首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synemin is a cytoskeletal protein originally identified as an intermediate filament (IF)-associated protein because of its colocalization and copurification with the IF proteins desmin and vimentin in muscle cells. Our sequencing studies have shown that synemin is an unusually large member (1,604 residues, 182,187 Da) of the IF protein superfamily, with the majority of the molecule consisting of a long C-terminal tail domain. Molecular interaction studies demonstrate that purified synemin interacts with desmin, the major IF protein in mature muscle cells, and with alpha-actinin, an integral myofibrillar Z-line protein. Furthermore, expressed synemin rod and tail domains interact, respectively, with desmin and alpha-actinin. Analysis of endogenous protein expression in SW13 clonal lines reveals that synemin is coexpressed and colocalized with vimentin IFs in SW13.C1 vim+ cells but is absent in SW13.C2 vim- cells. Transfection studies indicate that synemin requires the presence of another IF protein, such as vimentin, in order to assemble into IFs. Taken in toto, our results suggest synemin functions as a component of heteropolymeric IFs and plays an important cytoskeletal cross-linking role by linking these IFs to other components of the cytoskeleton. Synemin in striated muscle cells may enable these heterofilaments to help link Z-lines of adjacent myofibrils and, thereby, play an important role in cytoskeletal integrity.  相似文献   

2.
The cytoskeleton of the rat cultured cell line PC12, which is widely used in cell biology as a model system for neuron-like differentiation, displays an unusual combination of intermediate-sized filaments (IFs). As determined by electron microscopy, immunolocalization, and biochemical analyses, these cells contain, in addition to neurofilaments, an extended meshwork of bundles of cytokeratin IFs comprising cytokeratins A and D, equivalent to human cytokeratin polypeptides Nos. 8 and 18, irrespective of whether they are grown in the presence or absence of nerve growth factor. The two IF systems differ in their fibrillar arrays, the neurofilaments being concentrated in perinuclear aggregates similar to those found in certain neuroendocrine tumors of epithelial origin. We conclude that PC12 cells permanently co-express IFs of both the epithelial and the neuronal type and thus present an IF combination different from those of adrenal medulla cells and pheochromocytomas, i.e., the putative cells of origin of the line PC12. The IF cytoskeleton of PC12 cells resembles that of various neuroendocrine tumors derived from epithelial cells. The results show that the development of a number of typical neuronal differentiation features is compatible with the existence of an epithelial type IF cytoskeleton, i.e., cytokeratins. The implications of these findings concerning the validity of the PC12 cell line as a model for neuronal differentiation and possible explanations of the origin of cells with this type of IF co-expression are discussed.  相似文献   

3.
Summary In vertebrate tissue development a given cell differentiation pathway is usually associated with a pattern of expression of a specific set of cytoskeletal proteins, including different intermediate filament (IF) and junctional proteins, which is identical in diverse species. The retinal pigment epithelium (RPE) is a layer of polar cells that have very similar morphological features and practically identical functions in different vertebrate species. However, in biochemical and immunolocalization studies of the cytoskeletal proteins of these cells we have noted remarkable interspecies differences. While chicken RPE cells contain only IFs of the vimentin type and do not possess desmosomes and desmosomal proteins RPE cells of diverse amphibian (Rana ridibunda, Xenopus laevis) and mammalian (rat, guinea pig, rabbit, cow, human) species express cytokeratins 8 and 18 either as their sole IF proteins, or together with vimentin IFs as in guinea pig and a certain subpopulation of bovine RPE cells. Plakoglobin, a plaque protein common to desmosomes and the zonula adhaerens exists in RPE cells of all species, whereas desmoplakin and desmoglein have been identified only in RPE desmosomes of frogs and cows, including bovine RPE cell cultures in which cytokeratins have disappeared and vimentin IFs are the only IFs present. These challenging findings show that neither cytokeratin IFs nor desmosomes are necessary for the establishment and function of a polar epithelial cell layer and that the same basic cellular architecture can be achieved by different programs of expression of cytoskeletal proteins. The differences in the composition of the RPE cytoskeleton further indicate that, at least in this tissue, a specific program of expression of IF and desmosomal proteins is not related to the functions of the RPE cell, which are very similar in the various species.  相似文献   

4.
Keratin 8 and 18 are simple epithelial intermediate filament (IF) proteins, whose expression is differentiation- and tissue-specific, and is maintained during tumorigenesis. Vimentin IF is often co-expressed with keratins in cancer cells. Recently, IF have been proposed to be involved in signaling pathways regulating cell growth, death and motility. The PI3K/Akt pathway plays a pivotal role in these processes. Thus, we investigated the role of Akt (1 and 2) in regulating IF expression in different epithelial cancer cell lines. Over-expression of Akt1 increases K8/18 proteins. Akt2 up-regulates K18 and vimentin expression by an increased mRNA stability. To our knowledge, these results represent the first indication that Akt isoforms regulate IF expression and support the hypothesis that IFs are involved in PI3K/Akt pathway.  相似文献   

5.
The metanephric mesenchyme becomes converted into epithelial tubules if cultured in transfilter contact with an inductor tissue. The expression of intermediate filaments (IFs), used as cell-type-specific markers has been studied in this model system for differentiation and organogenesis. In immunofluorescence microscopy of frozen sections, the undifferentiated cells of isolated metanephric mesenchymes uniformly showed IFs of vimentin type only. Also, when cultured as a monolayer, cells from the uninduced mesenchymes showed only vimentin filaments. In frozen sections of transfilter explants, epithelial tubules apparently negative for vimentin could be seen after 3 days in culture, but expression of cytokeratin could not be demonstrated in the developing tubules until the fourth day of culture. Sections of explants cultured further showed tubule cells with distinct fibrillar cytokeratin positivity. The appearance of cytokeratin in the explants was also demonstrated with immunoblotting experiments, using two different cytokeratin antibodies. Expression of IFs was further examined in monolayer cultures of metanephric mesenchymes which had been initially exposed to a short transfilter induction pulse. In these experiments, cytokeratin-positive cells could be demonstrated after a total of 4 days in culture. Double immunofluorescence experiments showed varying amounts of vimentin in the cytokeratin-positive cells: after 4 days in culture, most cytokeratin-positive cells still showed vimentin-positivity although often in a nonfibrillar form. During further culture, gradual disappearance of vimentin-specific fluorescence was observed in cytokeratin-positive cells. The results suggest that the vimentin-positive metanephric mesenchyme cells lose their fibrillar vimentin organization upon induction that leads to kidney tubule formation. This change may be essential for the transformation from an undifferentiated mesenchymal cell into a specialized epithelial cell. Cytokeratin filaments, regarded as a marker for epithelial cells, seem to appear simultaneously with or soon after the change in vimentin organization. These changes in IF expression also occur in monolayer cultures of mesenchyme cells initially exposed to a short transfilter induction pulse. This suggests that epithelial differentiation, as revealed by the emergence of cytokeratin positivity, may occur even in the absence of a clear morphological differentiation and three-dimensional organization of the cells.  相似文献   

6.
Microinjection of antibodies to vimentin into fibroblast cell lines causes intermediate filaments (IFs) to build perinuclear caps. We have extended these findings by microinjection of monoclonal antibodies specific for different IF types to non-epithelial cell lines of human origin, which co-express two different IF proteins. Thus GFA and vimentin IgGs have been microinjected in separate experiments into a glioma cell line, desmin and vimentin IgGs into RD cells, and vimentin IgGs into a cell line which co-expresses neurofilaments and vimentin. In all instances, microinjection of a single antibody causes the formation of perinuclear caps in which the two different IF proteins co-localize, suggesting that vimentin and the second IF type present in each cell line localize to the same 10-nm filaments. Immunoelectron microscopy using desmin and vimentin antibodies made in different species and appropriate second antibodies labelled with 5 and 20 nm gold particles confirm this result for RD cells. When Fab' fragments of the vimentin IgGs are microinjected into different cell types, formation of perinuclear caps is observed in immunofluorescence microscopy. In RD cells immunoelectron microscopy shows that the Fab' fragments induce caps which appear less dense than the caps seen after microinjection of IgGs.  相似文献   

7.
The fiber cells of the eye lens possess a unique cytoskeletal system known as the "beaded-chain filaments" (BFs). BFs consist of filensin and phakinin, two recently characterized intermediate filament (IF) proteins. To examine the organization and the assembly of these heteropolymeric IFs, we have performed a series of in vitro polymerization studies and transfection experiments. Filaments assembled from purified filensin and phakinin exhibit the characteristic 19-21-nm periodicity seen in many types of IFs upon low angle rotary shadowing. However, quantitative mass-per-length (MPL) measurements indicate that filensin/phakinin filaments comprise two distinct and dissociable components: a core filament and a peripheral filament moiety. Consistent with a nonuniform organization, visualization of unfixed and unstained specimens by scanning transmission electron microscopy (STEM) reveals the the existence of a central filament which is decorated by regularly spaced 12-15-nm-diam beads. Our data suggest that the filamentous core is composed of phakinin, which exhibits a tendency to self-assemble into filament bundles, whereas the beads contain filensin/phakinin hetero-oligomers. Filensin and phakinin copolymerize and form filamentous structures when expressed transiently in cultured cells. Experiments in IF-free SW13 cells reveal that coassembly of the lens-specific proteins in vivo does not require a preexisting IF system. In epithelial MCF-7 cells de novo forming filaments appear to grow from distinct foci and organize as thick, fibrous laminae which line the plasma membrane and the nuclear envelope. However, filament assembly in CHO and SV40-transformed lens- epithelial cells (both of which are fibroblast-like) yields radial networks which codistribute with the endogenous vimentin IFs. These observations document that the filaments formed by lens-specific IF proteins are structurally distinct from ordinary cytoplasmic IFs. Furthermore, the results suggest that the spatial arrangement of filensin/phakinin filaments in vivo is subject to regulation by host- specific factors. These factors may involve cytoskeletal networks (e.g., vimentin IFs) and/or specific sites associated with the cellular membranes.  相似文献   

8.
Abstract: We have prepared carboxyl-terminal truncation mutants of the neuronal intermediate filament (IF) protein peripherin and examined the assembly characteristics of these mutant proteins in SW13 cells in the presence and absence of vimentin. In the absence of vimentin, tailless peripherin protein (Per-C424) self-assembles into bundles and clumps as observed by immunofluorescence, whereas a peripherin mutant that is missing the tail as well as a small portion of the rod (Per-C356) appears as spherical aggregates. Similar phenotypes are observed when vimentin-positive cells are transfected with Per-C424 or Per-C356. In these cells, the entire IF network is disrupted, and vimentin colocalizes with the mutant peripherin proteins. To examine the morphology of the bundles and clumps formed by Per-C424 at the electron microscopic level, we prepared stable cell lines expressing different levels of this mutant protein. By immunofluorescence, Per-C424 appears as either clumps or bundles of filaments depending on the expression level of the mutant protein. However, under electron microscopy, it is apparent that both clumps and bundles are composed of tightly packed IFs. We were unable to obtain stable cell lines expressing Per-C356, indicating that this mutant may prevent cell proliferation. Using a vector containing an internal ribosomal entry site, we prepared a construct that expresses Per-C356 and green fluorescent protein as a single mRNA, and we were able to isolate cells that expressed Per-C356 by fluorescence-activated cell sorting. Electron microscopic analysis of these cells showed that these aggregates are solid and contain no obvious filamentous structures.  相似文献   

9.
Protein kinase C associates with intermediate filaments and stress fibers.   总被引:7,自引:0,他引:7  
The subcellular distribution of protein kinase C (PKC) was determined by immunofluorescence using anti-PKC monoclonal antibodies (MAbs). The antibodies used were: (1) 1.9 MAb that is directed against an epitope in the catalytic domain of PKC, (2) 1.3 MAb that recognizes an isozyme of PKC (Mochly-Rosen, D., and Koshland, D. E., 1987, J. Biol. Chem. 262, 2291-2297; Mochly-Rosen, D., et al. 1987 Proc. Natl. Acad. Sci. USA 84, 4660-4664) and (3) MC-2a MAb that is directed against the beta-isozyme of PKC (Usuda, N., et al. 1991, J. Cell Biol. 112, 1241-1247). The cells used in this study were baby hamster kidney cells, vimentin+ and vimentin- clones of SW13 (a human adrenal carcinoma cell line), CEM (a human T cell line), U937 (a histiocytic myeloid cell line), and HL60 (a promyelocytic leukemia cell line). The 1.9 MAb was found to recognize a variety of subcellular components, viz., nucleus (nucleoplasm and nucleolus), cytoplasm, vimentin-type intermediate filaments (IF), stress fibers, and cell membrane. Among these components the beta-isozyme-specific MAbs (1.3 and MC-2a) recognized only the IF network, stress fibers, and edges of the cell membrane. Experiments with vimentin+ and vimentin- mutants of SW13 cells, double indirect immunofluorescence studies with anti-vimentin and anti-PKC antibodies, and drug studies confirmed that the IF network is the predominant cytoskeletal network labeled with all anti-PKC MAbs. Immunoblotting studies with the MC-2a MAb revealed that the observed staining of the IF network was not due to a cross-reaction of the MAb with IF proteins and that the MAb specifically recognizes PKC. These studies, while identifying the diverse cell components to which PKC binds, have demonstrated, for the first time, that PKC associates with the IF network in a variety of cell types. Additionally, the studies have confirmed the studies by others concerning the association of PKC with stress fibers.  相似文献   

10.
It has only recently been recognized that intermediate filaments (IFs) and their assembly intermediates are highly motile cytoskeletal components with cell-type- and isotype-specific characteristics. To elucidate the cell-type-independent contribution of actin filaments and microtubules to these motile properties, fluorescent epithelial IF keratin polypeptides were introduced into non-epithelial, adrenal cortex-derived SW13 cells. Time-lapse fluorescence microscopy of stably transfected SW13 cell lines synthesizing fluorescent human keratin 8 and 18 chimeras HK8-CFP and HK18-YFP revealed extended filament networks that are entirely composed of transgene products and exhibit the same dynamic features as keratin systems in epithelial cells. Detailed analyses identified two distinct types of keratin motility: (I) Slow (approximately 0.23 microm/min), inward-directed, continuous transport of keratin filament precursor particles from the plasma membrane towards the cell interior, which is most pronounced in lamellipodia. (II) Fast (approximately 17 microm/min), bidirectional and intermittent transport of keratin particles in axonal-type cell processes. Disruption of actin filaments inhibited type I motility while type II motility remained. Conversely, microtubule disruption inhibited transport mode II while mode I continued. Combining the two treatments resulted in a complete block of keratin motility. We therefore conclude that keratin motility relies both on intact actin filaments and microtubules and is not dependent on epithelium-specific cellular factors.  相似文献   

11.
A polypeptide growth factor has been partially purified from medium conditioned by the human adrenocortical carcinoma cell line SW13. This factor, designated h-TGFe, stimulates anchorage-independent growth of the SW13 cells. Similar activity was observed in human milk, and in conditioned media from seven of 14 epithelial cell lines. The SW13-derived activity is stable to low pH and 8M urea but labile to dithiothreitol and 2% sodium dodecyl sulfate. Human TGFe does not bind to heparin and fails to stimulate growth of endothelial cells in monolayer culture. The apparent molecular weight of h-TGFe is 59k by size exclusion chromatography in the presence of 8M urea and the activity binds strongly to cation exchangers. The activity elutes at 15-30% acetonitrile from a C18 reverse-phase column and has been partially purified by using a four-step chromatographic procedure. TGFe appears to be a novel growth factor produced by many epithelial cells and tissues.  相似文献   

12.
Khanamiryan L  Li Z  Paulin D  Xue Z 《Biochemistry》2008,47(36):9531-9539
The mechanisms regulating the intermediate filament (IF) protein assembly are complex and not yet fully understood. All vertebrate cytoplasmic IF proteins have a central alpha-helical rod domain flanked by variable head and tail domains. The IF protein synemin cannot homopolymerize to form filament networks; it needs an appropriate copolymerization partner. To elucidate the roles of the vimentin head domain, the TAAL motif in the 2A region, and the TYRKLLEGEE motif in the 2B region of the rod domain in synemin filament formation, we have prepared a series of synemin constructs by site-directed mutagenesis and chimeric synemins having the vimentin head domain. The assembly properties of synemin constructs were assessed by the immunofluorescence of transient transfection into cultured SW13 cells without endogenous IFs. Our data showed that the formation of a filamentous network required at least the vimentin-like head domain and both the 2A and 2B regions of the rod domain.  相似文献   

13.
Of the various intermediate filament (IF) proteins certain cytokeratins, usually a hallmark of epithelial differentiation, can also be detected in some non-epithelial cells in low amounts. We have studied a representative case of this atypical expression, the smooth muscle cells of the blood vessel walls of the human umbilical cord, at the protein and nucleic acid level, by light and electron microscopic immunolocalization, gel electrophoresis and immunoblotting of cytoskeletal proteins, and mRNA identification by Northern blotting. For the latter we have used sensitive probes for various cytokeratins, including new probes for cytokeratin 19. We also describe the chromosome 17 locus comprising the genes for cytokeratins 15 and 19, and we emphasize the occurrence of several unusual and evolutionarily stable sequence elements in the introns of the cytokeratin 19 gene. Most, perhaps all smooth muscle cells of these blood vessels, positively identified by the presence of desmin and smooth muscle type alpha-actin, are immunostained by antibodies specific for cytokeratins 8 and 18, and a subpopulation also contains cytokeratin 19. Immunoelectron microscopy indicates that these cytokeratins are arranged in IFs that are distributed differently from the majority of the IFs formed by desmin and vimentin. Gel electrophoresis of cytoskeletal proteins from microdissected vascular wall tissue shows that the amounts of cytokeratins 8 and 18 present in these tissues are very low, representing less than 1% of the total IF protein, and that cytokeratin 19 is present only in trace amounts. Correspondingly, the contents of mRNAs for cytokeratins 8, 18 and 19 in these tissues are much lower than those present in epithelial cells examined in parallel. We have also established cell cultures derived from umbilical cord vascular smooth muscles that have maintained the expression of cytokeratins 8, 18 and 19, together with vimentin and the smooth muscle type alpha-actin, but do not synthesize desmin. In these cell cultures the cytokeratins are present in much higher amounts than in the original tissue and form IFs that, surprisingly, show a similar distribution as the vimentin IFs and, upon treatment of the cells with colcemid, collapse into juxtanuclear aggregates, often even more effectively than the vimentin IFs do. We conclude that in a certain subtype of smooth muscle cells, the genes encoding cytokeratins of the "simple epithelial type", i.e., cytokeratins 8, 18 and 19, are expressed and that the low level expression of these genes is compatible with myogenic differentiation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
By two-dimensional gel electrophoresis of proteins insoluble in detergents and high-salt buffer and immunofluorescence microscopy with a panel of polypeptide-specific antibodies to proteins of intermediate filaments (IF) and desmosomes, we have characterized the cytoskeletons of normal human thyroid gland, several kinds of benign lesion (goiter, Hashimoto's and Graves' diseases, adenomas), and the major thyroid carcinomas (follicular, papillary, medullary, and anaplastic). In all these tissues, desmoplakins and cytokeratins 7, 8, 18, and 19 were identified. While cytokeratins 8 and 18 occurred in all epithelial cells and cytokeratin 7 was also rather widespread, cytokeratin 19 occurred in amounts variable between the different types of tissues and in normal thyroid gland was restricted to certain clusters of follicular epithelial cells. Of all samples studied, in none did we detect cytokeratins commonly associated with stratified epithelia such as cytokeratins 4-6, 10, and 13-17, indicating that these are infrequent, if at all present, in such tissues. Coexpression of cytokeratins with vimentin appears to occur constitutively in follicular epithelial cells of normal thyroid gland and is also frequent in the diverse carcinomas, though to various degrees. Medullary carcinomas are exceptional, not only because they express neuroendocrine markers, but also because they coexpress combinations of cytokeratin IFs with neurofilaments and/or vimentin IFs in some cases, but not all. The results are discussed in relation to states of cell differentiation in normal and diseased thyroid gland and with respect to their value in tumor diagnosis.  相似文献   

15.
Expression of intermediate filament (IF) isotypes was studied in six human and two murine melanoma cell lines. With one exception, these lines expressed IFs only of the vimentin type; neurofilament peptides, desmin and GFAP were not detected. However, the M5 human melanoma line also expressed extensive cytokeratin tonofilament arrays, as visualized by immunofluorescence with a panel of eleven monoclonal antibodies and hetero-antisera to cytokeratins; only the keratin 19-specific antibody BA16 did not react. By 2 D gel electrophoresis, five major keratin peptides were detected (keratins 7, 8, 13, 17 and 18), and an additional 57 kD peptide was detected on immunoblots with several antikeratin antibodies. Also observed in M5 cells was focal collapse of tonofilament arrays in mitotic cells. All the melanoma lines tested were positive for S100; M5 and two other cell lines were also positive for the 220-240 kD neuroectoderm-associated cell-surface differentiation antigen defined by monoclonal antibody UJ 127:11. In all the melanoma cell lines, secretion of extracellular matrix proteins (fibronectin, laminin and collagen type IV) was sparse or absent, and all were negative for the epithelial cell markers HMG-1 and HMG-2. Co-expression of keratin and vimentin by a melanoma cell line is discussed in the light of recent controversy concerning expression of cytokeratins by other neoplasms of putative neuroectodermal origins.  相似文献   

16.
To screen invertebrate tissues for the possible expression of intermediate filaments (IFs), immunofluorescence microscopy with the monoclonal antibody anti-IFA known to detect all mammalian IF proteins was used (Pruss, R. M., R. Mirsky, M. C. Raff, R. Thorpe, A. J. Dowding, and B. H. Anderton. 1981. Cell, 27:419-428). In a limited survey, the lower chordate Branchiostoma as well as the invertebrates Arenicola, Lumbricus, Ascaris, and Helix pomatia revealed a positive reaction primarily on epithelia and on nerves, whereas certain other invertebrates appeared negative. To assess the nature of the positive reaction, Helix pomatia was used since a variety of epithelia was strongly stained by anti-IFA. Fixation-extraction procedures were developed that preserve in electron micrographs of esophagus impressive arrays of IFs as tonofilament bundles. Fractionation procedures performed on single cell preparations document large meshworks of long and curvilinear IF by negative stain. These structures can be purified. One- and two-dimensional gels show three components, all of which are recognized by anti-IFA in immunoblotting: 66 kD/pl 6.35, 53 kD/pl 6.05, and 52 kD/pl 5.95. The molar ratio between the larger and more basic polypeptide and the sum of the two more acidic forms is close to 1. After solubilization in 8.5 M urea, in vitro filament reconstitution is induced when urea is removed by dialysis against 2-50 mM Tris buffer at pH 7.8. The reconstituted filaments contain all three polypeptides. The results establish firmly the existence of invertebrate IFs outside neurones and demonstrate that the esophagus of Helix pomatia displays IFs which in line with the epithelial morphology of the tissue could be related to keratin IF of vertebrates.  相似文献   

17.
《The Journal of cell biology》1984,98(3):1072-1081
Desmosomal proteins are co-expressed with intermediate-sized filaments (IF) of the cytokeratin type in epithelial cells, and these IF are firmly attached to the desmosomal plaque. In meningiomal and certain arachnoidal cells, however, vimentin IF are attached to desmosomal plaques. Meningiomas obtained after surgery, arachnoid "membranes", and arachnoid granulations at autopsy, as well as meningiomal cells grown in short-term culture have been examined by single and double immunofluorescence and immunoelectron microscopy using antibodies to desmoplakins, vimentin, cytokeratins, glial filament protein, neurofilament protein, and procollagen. In addition, two-dimensional gel electrophoresis of the cytoskeletal proteins has been performed. Using all of these techniques, vimentin was the only IF protein that was detected in significant amounts. The junctions morphologically resembling desmosomes of epithelial cells have been identified as true desmosomes by antibodies specific for desmoplakins and they provided the membrane attachment sites for the vimentin IF. These findings show that anchorage of IF to the cell surface at desmosomal plaques is not restricted to cytokeratin IF as in epithelial cells and desmin IF as in cardiac myocytes, suggesting that binding to desmosomes and hemidesmosomes is a more common feature of IF organization. The co- expression of desmosomal proteins and IF of the vimentin type only defines a new class of cell ("desmofibrocyte") and may also provide an important histodiagnostic criterion.  相似文献   

18.
The gene defective in cystic fibrosis has recently been shown to code for a membrane protein designated the "cystic fibrosis transmembrane conductance regulator" (CFTR) protein. While it has been shown that detectable levels of the mRNA for the normal CFTR protein are present in epithelial cells from different tissues, factors which regulate CFTR expression have not been identified. A clonal cell line originating from a human colon adenocarcinoma (HT29-18) differentiates to multiple epithelial cell types when deprived of glucose in the culture medium. In these studies, mRNA isolated from these cells was examined by hybridization to a 1.45-kilobase cDNA probe which encodes transmembrane portions of the CFTR protein between exons 13 and 19. Cellular differentiation of HT29-18 causes a 9-18-fold increase in CFTR mRNA abundance versus the mRNA for the structural proteins actin and tubulin. Cellular differentiation also causes a 5-fold increase in second messenger-regulated Cl- transport which is sensitive to a Cl- channel blocker (diphenylamine 2-carboxylate). Subclones of HT29-18 which are committed to differentiate to either a mucin-secreting (HT29-18-N2) or an "enterocyte-like" (HT29-18-C1) phenotype have also been examined. In both subclones, elevated levels of CFTR mRNA are observed when compared with undifferentiated HT29-18 cells. However, during cellular differentiation, the regulation of CFTR mRNA abundance and membrane enzyme expression by the subclones is different from HT29-18. The results show that elevated CFTR mRNA occurs in multiple differentiated intestinal epithelial cell types, despite a phenotype-specific regulation of membrane protein expression. This suggests that CFTR expression plays a role in the differentiated functions of multiple epithelial phenotypes and that both cellular differentiation and cellular phenotypes are factors which regulate CFTR expression.  相似文献   

19.
Filaggrin is an intermediate filament (IF)-associated protein that aggregates keratin IFs in vitro and is thought to perform a similar function during the terminal differentiation of epidermal keratinocytes. To further explore the role of filaggrin in the cytoskeletal rearrangement that accompanies epidermal differentiation, we generated keratinocyte cell lines that express human filaggrin using a tetracycline-inducible promoter system. Filaggrin expression resulted in reduced keratinocyte proliferation and caused an alteration in cell cycle distribution consistent with a post-G1 phase arrest. Keratin filament distribution was disrupted in filaggrin-expressing lines, while the organization of actin microfilaments and microtubules was more mildly affected. Evidence for direct interaction of filaggrin and keratin IFs was seen by overlay assays of GFP-filaggrin with keratin proteins in vitro and by filamentous filaggrin distribution in cells with low levels of expression. Cells expressing moderate to high levels of filaggrin showed a rounded cell morphology, loss of cell-cell adhesion, and compacted cytoplasm. There was also partial or complete loss of the desmosomal proteins desmoplakin, plakoglobin, and desmogleins from cell-cell borders, while the distribution of the adherens junction protein E-cadherin was not affected. No alterations in keratin cytoskeleton, desmosomal protein distribution, or cell shape were observed in control cell lines expressing beta-galactosidase. Filaggrin altered the cell shape and disrupted the actin filament distribution in IF-deficient SW13 cells, demonstrating that filaggrin can affect cell morphology independent of the presence of a cytoplasmic IF network. These studies demonstrate that filaggrin, in addition to its known effects on IF organization, can affect the distribution of other cytoskeletal elements including actin microfilaments, which can occur in the absence of a cytoplasmic IF network. Further, filaggrin can disrupt the distribution of desmosome proteins, suggesting an additional role(s) for this protein in the cytoskeletal and desmosomal reorganization that occurs at the granular to cornified cell transition during terminal differentiation of epidermal keratinocytes.  相似文献   

20.
Intermediate filaments (IFs) make up the cytoskeleton of most eukaryotic cells. In vertebrates, a number of IF proteins have been identified, showing distributions unique to tissue or cell type. Information on helminth IFs is limited to some nematode species. To observe immunofluorescent localization of IFs in helminth tissues, we selected a murine hybridoma clone producing IgM antibody to multiple types of mammalian IF proteins and examined cross-reactivity to helminth proteins. The selected monoclonal antibody (HUSM-9) cross-reacted well with IFs from nematode species such as Toxocara canis, Dirofilaria immitis, Anisakis simplex, and Trichinella britovi; strong immunofluorescence on cryostat sections was detected in the hypodermis, cords, body muscle, smooth muscle of the uterus, and other epithelial structures. In platyhelminths, i.e., adult Schistosoma mansoni, larval Taenia taeniaeformis, adult Taenia crassiceps, and Echinococcus multilocularis protoscolex, the reactivity was weaker than in nematodes, and localized in the body wall muscle and subtegumental tissue. Western blotting of 8 M urea extracts of parasites with the antibody detected a pair of clear bands in nematodes but not in S. mansoni or the cestodes. These results might be explained by sparse distribution of IFs in platyhelminths, or low affinity of the used antibody to platyhelminth IF proteins, or both.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号