首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
文中报导了本实验室最近发现的一种新型钙调蛋白(CaM)天然拮抗剂——酸枣仁皂甙A,它能显著地抑制CaM活化PDE的活力.为研究它与CaM间的相互作用,本实验还制备了与天然CaM具有相同激活PDE能力的丹磺酰钙调蛋白(D-CaM).D-CaM的荧光光谱研究表明,酸枣仁甙A的加入诱导CaM分子的疏水位点更加暴露,从而增强丹磺酰基团的荧光发射量子产率.桔抗剂与CaM间的结合是绝对依赖Ca~(2 )的.荧光滴定的结果证明此结合的解离常数为2.8μM.酸枣仁皂甙A能进一步加强三氟啦嗪(TFP)所诱导的D-CaM荧光增强.这结果暗示,它不与TFP竞l争CaM上相同的结合位点.  相似文献   

2.
我们曾经证明钙调蛋白(Calmodulin,CaM)拮抗剂三氟拉嗪(Trifluoperazine,TFP)有抑制人胃癌细胞增殖和诱导细胞形态向正常分化的效应。本文用CaM活性测定箱方法测定了TFP处理的人胃癌MGC-803细胞胞质内的CaM活性。同时也测定了磷酸二酯酶(Phosphodiesterase.PDE)活性的变化。结果表明TFP选择性抑制胞质内依赖Ca~(2+)/CaM的PDE活性。氨茶碱有抑制CaM活化PDE的作用。本文对TFP作用机理及在调控癌细胞增殖及分化中的意义进行讨论。  相似文献   

3.
利用碘乙酰胺氮氧自由基标记钙调蛋白研究了它与三氟拉嗪(TFP)、酸枣仁皂甙A(JuA)的相互作用。结果表明,每分子CaM分别至少可以结合两分子的TFP及JuA,它们的作用影响了CaM上的Met残基(主要是71,72和76)的环境,使反应自由基运动自由度的旋转相关时间τR值下降。据τR变化的趋势,推测TFP和JuA都是通过疏水作用结合到CaM上的疏水沟区,但两者的结合位点可能不同。  相似文献   

4.
我们曾经证明钙调蛋白(Calmodulin,CaM)拮抗剂三氟拉嗪(Trifluoperazine,TFP)有抑制人胃癌细胞增殖和诱导细胞形态向正常分化的效应。本文用CaM活性测定箱方法测定了TFP处理的人胃癌MGC-803细胞胞质内的CaM活性。同时也测定了磷酸二酯酶(Phosphodiesterase.PDE)活性的变化。结果表明TFP选择性抑制胞质内依赖Ca2+/CaM的PDE活性。氨茶碱有抑制CaM活化PDE的作用。本文对TFP作用机理及在调控癌细胞增殖及分化中的意义进行讨论。  相似文献   

5.
报道光诱导的内源类囊体膜蛋白的磷酸化可被一种新的植物钙调素(Calmodulin ,CaM )结合蛋白BP 1 0 (CaMBP -1 0 )显著抑制 ,并且抑制作用能被外加CaM消除 .同时 ,此磷酸化反应也可被EGTA和CaM拮抗剂TFP(trifluoperazine)及W 7(N ( 6 aminohexyl) -5- chloro -1 naphthalenesulfonamide)抑制 .提示 :( 1 )Ca 2+和CaM可能参与并调节植物光合作用 ;( 2 )催化类囊体膜蛋白磷酸化的激酶可能受Ca 2+和CaM调控 .进一步实验表明BP -1 0对类囊体膜蛋白的脱磷酸化作用无任何影响 .  相似文献   

6.
粉防已碱与钙调蛋白相互作用的荧光光谱研究   总被引:2,自引:0,他引:2  
粉防已碱Tet是一种新的钙调蛋白(CaM)拮抗剂,它抑制CaM活化的Ca~(2 )—Mg~(2 )—ATP c。利用丹磺酰钙调蛋白(D—CaM)可方便地鉴测Tet与CaM的相互作用,直接证明了在CaM与Tet之间生成复合物CaM—Tet 我们制备的D—CaM,每个蛋白分子含1.3个丹磺酰基团,活化红细胞膜Ca~(2 )—Mg~(2 )—ATP c的生物活性与天然CaM基本相同。 当Ca~(2 )与D—CaM结合时,丹磺酰基团环境疏水性增加,该荧光团产生较高的量子产率(增加1.6倍),最大发射兰移(从512移兰至495nm)。存在Ca~(2 )时,Tet使D—CaM的荧光强度进一步增加,谱线继续兰移,表明Ca~(2 )及Tet诱导蛋白构象变化,改变了丹磺酰基团的微环境。 荧光滴定实验证明CaM与Tet结合的解离常数为1.8μM,两者的结合是绝对依赖Ca~(2 )的。 药物Tet与CaM的结合可增强结合在CaM上的荧光探剂NPN的荧光,提示CaM不同疏水结合位之间存在变构相互作用。  相似文献   

7.
自旋标记钙调蛋白与酸枣仁皂甙A相互作用研究   总被引:1,自引:0,他引:1  
中草药有效成份酸枣仁皂甙A是钙调蛋白CaM的一种天然非竞争性拮抗剂。利用氮氧自由基马来酰亚胺衍生物标记CaM研究了二者的相互作用。结果表明,每分子CaM至少可以结合二个分子的酸枣仁皂钙A,二者的作用影响CaM上Lys残基主要是75,94)的环境,推测酸枣仁皂钙A是通过疏水作用结合到CaM分子两端的疏水沟区。通过比较三氟拉嗪TFP与酸枣仁皂甙A的结构特点,抑制性质与结合位点,提出了CaM调节环核苷酸磷酸二酯酶PDE的模式。  相似文献   

8.
荧光标记的脂质结合实验表明,钙调素结合蛋白-10(CaMBP-10)具有典型的植物非特异性脂质转移蛋白与脂质结合的特性。进一步实验研究了钙调素(calmodulin,CaM)对CaMBP-10和玉米nsLTP与脂质结合的活性的影响,结果显示无论在有钙和无钙条件下,CaM对两者的影响均有不同之处,W-7和TFP能消除CaM的影响。提示CaM不仅与CaMBP-10和玉米nsLTP特异性相互作用,而且对2种脂转移蛋白可能具有不同的调节机制。  相似文献   

9.
本文报道我室近来发现的一种天然钙调素(Calmodulin,CaM)拮抗剂马兜铃酸(Aristolochic acid,ATA)的研究。利用丹磺酰标记的CaM(D-CaM)对马兜铃酸的研究表明,马兜铃酸是一种非钙离子依赖性钙调素拮抗剂,实验测得马兜铃酸与D-CaM结合的解离常数,有Ca~(2+)和无Ca~(2+)情况下分别为70μmol/L、77μmol/L。两种状况下马兜铃酸对D-CaM荧光强度的抑制分别为40%、41%。暗示马兜铃酸主要作用于CaM上Ca~(2+)诱导的疏水区之外。三氟啦嗪(TFP)引起的D-CaM荧光增强可被马兜铃酸明显降低,而TFP在达到马兜铃酸浓度的15倍以上仍未能逆转马兜铃酸对D-CaM荧光强度的降低作用,这为马兜铃酸主要作用于CaM上Ca~(2+)诱导的疏水区以外提供了又一佐证。  相似文献   

10.
钙-钙调素信号系统参与热激信号转导的研究   总被引:3,自引:0,他引:3  
李冰  周人纲 《西北植物学报》2004,24(7):1322-1328
根据作者实验室的研究工作结合国内外的研究动态讨论热激信号转导的Ca2 -CaM途径。作者实验室的工作表明,钙一钙调素(Ca^2 -CaM)信号系统参与植物热激信号转导。激光共聚焦扫描显微镜的观察结果表明,37℃热激可引起小麦胞内自由Ca。’浓度迅速提高。在Ca^2 存在条件下,热激也引起小麦CaM基因CaM1-2表达及CaM蛋白含量增加。Ca^2 可促进小麦热激基因hsp26和mp70表达和热激蛋白合成,而Ca^2 螯合剂EGTA、Ca^2 通道阻断剂异搏定和LaCl3、CaM抑制剂W7、TFP和CPZ明显降低热激基因hsp26和mp70表达和热激蛋白合成。EGTA、异搏定、TFP或CPZ也阻止小麦耐热性的获得。小麦CaM基因与热激基因的表达动力学研究表明CaM位于热激信号转导的上游,而Ca^2 是启动热激反应的胞内关键因子。凝胶阻滞分析的结果表明,Ca^2 -CaM在热激信号转导中的作用是通过激活热激转录因子的DNA结合活性来实现的。根据大量实验证据,作者提出在植物细胞内存在一条新的热激信号转导途径——钙一钙调素途径。  相似文献   

11.
Trifluoperazine (TFP; Stelazine?) is an antagonist of calmodulin (CaM), an essential regulator of calcium‐dependent signal transduction. Reports differ regarding whether, or where, TFP binds to apo CaM. Three crystallographic structures (1CTR, 1A29, and 1LIN) show TFP bound to (Ca2+)4‐CaM in ratios of 1, 2, or 4 TFP per CaM. In all of these, CaM domains adopt the “open” conformation seen in CaM‐kinase complexes having increased calcium affinity. Most reports suggest TFP also increases calcium affinity of CaM. To compare TFP binding to apo CaM and (Ca2+)4‐CaM and explore differential effects on the N‐ and C‐domains of CaM, stoichiometric TFP titrations of CaM were monitored by 15N‐HSQC NMR. Two TFP bound to apo CaM, whereas four bound to (Ca2+)4‐CaM. In both cases, the preferred site was in the C‐domain. During the titrations, biphasic responses for some resonances suggested intersite interactions. TFP‐binding sites in apo CaM appeared distinct from those in (Ca2+)4‐CaM. In equilibrium calcium titrations at defined ratios of TFP:CaM, TFP reduced calcium affinity at most levels tested; this is similar to the effect of many IQ‐motifs on CaM. However, at the highest level tested, TFP raised the calcium affinity of the N‐domain of CaM. A model of conformational switching is proposed to explain how TFP can exert opposing allosteric effects on calcium affinity by binding to different sites in the “closed,” “semi‐open,” and “open” domains of CaM. In physiological processes, apo CaM, as well as (Ca2+)4‐CaM, needs to be considered a potential target of drug action. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Pan D  Yan Q  Chen Y  McDonald JM  Song Y 《Proteins》2011,79(8):2543-2556
Death-inducing signaling complex (DISC) formation is a critical step in Fas-mediated signaling for apoptosis. Previous experiments have demonstrated that the calmodulin (CaM) antagonist, trifluoperazine (TFP) regulates CaM-Fas binding and affects Fas-mediated DISC formation. In this study, we investigated the anti-cooperative characteristics of TFP binding to CaM and the effect of TFP on the CaM-Fas interaction from both structural and thermodynamic perspectives using combined molecular dynamics simulations and binding free energy analyses. We studied the interactions of different numbers of TFP molecules with CaM and explored the effects of the resulting conformational changes in CaM on CaM-Fas binding. Results from these analyses showed that the number of TFP molecules bound to CaM directly influenced α-helix formation and hydrogen bond occupancy within the α-helices of CaM, contributing to the conformational and motion changes in CaM. These changes affected CaM binding to Fas, resulting in secondary structural changes in Fas and conformational and motion changes of Fas in CaM-Fas complexes, potentially perturbing the recruitment of Fas-associated death domain for DISC formation. The computational results from this study reveal the structural and molecular mechanisms that underlie the role of the CaM antagonist, TFP, in regulation of CaM-Fas binding and Fas-mediated DISC formation in a concentration-dependent manner.  相似文献   

13.
Toru Shimizu  Masahiro Hatano   《FEBS letters》1983,160(1-2):182-186
We have used 19F NMR and CD spectra to study interactions of TFP with CaM under various conditions where no aggregation of TFP occurs. It was found that TFP is bound to CaM in the absence of Ca2+ with Ka >4 × 104 M in terms of 19F NMR of TFP and that KCl markedly influences the interaction of TFP with CaM. It was also found that TFP causes quite strong induced CD bands corresponding with the absorption bands of the aromatic ring of TFP when TFP is bound to Ca2+ -CaM. The induction of the CD bands was time-dependent and was composed of fast and slow phases.  相似文献   

14.
L Massom  H Lee  H W Jarrett 《Biochemistry》1990,29(3):671-681
Binding of trifluoperazine (TFP), a phenothiazine tranquilizer, to porcine brain calmodulin (CaM) and rabbit skeletal muscle troponin C (Tn C) was measured by an automated high-performance liquid chromatography binding assay using a molecular sieving column; 10 micrograms of either protein per injection is sufficient for determining TFP binding, and results are comparable to those obtained by equilibrium dialysis. Very little binding was observed to either protein in the absence of Ca2+ while in the presence of Ca2+ both proteins bind 4 equiv of TFP. Other characteristics of TFP binding however are different for each protein. For CaM, half-maximal binding occurs at 5.8 microM TFP, the Hill coefficient is 0.82, and the fit of the data to the Scatchard equation is consistent with four independent TFP-binding sites. Binding of one melittin displaces two TFP from CaM. Thus, there are two recognizable classes of TFP-binding sites: those that are displaced by melittin and those that are not. TFP causes an increase in the Ca2+ affinity of CaM, and three Ca2+ must be bound to CaM for TFP binding to occur. The studies also yielded a measure of the intrinsic affinity of three of CaM's Ca2(+)-binding sites that is in agreement with previous reports. For troponin C, half-maximal binding occurs at 16 microM TFP, the Hill coefficient is 1.7, and the data best fit the Adair equation for four binding sites. The measured constants K1, K2, K3, and K4 were 2.5 X 10(4), 6.6 X 10(3), 5.8 X 10(5), and 2.0 X 10(5) M-1, respectively, in 1 mM Ca2+ and were similar when Mg2+ was additionally included. TFP also increases troponin C's Ca2+ affinity, and it is the low-affinity, Ca2(+)-specific binding sites that are affected. These studies yielded a measure of the intrinsic affinity of these Ca2(+)-binding sites that is in agreement with previous measurements.  相似文献   

15.
The role of calmodulin (CaM) in modulating calcium (Ca) uptake by sarcoplasmic reticulum (SR) of vascular smooth muscle was studied in saponin skinned strips of rat caudal artery. Exogenous CaM concentrations ranging from 0.3-1.8 microM did not statistically change the steady state MgATP-dependent Ca content, the MgATP-independent Ca content, or the oxalate-stimulated Ca influx. Calmidazolium (CDZ), W-7, and trifluoperazine (TFP) were used to examine the potential effect of an endogenous CaM pool on inward Ca transport. The IC50 of these antagonists for inhibition of Ca-CaM-stimulated phosphodiesterase activity and Ca-activated superprecipitation of canine aortic actomyosin was measured and found to be in the low micromolar range with a rank order of potency for inhibition of CDZ greater than TFP greater than W-7. In skinned tissues, micromolar concentrations of antagonists that inhibited CaM-mediated reactions in isolated enzyme systems did not reduce Ca content or oxalate-stimulated Ca influx. At higher concentrations of 100-200 microM, the MgATP-dependent Ca content was significantly reduced by TFP and W-7 but not by CDZ. The order of potency for inhibition of Ca uptake was TFP greater than W-7 greater than CDZ. The MgATP-independent Ca content was significantly decreased only by 200 microM TFP. Although none of these inhibitors significantly altered Ca efflux at concentrations up to 100 microM, Ca release was significantly stimulated by all three at 200 microM. The TFP-stimulated Ca release was partially inhibited by ruthenium red. The results indicate that neither exogenous CaM nor an endogenous CaM pool directly modulates inward Ca transport by the SR of saponin skinned caudal artery. The inhibition of Ca uptake produced by hundred micromolar concentrations of CaM antagonists fails to correlate with the order of and with the potency of inhibition measured in isolated enzyme systems. This suggests that the inhibition of Ca uptake produced by high concentrations of these antagonists may be independent of a specific interaction with CaM. The activation of Ca release by high concentrations of CaM antagonists may involve a nonspecific increase in membrane permeability as well as modulation of a membrane Ca channel.  相似文献   

16.
T Shimizu  M Hatano  Y Muto  Y Nozawa 《FEBS letters》1984,166(2):373-377
We have used 19F NMR to study interactions of trifluoperazine (TFP), a potent calmodulin (CaM) antagonist, with Tetrahymena calmodulin (Tet. CaM). Changes in chemical shift and bandwidth of TFP caused by adding Tet. CaM in the presence of excess Ca2+ were much smaller than those by adding porcine CaM. The spectral features of the TFP-Tet. CaM solution in the presence of excess Ca2+ were quite similar to those of the TFP-porcine CaM solution in the absence of Ca2+. The exchange rate of TFP from Tet. CaM was estimated to be nearly 20 s-1. The TFP-Tet. CaM solution in the absence of Ca2+ showed a pronounced pH dependence of the 19F NMR chemical shift, whereas the solution in the presence of excess Ca2+ showed a smaller pH dependence. Thus, it was suggested that TFP is located near a hydrophilic region of the Tet. CaM molecule in the absence of Ca2+, while TFP is located near a hydrophobic region of the Tet. CaM in the presence of excess Ca2+.  相似文献   

17.
利用钙调素calmodulin,CaM)拮抗剂─三氟拉嗪(trifluoperazine,TFP)对G0期小鼠C3H10T1/2成纤维细胞进入S期和DNA合成进行了研究.G0期细胞进入S期时,大量钙调素进入细胞核,其水平为G0期的2倍。TFP处理的细胞被阻抑在G1期,不仅使S期细胞群体下降,而且3H-TdR掺入DNA强度受到明显抑制.同时,TFP处理的细胞胸腺嘧啶核苷激酶(thymidinekinase,TK)基因表达及TK活性亦明显下降,但不影响S期细胞核内的钙调素水平,结果表明钙调素功能之抑制不仅阻抑细胞从G1期至S期的进程,而且对细胞DNA合成强度亦有抑制作用.  相似文献   

18.
We have previously demonstrated that the antagonists of calmodulin (CaM) induce apoptosis of cholangiocarcinoma cells partially through Fas-mediated apoptosis pathways. Recently, CaM has been shown to bind to Fas, which is regulated during Fas or CaM antagonist-mediated apoptosis in Jurkat cells and osteoclasts. Accordingly, the present studies were designed to determine whether Fas interacts with CaM in cholangiocarcinoma cells and to elucidate its role in regulating Fas-mediated apoptosis. CaM bound to Fas in cholangiocarcinoma cells. CaM was identified in the Fas-mediated death inducing signaling complex (DISC). The amount of CaM recruited into the DISC was increased after Fas-stimulation, a finding confirmed by immunofluorescent analysis that demonstrated increased membrane co-localization of CaM and Fas upon Fas-stimulation. Consistently, increased Fas microaggregates in response to Fas-stimulation were found to bind to CaM. Fas-induced recruitment of CaM into the DISC was inhibited by the Ca(2+) chelator, EGTA, and the CaM antagonist, trifluoperazine (TFP). TFP decreased DISC-induced cleavage of caspase-8. Further, inhibition of actin polymerization, which has been demonstrated to abolish DISC formation, inhibited the recruitment of CaM into the DISC. These results suggest an important role of CaM in mediating DISC formation, thus regulating Fas-mediated apoptosis in cholangiocarcinoma cells. Characterization of the role of CaM in Fas-mediated DISC formation and apoptosis signaling may provide important insights in the development of novel therapeutic targets for cholangiocarcinoma.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号