首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present an analysis of crossover interference over the entire human genome, on the basis of genotype data from more than 8,000 polymorphisms in eight CEPH families. Overwhelming evidence was found for strong positive crossover interference, with average strength lying between the levels of interference implied by the Kosambi and Carter-Falconer map functions. Five mathematical models of interference were evaluated: the gamma model and four versions of the count-location model. The gamma model fit the data far better than did any of the other four models. Analysis of intercrossover distances was greatly superior to the analysis of crossover counts, in both demonstrating interference and distinguishing between the five models. In contrast to earlier suggestions, interference was found to continue uninterrupted across the centromeres. No convincing differences in the levels of interference were found between the sexes or among chromosomes; however, we did detect possible individual variation in interference among the eight mothers. Finally, we present an equation that provides the probability of the occurrence of a double crossover between two nonrecombinant, informative polymorphisms.  相似文献   

2.
Statistical Analysis of Chromatid Interference   总被引:5,自引:1,他引:4  
H. Zhao  M. S. McPeek    T. P. Speed 《Genetics》1995,139(2):1057-1065
The nonrandom occurrence of crossovers along a single strand during meiosis can be caused by either chromatid interference, crossover interference or both. Although crossover interference has been consistently observed in almost all organisms since the time of the first linkage studies, chromatid interference has not been as thoroughly discussed in the literature, and the evidence provided for it is inconsistent. In this paper with virtually no restrictions on the nature of crossover interference, we describe the constraints that follow from the assumption of no chromatid interference for single spore data. These constraints are necessary consequences of the assumption of no chromatid interference, but their satisfaction is not sufficient to guarantee no chromatid interference. Models can be constructed in which chromatid interference clearly exists but is not detectable with single spore data. We then extend our analysis to cover tetrad data, which permits more powerful tests of no chromatid interference. We note that the traditional test of no chromatid interference based on tetrad data does not make full use of the information provided by the data, and we offer a statistical procedure for testing the no chromatid interference constraints that does make full use of the data. The procedure is then applied to data from several organisms. Although no strong evidence of chromatid interference is found, we do observe an excess of two-strand double recombinations, i.e., negative chromatid interference.  相似文献   

3.
D. E. Weeks  J. Ott    G. M. Lathrop 《Genetics》1994,136(3):1217-1226
Genetic chiasma interference occurs when the occurrence of one crossover (or chiasma) influences the probability of another crossover occurring nearby. We investigated, by simulation studies, the power of three statistical methods to detect interference. Neither the traditional three-locus method nor a multiplicative model approach are very powerful, while a multilocus-feasible map function approach is more powerful, particularly as the number of loci increases. We show that the power to detect interference is quite sensitive to the underlying type of interference. When we tested for interference in two mouse data sets (from chromosomes 1 and 12), we found significant evidence of positive interference.  相似文献   

4.
Anderson LK  Reeves A  Webb LM  Ashley T 《Genetics》1999,151(4):1569-1579
We have used immunofluorescent localization to examine the distribution of MLH1 (MutL homolog) foci on synaptonemal complexes (SCs) from juvenile male mice. MLH1 is a mismatch repair protein necessary for meiotic recombination in mice, and MLH1 foci have been proposed to mark crossover sites. We present evidence that the number and distribution of MLH1 foci on SCs closely correspond to the number and distribution of chiasmata on diplotene-metaphase I chromosomes. MLH1 foci were typically excluded from SC in centromeric heterochromatin. For SCs with one MLH1 focus, most foci were located near the middle of long SCs, but near the distal end of short SCs. For SCs with two MLH1 foci, the distribution of foci was bimodal regardless of SC length, with most foci located near the proximal and distal ends. The distribution of MLH1 foci indicated interference between foci. We observed a consistent relative distance (percent of SC length in euchromatin) between two foci on SCs of different lengths, suggesting that positive interference between MLH1 foci is a function of relative SC length. The extended length of pachytene SCs, as compared to more condensed diplotene-metaphase I bivalents, makes mapping crossover events and interference distances using MLH1 foci more accurate than using chiasmata.  相似文献   

5.
The normal distribution of crossover events on meiotic bivalents depends on homolog recognition, alignment, and interference. We developed a method for precisely locating all crossovers on Caenorhabditis elegans chromosomes and demonstrated that wild-type animals have essentially complete interference, with each bivalent receiving one and only one crossover. A physical break in one homolog has previously been shown to disrupt interference, suggesting that some aspect of bivalent structure is required for interference. We measured the distribution of crossovers in animals heterozygous for a large insertion to determine whether a break in sequence homology would have the same effect as a physical break. Insertions disrupt crossing over locally. However, every bivalent still experiences essentially one and only one crossover, suggesting that interference can act across a large gap in homology. Although insertions did not affect crossover number, they did have an effect on crossover distribution. Crossing over was consistently higher on the side of the chromosome bearing the homolog recognition region and lower on the other side of the chromosome. We suggest that nonhomologous sequences cause heterosynapsis, which disrupts crossovers along the distal chromosome, even when those regions contain sequences that could otherwise align. However, because crossovers are not completely eliminated distal to insertions, we propose that alignment can be reestablished after a megabase-scale gap in sequence homology.  相似文献   

6.
Pch2 is a widely conserved protein that is required in baker''s yeast for the organization of meiotic chromosome axes into specific domains. We provide four lines of evidence suggesting that it regulates the formation and distribution of crossover events required to promote chromosome segregation at Meiosis I. First, pch2Δ mutants display wild-type crossover levels on a small (III) chromosome, but increased levels on larger (VII, VIII, XV) chromosomes. Second, pch2Δ mutants show defects in crossover interference. Third, crossovers observed in pch2Δ require both Msh4-Msh5 and Mms4-Mus81 functions. Lastly, the pch2Δ mutation decreases spore viability and disrupts crossover interference in spo11 hypomorph strains that have reduced levels of meiosis-induced double-strand breaks. Based on these and previous observations, we propose a model in which Pch2 functions at an early step in crossover control to ensure that every homolog pair receives an obligate crossover.  相似文献   

7.
Pch2 is a widely conserved protein that is required in baker's yeast for the organization of meiotic chromosome axes into specific domains. We provide four lines of evidence suggesting that it regulates the formation and distribution of crossover events required to promote chromosome segregation at Meiosis I. First, pch2Δ mutants display wild-type crossover levels on a small (III) chromosome, but increased levels on larger (VII, VIII, XV) chromosomes. Second, pch2Δ mutants show defects in crossover interference. Third, crossovers observed in pch2Δ require both Msh4-Msh5 and Mms4-Mus81 functions. Lastly, the pch2Δ mutation decreases spore viability and disrupts crossover interference in spo11 hypomorph strains that have reduced levels of meiosis-induced double-strand breaks. Based on these and previous observations, we propose a model in which Pch2 functions at an early step in crossover control to ensure that every homolog pair receives an obligate crossover.  相似文献   

8.
The strand relationships of adjacent pairs of chiasmata have been examined in differentially stained meiotic bivalents following in vivo BrdU substitution and FPG staining. A test for chromatid interference is described, based on comparisons of the observed numbers of various combinations of hidden and visible crossover exchanges with the numbers expected assuming no chromatid interference. A comparison based on 67 pairs of chiasmata from Locusta migratoria indicates no evidence for chromatid interference in this material.  相似文献   

9.
Crossing-over between homologous chromosomes facilitates proper disjunction of chromosomes during meiosis I. In many organisms, gene functions that are essential to crossing-over also facilitate the intimate chromosome pairing called "synapsis." Many organisms--including budding yeast, humans, zebrafish, Drosophila, and Arabidopsis--regulate the distribution of crossovers, so that, most of the time, each chromosome bundle gets at least one crossover while the mean number of crossovers per chromosome remains modest. This regulation is obtained through crossover interference. Recent evidence suggests that the organisms that use recombination functions to achieve synapsis have two classes of crossovers, only one of which is subject to interference. We statistically test this two-pathway hypothesis in the CEPH data and find evidence to support the two-pathway hypothesis in humans.  相似文献   

10.
Tight control of the number and distribution of crossovers is of great importance for meiosis. Crossovers establish chiasmata, which are physical connections between homologous chromosomes that provide the tension necessary to align chromosomes on the meiotic spindle. Understanding the mechanisms underlying crossover control has been hampered by the difficulty in determining crossover distributions. Here, we present a microarray-based method to analyze multiple aspects of crossover control simultaneously and rapidly, at high resolution, genome-wide, and on a cell-by-cell basis. Using this approach, we show that loss of interference in zip2 and zip4/spo22 mutants is accompanied by a reduction in crossover homeostasis, thus connecting these two levels of crossover control. We also provide evidence to suggest that repression of crossing over at telomeres and centromeres arises from different mechanisms. Lastly, we uncover a surprising role for the synaptonemal complex component Zip1 in repressing crossing over at the centromere.  相似文献   

11.
Segregation of homologous chromosomes during meiosis I depends on appropriately positioned crossovers/chiasmata. Crossover assurance ensures at least one crossover per homolog pair, while interference reduces double crossovers. Here, we have investigated the interplay between chromosome axis morphogenesis and non-random crossover placement. We demonstrate that chromosome axes are structurally modified at future crossover sites as indicated by correspondence between crossover designation marker Zip3 and domains enriched for axis ensemble Hop1/Red1. This association is first detected at the zygotene stage, persists until double Holliday junction resolution, and is controlled by the conserved AAA+ ATPase Pch2. Pch2 further mediates crossover interference, although it is dispensable for crossover formation at normal levels. Thus, interference appears to be superimposed on underlying mechanisms of crossover formation. When recombination-initiating DSBs are reduced, Pch2 is also required for viable spore formation, consistent with further functions in chiasma formation. pch2Δ mutant defects in crossover interference and spore viability at reduced DSB levels are oppositely modulated by temperature, suggesting contributions of two separable pathways to crossover control. Roles of Pch2 in controlling both chromosome axis morphogenesis and crossover placement suggest linkage between these processes. Pch2 is proposed to reorganize chromosome axes into a tiling array of long-range crossover control modules, resulting in chiasma formation at minimum levels and with maximum spacing.  相似文献   

12.
New evidence suggests that the model plant Arabidopsis has two biochemically distinct pathways that produce genetic crossovers. Studies in several organisms have revealed that one kind of crossover regulation - crossover interference - is applied differently from species to species. Arabidopsis appears to use an interference system similar to that of budding yeast.  相似文献   

13.
Maguire MP 《Genetics》1976,82(1):19-24
Analysis of systematic scan data from microsporocyte smear preparations suggests that cells with a crossover in a specific region tend to be geographically clustered to some extent within anthers. Crossover classes observed include single crossovers within a heterozygous inversion, three-strand double crossovers within and proximal to the inversion, and four-strand double crossovers within the inversion. Evidence for clustering within scans of cells of the first two classes is reported, but results are inconclusive for the third class. No evidence for within-scan correlation of frequencies of any two of the crossover classes was found. It is inferred that a large part of the variability in crossover frequency observed is probably due to factors which alter crossover interference. Implications related to the frequency and distribution of crossover sites are discussed.  相似文献   

14.
Meneely PM  Farago AF  Kauffman TM 《Genetics》2002,162(3):1169-1177
Regulation of both the number and the location of crossovers during meiosis is important for normal chromosome segregation. We used sequence-tagged site polymorphisms to examine the distribution of all crossovers on the X chromosome during oogenesis and on one autosome during both oogenesis and spermatogenesis in Caenorhabditis elegans. The X chromosome has essentially one crossover during oogenesis, with only three possible double crossover exceptions among 220 recombinant X chromosomes. All three had one of the two crossovers in the same chromosomal interval, suggesting that crossovers in that interval do not cause interference. No other interval was associated with double crossovers. Very high interference was also found on an autosome during oogenesis, implying that each chromosome has only one crossover during oogenesis. During spermatogenesis, recombination on this autosome was reduced by approximately 30% compared to oogenesis, but the relative distribution of the residual crossovers was only slightly different. In contrast to previous results with other autosomes, no double crossover chromosomes were observed. Despite an increased frequency of nonrecombinant chromosomes, segregation of a nonrecombinant autosome during spermatogenesis appears to occur normally. This indicates that an achiasmate segregation system helps to ensure faithful disjunction of autosomes during spermatogenesis.  相似文献   

15.
Falque M  Mercier R  Mézard C  de Vienne D  Martin OC 《Genetics》2007,176(3):1453-1467
Crossover interference in meiosis is often modeled via stationary renewal processes. Here we consider a new model to incorporate the known biological feature of "obligate chiasma" whereby in most organisms each bivalent almost always has at least one crossover. The initial crossover is modeled as uniformly distributed along the chromosome, and starting from its position, subsequent crossovers are placed with forward and backward stationary renewal processes using a chi-square distribution of intercrossover distances. We used our model as well as the standard chi-square model to simulate the patterns of crossover densities along bivalents or chromatids for those having zero, one, two, or three or more crossovers; indeed, such patterns depend on the number of crossovers. With both models, simulated patterns compare very well to those found experimentally in mice, both for MLH1 foci on bivalents and for crossovers on genetic maps. However, our model provides a better fit to experimental data as compared to the standard chi-square model, particularly regarding the distribution of numbers of crossovers per chromosome. Finally, our model predicts an enhancement of the recombination rate near the extremities, which, however, explains only a part of the pattern observed in mouse.  相似文献   

16.
D L Auger  W F Sheridan 《Genetics》2001,159(4):1717-1726
Negative interference describes a situation where two genetic regions have more double crossovers than would be expected considering the crossover rate of each region. We detected negative crossover interference while attempting to genetically map translocation breakpoints in maize. In an attempt to find precedent examples we determined there was negative interference among previously published translocation breakpoint mapping data in maize. It appears that negative interference was greater when the combined map length of the adjacent regions was smaller. Even positive interference appears to have been reduced when the combined lengths of adjacent regions were below 40 cM. Both phenomena can be explained by a reduction in crossovers near the breakpoints or, more specifically, by a failure of regions near breakpoints to become competent for crossovers. A mathematical explanation is provided.  相似文献   

17.

Background

Population genetics predicts that tight linkage between new and/or pre-existing beneficial and deleterious alleles should decrease the efficiency of natural selection in finite populations. By decoupling beneficial and deleterious alleles and facilitating the combination of beneficial alleles, recombination accelerates the formation of high-fitness genotypes. This may impose indirect selection for increased recombination. Despite the progress in theoretical understanding, interplay between recombination and selection remains a controversial issue in evolutionary biology. Even less satisfactory is the situation with crossover interference, which is a deviation of double-crossover frequency in a pair of adjacent intervals from the product of recombination rates in the two intervals expected on the assumption of crossover independence. Here, we report substantial changes in recombination and interference in three long-term directional selection experiments with Drosophila melanogaster: for desiccation (~50 generations), hypoxia, and hyperoxia tolerance (>200 generations each).

Results

For all three experiments, we found a high interval-specific increase of recombination frequencies in selection lines (up to 40–50 % per interval) compared to the control lines. We also discovered a profound effect of selection on interference as expressed by an increased frequency of double crossovers in selection lines. Our results show that changes in interference are not necessarily coupled with increased recombination.

Conclusions

Our results support the theoretical predictions that adaptation to a new environment can promote evolution toward higher recombination. Moreover, this is the first evidence of selection for different recombination-unrelated traits potentially leading, not only to evolution toward increased crossover rates, but also to changes in crossover interference, one of the fundamental features of recombination.
  相似文献   

18.
Humans suffer from high rates of fetal aneuploidy, often arising from the absence of meiotic crossover recombination between homologous chromosomes. Meiotic recombination is initiated by double-strand breaks (DSBs) generated by the SPO11 transesterase. In yeast and worms, at least one buffering mechanism, crossover homeostasis, maintains crossover numbers despite variation in DSB numbers. We show here that mammals exhibit progressive homeostatic control of recombination. In wild-type mouse spermatocytes, focus numbers for early recombination proteins (RAD51, DMC1) were highly variable from cell to cell, whereas foci of the crossover marker MLH1 showed little variability. Furthermore, mice with greater or fewer copies of the Spo11 gene--with correspondingly greater or fewer numbers of early recombination foci--exhibited relatively invariant crossover numbers. Homeostatic control is enforced during at least two stages, after the formation of early recombination intermediates and later while these intermediates mature towards crossovers. Thus, variability within the mammalian meiotic program is robustly managed by homeostatic mechanisms to control crossover formation, probably to suppress aneuploidy. Meiotic recombination exemplifies how order can be progressively implemented in a self-organizing system despite natural cell-to-cell disparities in the underlying biochemical processes.  相似文献   

19.
We apply modeling approaches to investigate the distribution of late recombination nodules in maize (Zea mays). Such nodules indicate crossover positions along the synaptonemal complex. High-quality nodule data were analyzed using two different interference models: the “statistical” gamma model and the “mechanical” beam film model. For each chromosome, we exclude at a 98% significance level the hypothesis that a single pathway underlies the formation of all crossovers, pointing to the coexistence of two types of crossing-over in maize, as was previously demonstrated in other organisms. We estimate the proportion of crossovers coming from the noninterfering pathway to range from 6 to 23% depending on the chromosome, with a cell average of ∼15%. The mean number of noninterfering crossovers per chromosome is significantly correlated with the length of the synaptonemal complex. We also quantify the intensity of interference. Finally, we develop inference tools that allow one to tackle, without much loss of power, complex crossover interference models such as the beam film. The lack of a likelihood function in such models had prevented their use for parameter estimation. This advance will allow more realistic mechanisms of crossover formation to be modeled in the future.  相似文献   

20.
Using small palindromes to monitor meiotic double-strand-break-repair (DSBr) events, we demonstrate that two distinct classes of crossovers occur during meiosis in wild-type yeast. We found that crossovers accompanying 5:3 segregation of a palindrome show no conventional (i.e., positive) interference, while crossovers with 6:2 or normal 4:4 segregation for the same palindrome, in the same cross, do manifest interference. Our observations support the concept of a "non"-interference class and an interference class of meiotic double-strand-break-repair events, each with its own rules for mismatch repair of heteroduplexes. We further show that deletion of MSH4 reduces crossover tetrads with 6:2 or normal 4:4 segregation more than it does those with 5:3 segregation, consistent with Msh4p specifically promoting formation of crossovers in the interference class. Additionally, we present evidence that an ndj1 mutation causes a shift of noncrossovers to crossovers specifically within the "non"-interference class of DSBr events. We use these and other data in support of a model in which meiotic recombination occurs in two phases-one specializing in homolog pairing, the other in disjunction-and each producing both noncrossovers and crossovers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号