 and 200 mg L?1 Cr(VI), P. stutzeri Cr8 reduced Cr(VI) completely within 24 h, whereas it reduced almost 1000 mg L?1 Cr(VI) at the end of 120 h. Further, soil column leaching experiments were performed and found that bacterial cells reduced Cr(VI) leachate at faster rate that almost disappeared at the end of 168 h. The leachate precipitates also revealed efficient chromate bioreduction. The remediation process utilizing P. stutzeri could be considered as a viable alternative to reduce Cr(VI) contamination, especially emanating from the overburden dumps of chromite ores and mine drainage.  相似文献   

6.
The carcinogen chromate is efficiently taken up and reduced to chromium(III) compounds by various biological systems. To test the possible DNA damage induced in the course of chromium(VI) reduction, we used a combination of chromate with the reductant glutathione (GSH) as well as a green complex of chromium(V), which is formed in the reaction of chromate with GSH. The combination of chromate and glutathione was found to cause single-strand breaks in supercoiled circular DNA of the bacteriophage PM2. The green chromium(V) complex Na4(GSH)4Cr(V).8H2O, prepared from chromate and glutathione, also cleaved supercoiled PM2 DNA. No DNA-degrading effects were observed with either chromate or the final product of the reaction with GSH, a purple anionic chromium(III) GSH complex. The nature of the buffering agents revealed a strong influence on the extent of DNA strand breaks produced by chromate and GSH. A variation of the GSH concentration in the reaction with chromate and PM2 DNA, performed in sodium phosphate-buffered solutions showed an initial increase in the number of strand breaks at GSH concentrations up to 1 mM followed by a decline at higher GSH concentrations. Since neither chromate, when administered individually, nor the final product of chromium(VI) reduction, the purple chromium(III) GSH complex, produced any detectable DNA cleavage, the critical steps leading to DNA strand breaks occur in the course of the conversion of chromium(VI) to chromium(III) by GSH, the most abundant intracellular low molecular thiol. Moreover, the demonstration that DNA cleavage is induced in the presence of the chromium(V) complex identifies chromium(V) as the oxidation state of the metal, which is involved in the steps leading to DNA-damaging effects of chromate.  相似文献   

7.
The induction of genotoxicity by Cr (VI) is dependent on its reductive activation inside the cell. Our recent studies have found that reduction of Cr (VI) by cysteine resulted in the formation of mutagenic Cr (III)-DNA adducts in the absence of oxidative DNA damage. In this work, we examined the formation of oxidative and Cr (III)-dependent types of DNA damage under a broader range of Cr (VI) and cysteine concentrations and investigated a potential role of this reducer in intracellular metabolism of Cr (VI). Peripheral lymphocytes from unexposed humans had 7.8-fold excess of glutathione over cysteine, whereas lymphocytes from stainless steel welders contained only 3 times higher amount of glutathione (p = 0.0009) which was entirely caused by the decrease in the concentration of glutathione. A strong correlation (r = 0.72) between the levels of both thiols was found in lymphocytes from controls. The number of DNA-protein crosslinks in lymphocytes from welders was 4.1 times higher than among controls, indicating the presence of Cr (VI)-dependent DNA damage. The average rate of Cr (VI) reduction by cysteine was approximately 5 times faster than that by glutathione. Higher reduction rate combined with the decrease in the intracellular concentration of glutathione should make cysteine a predominant Cr (VI)-reducing thiol in lymphocytes of welders. Analysis of the initial rates of Cr (VI) reduction by different concentrations of cysteine suggested the presence of one- and two-electron pathways, with one-electron mechanism dominating in the physiological range of concentrations. There was no detectable formation of DNA breaks or abasic sites under a broad range of Cr (VI) and cysteine concentrations, resulting in up to 68-fold differences in the rates of reduction and the production of as many as 3 Cr (III)-DNA adducts per 10 bp. The reactions with slow reduction rates (low concentrations of cysteine) led to the most extensive formation of Cr (III)DNA adducts. In summary, these results further establish Cr (III)-DNA adducts as the major form of DNA damage resulting from Cr (VI) metabolism by cysteine. The role of cysteine in reduction of Cr (VI) becomes more significant under conditions of occupational exposure to Cr (VI)-containing welding fumes.  相似文献   

8.
Mechanisms of bacterial resistance to chromium compounds   总被引:1,自引:0,他引:1  
Chromium is a non-essential and well-known toxic metal for microorganisms and plants. The widespread industrial use of this heavy metal has caused it to be considered as a serious environmental pollutant. Chromium exists in nature as two main species, the trivalent form, Cr(III), which is relatively innocuous, and the hexavalent form, Cr(VI), considered a more toxic species. At the intracellular level, however, Cr(III) seems to be responsible for most toxic effects of chromium. Cr(VI) is usually present as the oxyanion chromate. Inhibition of sulfate membrane transport and oxidative damage to biomolecules are associated with the toxic effects of chromate in bacteria. Several bacterial mechanisms of resistance to chromate have been reported. The best characterized mechanisms comprise efflux of chromate ions from the cell cytoplasm and reduction of Cr(VI) to Cr(III). Chromate efflux by the ChrA transporter has been established in Pseudomonas aeruginosa and Cupriavidus metallidurans (formerly Alcaligenes eutrophus) and consists of an energy-dependent process driven by the membrane potential. The CHR protein family, which includes putative ChrA orthologs, currently contains about 135 sequences from all three domains of life. Chromate reduction is carried out by chromate reductases from diverse bacterial species generating Cr(III) that may be detoxified by other mechanisms. Most characterized enzymes belong to the widespread NAD(P)H-dependent flavoprotein family of reductases. Several examples of bacterial systems protecting from the oxidative stress caused by chromate have been described. Other mechanisms of bacterial resistance to chromate involve the expression of components of the machinery for repair of DNA damage, and systems related to the homeostasis of iron and sulfur.  相似文献   

9.
The ability of sulphate-reducing bacterial biofilms to reduce hexavalent chromium (Cr(VI)) to insoluble Cr(III), a process of environmental and biotechnological significance, was investigated. The reduction of chromate to insoluble form has been quantified and the effects of chromate on the carbon source utilization and sulphate-reducing activity of the bacterial biofilms evaluated. Using lactate as the carbon/energy source and in the presence of sulphate, reduction of 500 micromol l-1 Cr(VI) was monitored over a 48-h period where 88% of the total chromium was removed from solution. Mass balance calculations showed that ca 80% of the total chromium was precipitated out of solution with the bacterial biofilm retaining less than 10% of the chromium. Only ca 12% of the chromate added was not reduced to insoluble form. Although Cr(VI) did not have a significant effect on C source utilization, sulphate reduction was severely inhibited by 500 micromol-1 Cr(VI) and only ca 10% of the sulphate reducing activity detected in control biofilms occurred in the presence of Cr(VI). Low levels of sulphide were also produced in the presence of chromate, with control biofilms producing over 10-times more sulphide than Cr(VI)-exposed biofilms. Sulphide- or other chemically-mediated Cr(VI) reduction was not detected. The biological mechanism of Cr(VI) reduction is likely to be similar to that found in other sulphate-reducing bacteria.  相似文献   

10.
Intracellular reduction of carcinogenic Cr(VI) leads to the extensive formation of Cr(III)-DNA phosphate adducts. Repair mechanisms for chromium and other DNA phosphate-based adducts are currently unknown in human cells. We found that nucleotide excision repair (NER)-proficient human cells rapidly removed chromium-DNA adducts, with an average t((1/2)) of 7.1 h, whereas NER-deficient XP-A, XP-C, and XP-F cells were severely compromised in their ability to repair chromium-DNA lesions. Activation of NER in Cr(VI)-treated human fibroblasts or lung epithelial H460 cells was manifested by XPC-dependent binding of the XPA protein to the nuclear matrix, which was also observed in UV light-treated (but not oxidant-stressed) cells. Intracellular replication of chromium-modified plasmids demonstrated increased mutagenicity of binary Cr(III)-DNA and ternary cysteine-Cr(III)-DNA adducts in cells with inactive NER. NER deficiency created by the loss of XPA in fibroblasts or by knockdown of this protein by stable expression of small interfering RNA in H460 cells increased apoptosis and clonogenic death by Cr(VI), providing genetic evidence for the role of monofunctional chromium-DNA adducts in the toxic effects of this metal. The rate of NER of chromium-DNA adducts under saturating conditions was calculated to be approximately 50,000 lesions/min/cell. Because chromium-DNA adducts cause only small changes in the DNA helix, rapid repair of these modifications in human cells indicates that the presence of major structural distortions in DNA is not required for the efficient detection of the damaged sites by NER proteins in vivo.  相似文献   

11.
Intracellular chromium reduction   总被引:9,自引:0,他引:9  
Two steps are involved in the uptake of Cr(VI): (1) the diffusion of the anion CrO4(2-) through a facilitated transport system, presumably the non-specific anion carrier and (2) the intracellular reduction of Cr(VI) to Cr(III). The intracellular reduction of Cr(VI), keeping the cytoplasmic concentration of Cr(VI) low, facilitates accumulation of chromate from extracellular medium into the cell. In the present paper, a direct demonstration of intracellular chromium reduction is provided by means of electron paramagnetic (spin) resonance (EPR) spectroscopy. Incubation of metabolically active rat thymocytes with chromate originates a signal which can be attributed to a paramagnetic species of chromium, Cr(V) or Cr(III). The EPR signal is originated by intracellular reduction of chromium since: (1) it is observed only when cells are incubated with chromate, (2) it is present even after extensive washings of the cells in a chromium-free medium; (3) it is abolished when cells are incubated with drugs able to reduce the glutathione pool, i.e., diethylmaleate or phorone; and (4) it is abolished when cells are incubated in the presence of a specific inhibitor of the anion carrier, 4-acetamido-4'-isothiocyanatostilbene-2-2'-disulfonic acid.  相似文献   

12.
Aims:  To investigate the genetic basis of Cr(VI) resistance and its reduction to Cr(III) in indigenous bacteria isolated from tannery effluent.
Methods and Results:  Four bacteria resistant to high Cr(VI) levels were isolated and identified as Bacillus spp. Their Cr(VI) reduction ability was tested. To assess the genetic basis of Cr(VI) resistance and reduction, plasmid transfer and curing studies were performed. Among all, B. brevis was resistant to 180 μg Cr(VI) ml−1 and showed the greatest degree of Cr(VI) reduction (75·8%) within 28 h and its transformant was resistant to 160 μg Cr(VI) ml−1 and reduced 69·9% chromate. It harboured a stable 18 kb plasmid DNA. Transfer and curing studies revealed that both the chromate resistance and reduction were plasmid mediated. The presence of other metal cations did not have any significant effect on Cr(VI) bioreduction.
Conclusions:  Bacillus brevis was resistant to elevated Cr(VI) levels and may potentially reduce it in short time from an environment where other metal ions are also present in addition to chromium ions. The strain tested shows a positive correlation between genetic basis of Cr(VI) resistance and reduction.
Significance and Impact of the Study:  To our knowledge, this is the first study on the genetic correlation between chromium resistance and reduction in bacteria. Such strains may potentially be useful in biotechnological applications and in situ Cr(VI) bioremediation.  相似文献   

13.
Cr(VI) (chromate) is a toxic, soluble environmental contaminant. Bacteria can reduce chromate to the insoluble and less toxic Cr(III), and thus chromate bioremediation is of interest. Genetic and protein engineering of suitable enzymes can improve bacterial bioremediation. Many bacterial enzymes catalyze one-electron reduction of chromate, generating Cr(V), which redox cycles, generating excessive reactive oxygen species (ROS). Such enzymes are not appropriate for bioremediation, as they harm the bacteria and their primary end product is not Cr(III). In this work, the chromate reductase activities of two electrophoretically pure soluble bacterial flavoproteins--ChrR (from Pseudomonas putida) and YieF (from Escherichia coli)-were examined. Both are dimers and reduce chromate efficiently to Cr(III) (kcat/Km = approximately 2 x 10(4) M(-1) x s(-1)). The ChrR dimer generated a flavin semiquinone during chromate reduction and transferred >25% of the NADH electrons to ROS. However, the semiquinone was formed transiently and ROS diminished with time. Thus, ChrR probably generates Cr(V), but only transiently. Studies with mutants showed that ChrR protects against chromate toxicity; this is possibly because it preempts chromate reduction by the cellular one-electron reducers, thereby minimizing ROS generation. ChrR is thus a suitable enzyme for further studies. During chromate reduction by YieF, no flavin semiquinone was generated and only 25% of the NADH electrons were transferred to ROS. The YieF dimer may therefore be an obligatory four-electron chromate reducer which in one step transfers three electrons to chromate and one to molecular oxygen. As a mutant lacking this enzyme could not be obtained, the role of YieF in chromate protection could not be directly explored. The results nevertheless suggest that YieF may be an even more suitable candidate for further studies than ChrR.  相似文献   

14.
The influence of Cr(III) complexes with ascorbic acid, cysteine and glutathione on DNA has been studied spectrophotometrically and chromatographically. The toxic and genotoxic activities of these complexes were also investigated. It was found that these complexes bind to DNA weaker than hexaaqua Cr(III) complexes. It could be explained through the greater strength of the bi- and tridentate ligands coordinated to chromium in comparison to water molecules. The formation of DNA-DNA intermolecular bonds and DNA interstrand cross-linking has been also observed. These complexes were found to be non-toxic and non-genotoxic in the bacterial test.  相似文献   

15.
Intracellular reduction of carcinogenic Cr(VI) generates Cr-DNA adducts formed through the coordination of Cr(III) to DNA phosphates (phosphotriester-type adduct). Here, we examined the role of Cr(III)-DNA adducts in mutagenesis induced by metabolism of Cr(VI) with cysteine. Reduction of Cr(VI) caused a strong oxidation of 2', 7'-dichlorofluoroscin (DCFH) and extensive Cr-DNA binding but no DNA breakage. Cr-DNA adducts induced unwinding of supercoiled plasmids and structural distortions in the DNA helix as detected by decreased ethidium bromide binding. Propagation of Cr-treated pSP189 plasmids in human fibroblasts led to a dose-dependent formation of the supF mutants and inhibition of replication. Blocking of Cr(III)-DNA binding by occupation of DNA phosphates with Mg(2+) or by sequestration of Cr(III) by inorganic phosphate or EDTA eliminated mutagenic responses and restored a normal yield of replicated plasmids. Dissociation of Cr(III) from DNA by a phosphate-based reversal procedure returned mutation frequency to background levels. The mutagenic responses at the different phases of the reduction reaction were unrelated to the amount of reduced Cr(VI) but reflected the number and the spectrum of Cr(III)-DNA adducts that were formed. Ternary cysteine-Cr(III)-DNA adducts were approximately 4-5 times more mutagenic than binary Cr(III)-DNA adducts. Although intermediate reaction products (CrV/IV, thiyl radicals) were capable of oxidizing DCFH, they were insufficiently reactive to damage DNA. Single-base substitutions at G/C pairs were the predominant type of Cr-induced mutations. The majority of mutations occurred at the sites where G had adjacent purine in the 3' or 5' position. Overall, our results present the first evidence that Cr(III)-DNA adducts play the dominant role in the mutagenicity caused by the metabolism of Cr(VI) by a biological reducing agent.  相似文献   

16.
Genotoxic activity of hexavalent chromium (chromate) results from its reductive activation inside the cell. Cr(VI) metabolism in vivo is primarily driven by ascorbate (Asc) but in cultured cells by glutathione (GSH). Given the common use of cultured cells for mechanistic studies, it is important to establish whether Cr(VI) activated by Asc and GSH displays the same genotoxic properties. Using 2',7' dichlorofluorescin (DCFH) as a redox sensitive probe, we found that Asc-dependent reduction of Cr(VI) in vitro under physiological conditions generated 25-80 times lower yields of oxidants compared to GSH. When both reducers were present, Asc dominated Cr(VI) metabolism and inhibited DCFH oxidation. Consistent with the findings in defined chemical reactions, restoration of physiological levels of Asc in human lung H460 cells led to the loss of their hypersensitivity to clonogenic killing by Cr(VI) in the presence of methoxyamine, which inhibits base excision repair of oxidative DNA damage. Despite suppressed oxidative damage, Asc-containing cells formed a large number of DNA double-strand breaks after exposure to a dose of Cr(VI) corresponding to the drinking water standard of 100 ppb. Our results indicate that Asc-driven metabolism of Cr(VI) shifts its genotoxicity toward nonoxidative mechanisms.  相似文献   

17.
Some hexavalent chromium (Cr(VI))-containing compounds are human lung carcinogens. While ample information is available on the genetic lesions produced by Cr, surprisingly little is known regarding the cellular mechanisms involved in the removal of Cr-DNA adducts. Nucleotide excision repair (NER) is a highly versatile pathway that is responsive to a variety of DNA helix-distorting lesions. Binary Cr-DNA monoadducts do not produce a significant degree of helical distortion. However, these lesions are unstable due to the propensity of Cr(III) to form DNA adducts (DNA interstrand crosslinks, DNA-protein/amino acid ternary adducts) which may serve as substrates for NER. Therefore, the focus of this study was to determine the role of NER in the processing of Cr-DNA damage using normal (CHO-AA8) and NER-deficient [UV-5 (XP-D); UV-41 (ERCC4/XP-F)] hamster cells. We found that both UV-5 and UV-41 cells exhibited an increased sensitivity towards Cr(VI)-induced clonogenic lethality relative to AA8 cells and were completely deficient in the removal of Cr-DNA adducts. In contrast, repair-complemented UV-5 (expressing hamster XPD) and UV-41 (expressing human ERCC4) cells exhibited similar clonogenic survival and removed Cr-DNA adducts to a similar extent as AA8 cells. In order to extend these findings to the molecular level, we examined the ability of Cr(III)-damaged DNA to induce DNA repair synthesis in cell extracts. Repair synthesis was observed in reactions using extracts derived from AA8, or repair-complemented, but not NER-deficient cells. Cr(III)-induced repair resynthesis was sensitive to inhibition by the DNA polymerase δ/ε inhibitor, aphidicolin, but not 2′,3′-dideoxythymidine triphosphate (ddTTP), a polymerase β inhibitor. These results collectively suggest that NER functions in the protection of cells from Cr(VI) lethality and is essential for the removal of Cr(III)-DNA adducts. Consequently, NER may represent an important mechanism for preventing Cr(VI)-induced mutagenesis and neoplastic transformation.  相似文献   

18.
Carcinogenic chromates induce DNA single-strand breaks (SSB) that are detectable by conventional alkali-based assays. However, the extent of direct breakage has been uncertain because excision repair and hydrolysis of Cr-DNA adducts at alkaline pH also generate SSB. We examined mechanisms of SSB production during chromate reduction by glutathione (GSH) and assessed the significance of these lesions in cells using genetic approaches. Cr(VI) reduction was biphasic and the formation of SSB occurred exclusively during the slow reaction phase. Catalase or iron chelators completely blocked DNA breakage, as did the use of GSH purified by a modified Chelex procedure. Thus, the direct intermediates of GSH-chromate reactions were unable to cause SSB unless activated by H2O2. SSB repair-deficient XRCC1(-/-) and proficient XRCC1+ EM9 cells had identical survival at doses causing up to 60% clonogenic death and accumulation of 1 mM Cr(VI). However, XRCC1(-/-) cells displayed higher lethality in the more toxic range and the depletion of GSH made them hypersensitive even to moderate doses. Elevation of cellular catalase or GSH levels eliminated survival differences between XRCC1(-/-) and XRCC1+ cells. In summary, formation of toxic SSB in cells occurs at relatively high chromate doses, requires H2O2, and is suppressed by high GSH concentrations.  相似文献   

19.
Some hexavalent chromium [Cr(VI)]-containing compounds are lung carcinogens. Once within cells, Cr(VI) is reduced to trivalent chromium [Cr(III)] which displays an affinity for both DNA bases and the phosphate backbone. A diverse array of genetic lesions is produced by Cr including Cr-DNA monoadducts, DNA interstrand crosslinks (ICLs), DNA-Cr-protein crosslinks (DPCs), abasic sites, DNA strand breaks and oxidized bases. Despite the large amount of information available on the genotoxicity of Cr, little is known regarding the molecular mechanisms involved in the removal of these lesions from damaged DNA. Recent work indicates that nucleotide excision repair (NER) is involved in the processing of Cr-DNA adducts in human and rodent cells. In order to better understand this process at the molecular level and begin to identify the Cr-DNA adducts processed by NER, the incision of CrCl(3) [Cr(III)]-damaged plasmid DNA was studied using a thermal-resistant UvrABC NER endonuclease from Bacillus caldotenax (Bca). Treatment of plasmid DNA with Cr(III) (as CrCl(3)) increased DNA binding as a function of dose. For example, at a Cr(III) concentration of 1 microM we observed approximately 2 Cr(III)-DNA adducts per plasmid. At this same concentration of Cr(III) we found that approximately 17% of the plasmid DNA contained ICLs ( approximately 0.2 ICLs/plasmid). When plasmid DNA treated with Cr(III) (1 microM) was incubated with Bca UvrABC we observed approximately 0.8 incisions/plasmid. The formation of endonuclease IV-sensitive abasic lesions or Fpg-sensitive oxidized DNA bases was not detected suggesting that the incision of Cr(III)-damaged plasmid DNA by UvrABC was not related to the generation of oxidized DNA damage. Taken together, our data suggest that a sub-fraction of Cr(III)-DNA adducts is recognized and processed by the prokaryotic NER machinery and that ICLs are not necessarily the sole lesions generated by Cr(III) that are substrates for NER.  相似文献   

20.
AIMS: This study assessed the plant growth-promoting ability of the bacterial strains Ochrobactrum intermedium (isolate CrT-1) and Bacillus cereus (isolate S-6). METHODS AND RESULTS: Two chromium resistant bacterial strains isolated from chromium-contaminated wastewater and soils were identified as O. intermedium CrT-1 and B. cereus S-6. These strains were inoculated on seeds of mungbean Vigna radiata var NM-92, which were germinated and grown under chromate salts (300 microg ml(-1) of CrCl(3)or K(2)CrO(4)). The data show that Cr(VI) was more toxic because of its better availability to plants roots when compared with Cr(III). The major part of Cr(VI) supplied to the seedlings was reduced to Cr(III) in the rhizosphere by the bacterial strains, thus lowering the toxicity of chromium to seedlings. CONCLUSIONS: Strains have significant Cr(VI) resistance and reduction potential and have ability to enhance mungbean plant growth under chromium stress. SIGNIFICANCE AND IMPACT OF THE STUDY: These strains could be utilized for the growth of economically important cash crops as well as for the bioremediation of chromium-polluted soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号