首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We present a general mathematical framework for analyzing the dynamic aspects of single channel kinetics incorporating time interval omission. An algorithm for computing model autocorrelation functions, incorporating time interval omission, is described. We show, under quite general conditions, that the form of these autocorrelations is identical to that which would be obtained if time interval omission was absent. We also show, again under quite general conditions, that zero correlations are necessarily a consequence of the underlying gating mechanism and not an artefact of time interval omission. The theory is illustrated by a numerical study of an allosteric model for the gating mechanism of the locust muscle glutamate receptor-channel.  相似文献   

2.
3.
We present a general theoretical framework, incorporating both aggregation of states into classes and time interval omission, for stochastic modeling of the dynamic aspects of single channel behavior. Our semi-Markov models subsume the standard continuous-time Markov models, diffusion models and fractal models. In particular our models allow for quite general distributions of state sojourn times and arbitrary correlations between successive sojourn times. Another key feature is the invariance of our framework with respect to time interval omission: that is, properties of the aggregated process incorporating time interval omission can be derived directly from corresponding properties of the process without it. Even in the special case when the underlying process is Markov, this leads to considerable clarification of the effects of time interval omission. Among the properties considered are equilibrium behavior, sojourn time distributions and their moments, and auto-correlation and cross-correlation functions. The theory is motivated by ion channel mechanisms drawn from the literature, and illustrated by numerical examples based on these.  相似文献   

4.
In this work, we propose a fractional Poisson–Nernst–Planck model to describe ion permeation in gated ion channels. Due to the intrinsic conformational changes, crowdedness in narrow channel pores, binding and trapping introduced by functioning units of channel proteins, ionic transport in the channel exhibits a power-law-like anomalous diffusion dynamics. We start from continuous-time random walk model for a single ion and use a long-tailed density distribution function for the particle jump waiting time, to derive the fractional Fokker–Planck equation. Then, it is generalized to the macroscopic fractional Poisson–Nernst–Planck model for ionic concentrations. Necessary computational algorithms are designed to implement numerical simulations for the proposed model, and the dynamics of gating current is investigated. Numerical simulations show that the fractional PNP model provides a more qualitatively reasonable match to the profile of gating currents from experimental observations. Meanwhile, the proposed model motivates new challenges in terms of mathematical modeling and computations.  相似文献   

5.
Patch-clamp data may be analysed in terms of Markov process models of channel gating mechanisms. We present a maximum likelihood algorithm for estimation of gating parameters from records where only a single channel is present. Computer simulated data for three different models of agonist receptor gated channels are used to demonstrate the performance of the procedure. Full details of the implementation of the algorithm are given for an example gating mechanism. The effects of omission of brief openings and closings from the single-channel data on parameter estimation are explored. A strategy for discriminating between alternative possible gating models, based upon use of the Schwarz criterion, is described. Omission of brief events is shown not to lead to incorrect model identification, except in extreme circumstances. Finally, the algorithm is extended to include channel gating models exhibiting multiple conductance levels.  相似文献   

6.
Voltage-gated Na(+) channels play a fundamental role in the excitability of nerve and muscle cells. Defects in fast Na(+) channel inactivation can cause hereditary muscle diseases with hyper- or hypoexcitability of the sarcolemma. To explore the kinetics and gating mechanisms of noninactivating muscle Na(+) channels on a molecular level, we analyzed single channel currents from wild-type and five mutant Na(+) channels. The mutations were localized in different protein regions which have been previously shown to be important for fast inactivation (D3-D4-linker, D3/S4-S5, D4/S4-S5, D4/S6) and exhibited distinct grades of defective fast inactivation with varying levels of persistent Na(+) currents caused by late channel reopenings. Different gating schemes were fitted to the data using hidden Markov models with a correction for time interval omission and compared statistically. For all investigated channels including the wild-type, two open states were necessary to describe our data. Whereas one inactivated state was sufficient to fit the single channel behavior of wild-type channels, modeling the mutants with impaired fast inactivation revealed evidence for several inactivated states. We propose a single gating scheme with two open and three inactivated states to describe the behavior of all five examined mutants. This scheme provides a biological interpretation of the collected data, based on previous investigations in voltage-gated Na(+) and K(+) channels.  相似文献   

7.
Tracer ion flux measurements are a commonly used method for studying ion transport through membranes of cellular systems, where the rate of ion flow is determined by gating processes which control the opening and closing of transmembrane channels. Due to recent advances in the theoretical analysis of tracer flux from or into closed membrane structures (CMS), the mechanism of gating reactions can, in principle, be derived from flux data. A physically well founded analysis is presented for the dependence of the total tracer ion content of a collection of CMS on the gating processes. For functionally uncoupled gating units a mean single channel flux contribution [equation, see text] can be defined, where k is the intrinsic single channel flux coefficient, t the time over which flux is measured, and p(tau,t) is the probability that a given channel was open for a total period tau during t. This quantity reflects the mean time course of the tracer content due to flux through a single channel. Expressions for are derived that explicitly take into account a distribution in the lifetime of open channels. On the basis of the results, kinetic and thermodynamic parameters of multiphasic gating reactions can be determined from the time course of the overall tracer content in a colleciion of CMS.  相似文献   

8.
The derivation of cross-correlation functions from single-channel dwell (open and closed) times is described. Simulation of single-channel data for simple gating models, alongside theoretical treatment, is used to demonstrate the relationship of cross-correlation functions to underlying gating mechanisms. It is shown that time irreversibility of gating kinetics may be revealed in cross-correlation functions. Application of cross-correlation function analysis to data derived from the locust muscle glutamate receptor-channel provides evidence for multiple gateway states and time reversibility of gating. A model for the gating of this channel is used to show the effect of omission of brief channel events on cross-correlation functions.  相似文献   

9.
Macroscopic ion channel current is the summation of the stochastic records of individual channel currents and therefore relates to their statistical properties. As a consequence of this relationship, it may be possible to derive certain statistical properties of single channel records or even generate some estimates of the records themselves from the macroscopic current when the direct measurement of single channel currents is not applicable. We present a procedure for generating the single channel records of an ion channel from its macroscopic current when the stochastic process of channel gating has the following two properties: (I) the open duration is independent of the time of opening event and has a single exponential probability density function (pdf), (II) all the channels have the same probability to open at time t. The application of this procedure is considered for cases where direct measurement of single channel records is difficult or impossible. First, the probability density function (pdf) of opening events, a statistical property of single channel records, is derived from the normalized macroscopic current and mean channel open duration. Second, it is shown that under the conditions (I) and (II), a non-stationary Markov model can represent the stochastic process of channel gating. Third, the non-stationary Markov model is calibrated using the results of the first step. The non-stationary formulation increases the model ability to generate a variety of different single channel records compared to common stationary Markov models. The model is then used to generate single channel records and to obtain other statistical properties of the records. Experimental single channel records of inactivating BK potassium channels are used to evaluate how accurately this procedure reconstructs measured single channel sweeps.  相似文献   

10.
Y H Mika  Y Palti 《Biophysical journal》1994,67(4):1455-1463
Single ion channel currents can only provide indirect information on channel molecular events (except for timing). In contrast, the electric displacement currents associated with channel gating, termed gating currents, can provide direct information regarding the channel molecule's conformational changes. However, thus far gating currents have been measured only from ensembles of numerous stochastically activated channels and therefore the information they provide is limited. This work presents, for the first time, measurements of gating currents from a single channel molecule. Averaging close to 8000 pre-open currents, aligned to the single channel opening time, enabled the detection of single channel gating currents with a resolution of 2 electron charges. The measured charge displacements show: 1) a slow component, approximately 2 fA above baseline level, assumed to represent stochastic conformational changes, and 2) transients, the most significant of which occur 1.1 and 0.3 ms before channel opening. The transients most likely represent apparent deterministic stages in the gating process. The largest transient current peak was 5.1 +/- 1.6 fA and the total equivalent charge transported across the membrane was 4.7 +/- 2.5 electron charges. This data is unique also in that it presents monitoring of the behavior of a single, well-defined macromolecule.  相似文献   

11.
Macroscopic ion channel current can be derived by summation of the stochastic records of individual channel currents. In this paper, we present two probability density functions of single channel records that can uniquely determine the macroscopic current regardless of other statistical properties of records or the stochastic model of channel gating (presented often with stationary Markov models). We show that H(t), probability density function of channel opening events (introduced explicitly in this paper), and D(t), probability density function of the open duration (sometimes has named dwell time distribution as well), determine the normalized macroscopic current, G(t), through G(t) = P(t) - H(t) * Q(t) where P(t) is the cumulative density function of H(t), Q(t) is the cumulative density function of D(t), * is the symbol of convolution integral and G(t) is the macroscopic current divided by the amplitude of single channel current and the number of single channel sweeps. Compared to other equations for the macroscopic current, here the macroscopic current is expressed only in terms of the statistical properties of single channel current and not the stochastic model of ion channel gating or a conditioned form of macroscopic current. Single channel currents of an inactivating BK channel were used to validate this relationship experimentally too. In this paper, we used median filters as they can remove the unwanted noise without smoothing the transitions between open and closed states (compare to low pass filters). This filtering leads to more accurate measurement of transition times and less amount of missed events.  相似文献   

12.
We have developed a method for rapidly computing gating currents from a multiparticle ion channel model. Our approach is appropriate for energy landscapes that can be characterized by a network of well-defined activation pathways with barriers. To illustrate, we represented the gating apparatus of a channel subunit by an interacting pair of charged gating particles. Each particle underwent spatial diffusion along a bistable potential of mean force, with electrostatic forces coupling the two trajectories. After a step in membrane potential, relaxation of the smaller barrier charge led to a time-dependent reduction in the activation barrier of the principal gate charge. The resulting gating current exhibited a rising phase similar to that measured in voltage-dependent ion channels. Reduction of the two-dimensional diffusion landscape to a circular Markov model with four states accurately preserved the time course of gating currents on the slow timescale. A composite system containing four subunits leading to a concerted opening transition was used to fit a series of gating currents from the Shaker potassium channel. We end with a critique of the model with regard to current views on potassium channel structure.  相似文献   

13.
Models for the gating of ion channels usually assume that the rate constants for leaving any given kinetic state are independent of previous channel activity. Although such discrete Markov models have been successful in describing channel gating, there is little direct evidence for the Markov assumption of time-invariant rate constants for constant conditions. This paper tests the Markov assumption by determining whether the single-channel kinetics of the large conductance Ca-activated K channel in cultured rat skeletal muscle are independent of previous single-channel activity. The experimental approach is to examine dwell-time distributions conditional on adjacent interval durations. The time constants of the exponential components describing the distributions are found to be independent of adjacent interval duration, and hence, previous channel activity. In contrast, the areas of the different components can change. Since the observed time constants are a function of the underlying rate constants for transitions among the kinetic states, the observation of time constants independent of previous channel activity suggests that the rate constants are also independent of previous channel activity. Thus, the channel kinetics are consistent with Markov gating. An observed dependent (inverse) relationship between durations of adjacent open and shut intervals together with Markov gating indicates that there are two or more independent transition pathways connecting open and shut states. Finally, no evidence is found to suggest that gating is not at thermodynamic equilibrium: the inverse relationship was independent of the time direction of analysis.  相似文献   

14.
We have developed a scanning patch-clamp technique that facilitates single-channel recording from small cells and submicron cellular structures that are inaccessible by conventional methods. The scanning patch-clamp technique combines scanning ion conductance microscopy and patch-clamp recording through a single glass nanopipette probe. In this method the nanopipette is first scanned over a cell surface, using current feedback, to obtain a high-resolution topographic image. This same pipette is then used to make the patch-clamp recording. Because image information is obtained via the patch electrode it can be used to position the pipette onto a cell with nanometer precision. The utility of this technique is demonstrated by obtaining ion channel recordings from the top of epithelial microvilli and openings of cardiomyocyte T-tubules. Furthermore, for the first time we have demonstrated that it is possible to record ion channels from very small cells, such as sperm cells, under physiological conditions as well as record from cellular microstructures such as submicron neuronal processes.  相似文献   

15.
Kinetic models of voltage-dependent ion channels are normally inferred from time records of macroscopic current relaxation or microscopic single channel data. A complementary explorative approach is outlined. Hysteretic conductance refers to conductance delays in response to voltage changes, delays at either macroscopic or microscopic levels of observation. It enables complementary assessments of model assumptions and gating schemes of voltage-dependent channels, e.g. independent versus cooperative gating, and multiple gating modes. Under the Hodgkin-Huxley condition of independent gating, and under ideal measurement conditions, hysteretic conductance makes it also possible to estimate voltage-dependent rate functions. The argument is mainly theoretical, based on experimental observations, and illustrated by simulations of Markov kinetic models.  相似文献   

16.
Ion channels are the building blocks of the information processing capability of neurons: any realistic computational model of a neuron must include reliable and effective ion channel components. Sophisticated statistical and computational tools have been developed to study the ion channel structure–function relationship, but this work is rarely incorporated into the models used for single neurons or small networks. The disjunction is partly a matter of convention. Structure–function studies typically use a single Markov model for the whole channel whereas until recently whole-cell modeling software has focused on serial, independent, two-state subunits that can be represented by the Hodgkin–Huxley equations. More fundamentally, there is a difference in purpose that prevents models being easily reused. Biophysical models are typically developed to study one particular aspect of channel gating in detail, whereas neural modelers require broad coverage of the entire range of channel behavior that is often best achieved with approximate representations that omit structural features that cannot be adequately constrained. To bridge the gap so that more recent channel data can be used in neural models requires new computational infrastructure for bringing together diverse sources of data to arrive at best-fit models for whole-cell modeling. We review the current state of channel modeling and explore the developments needed for its conclusions to be integrated into whole-cell modeling.  相似文献   

17.
An important task in the application of Markov models to the analysis of ion channel data is the determination of the correct gating scheme of the ion channel under investigation. Some prior knowledge from other experiments can reduce significantly the number of possible models. If these models are standard statistical procedures nested like likelihood ratio testing, provide reliable selection methods. In the case of non-nested models, information criteria like AIC, BIC, etc., are used. However, it is not known if any of these criteria provide a reliable selection method and which is the best one in the context of ion channel gating. We provide an alternative approach to model selection in the case of non-nested models with an equal number of open and closed states. The models to choose from are embedded in a properly defined general model. Therefore, we circumvent the problems of model selection in the non-nested case and can apply model selection procedures for nested models.  相似文献   

18.
Wang A  Zocchi G 《PloS one》2011,6(4):e18598
We present experiments where the gating behavior of a voltage-gated ion channel is modulated by artificial ligand binding. We construct a channel-DNA chimera with the KvAP potassium channel reconstituted in an artificial membrane. The channel is functional and the single channel ion conductivity unperturbed by the presence of the DNA. However, the channel opening probability vs. bias voltage, i.e., the gating, can be shifted considerably by the electrostatic force between the charges on the DNA and the voltage sensing domain of the protein. Different hybridization states of the chimera DNA thus lead to different response curves of the channel.  相似文献   

19.
We propose a new approach to analysis of kinetic models for ion channel gating, based on application of fluctuating voltages through a voltage clamp, in addition to conventional techniques. We show that the channel kinetics can be probed in a much more sensitive way, leading to more efficient model selection and more reliable estimates of model parameters. We use wavelet transform as an analytic tool for fluctuating currents and parametric dispersion plots as a measure of model compatibility with experimental data.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

20.
Ion channels are integral membrane proteins that regulate ionic flux through cell membranes by opening and closing (or gating) their pores. The gating can be monitored by observing step changes in the current flowing through single channels. Analysis of the durations of the open and closed intervals and of the correlations among the interval durations can give insight into the gating mechanism. Although it is well known that the correlation information can be essential to distinguish among possible gating mechanisms, it has been difficult to use this information because it has not been possible to correct the predicted correlations for the distortion of the single-channel data because of filtering and noise. To overcome this limitation we present a method based on a comparison of simulated and experimental two-dimensional dwell-time distributions constructed by analysing simulated and experimental single-channel currents in an identical manner. The simulated currents incorporate the true effects of filtering and noise, the two-dimensional distributions retain the correlation information, and the identical analysis allows direct maximum-likelihood comparison of the simulated and experimental two-dimensional distributions. We show that the two-dimensional simulation method has a greatly increased ability to distinguish among models, compared with methods that use one-dimensional distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号