首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A physical map of rice chromosome 5 was constructed with yeastartificial chromosome (YAC) clones along a high-resolution molecularlinkage map carrying 118 DNA markers distributed over 123.7cM of genomic DNA. YAC clones have been identified by colonyand Southern hybridization for 105 restriction fragment lengthpolymorphism (RFLP) markers and by polymerase chain reaction(PCR) screening for 8 sequence-tagged site (STS) markers and5 randomly amplified polymorphic DNA (RAPD) markers. Of 458YACs, 235 individual YACs with an average insert length of 350kb were selected and ordered on chromosome 5 from the YAC library.Forty-eight contigs covering nearly 21 Mb were formed on thechromosome 5; the longest one was 6 cM and covered 1.5 Mb. Thelength covered with YAC clones corresponded to 62% of the totallength of chromosome 5. There were many multicopy sequencesof expressed genes on chromosome 5. The distribution of manycopies of these expressed gene sequences was determined by YACSouthern hybridization and is discussed. A physical map withthese characteristics provides a powerful tool for elucidationof genome structure and extraction of useful genetic informationin rice.  相似文献   

3.
Yeast artificial chromosome (YAC) clones were ordered for thephysical mapping of rice chromosome 2, the last of the 12 ricechromosomes to be assigned YACs by the Rice Genome ResearchProgram. A total of 128 restriction fragment length polymorphismmarkers and 4 sequence-tagged site (STS) markers located onour high-density genetic map were used for YAC clone landing.By colony/Southern hybridization and polymerase chain reactionscreening, a total of 239 individual YACs were selected fromour YAC library of 6934 clones covering six genome equivalents.The YACs located on the corresponding marker positions in thelinkage map formed 43 contigs and islands and were estimatedto encompass about 50% of the length of rice chromosome 2.  相似文献   

4.
I Zucchi  D Schlessinger 《Genomics》1992,12(2):264-275
Xq24-q28 DNA, from a hamster/human hybrid cell containing only that portion of the human X chromosome, was found to contain 56 TaqI restriction fragments that hybridized to the moderately repetitive sequence pTR5. Using the pTR5 sequence as a probe in colony hybridization, 136 cognate yeast artificial chromosome (YAC) clones were detected among a collection of 820 containing about three genomic equivalents of the Xq24-q28 DNA. The YACs were then grouped into 48 contigs and single clones containing one or more of the TaqI fragments. Overlaps were confirmed both by fingerprinting YACs with AluI and L1 probes and by additional information. A less complete analysis was also carried out with a second moderately repetitive sequence, LF1, and some smaller contigs were merged into larger ones. Moderately repetitive sequences can thus be used as probes for multiple loci in single hybridization experiments and can help to organize and confirm YAC overlaps during the development of maps with long-range contiguity.  相似文献   

5.
A new YAC (yeast artificial chromosome) physical map of the 12 rice chromosomes was constructed utilizing the latest molecular linkage map. The 1439 DNA markers on the rice genetic map selected a total of 1892 YACs from a YAC library. A total of 675 distinct YACs were assigned to specific chromosomal locations. In all chromosomes, 297 YAC contigs and 142 YAC islands were formed. The total physical length of these contigs and islands was estimated to 270 Mb which corresponds to approximately 63% of the entire rice genome (430 Mb). Because the physical length of each YAC contig has been measured, we could then estimate the physical distance between genetic markers more precisely than previously. In the course of constructing the new physical map, the DNA markers mapped at 0.0-cM intervals were ordered accurately and the presence of potentially duplicated regions among the chromosomes was detected. The physical map combined with the genetic map will form the basis for elucidation of the rice genome structure, map-based cloning of agronomically important genes, and genome sequencing.  相似文献   

6.
T. Foote  M. Roberts  N. Kurata  T. Sasaki    G. Moore 《Genetics》1997,147(2):801-807
Detailed physical mapping of markers from rice chromosome 9, and from syntenous (at the genetic level) regions of other cereal genomes, has resulted in rice yeast artificial chromosome (YAC) contigs spanning parts of rice 9. This physical mapping, together with comparative genetic mapping, has demonstrated that synteny has been largely maintained between the genomes of several cereals at the level of contiged YACs. Markers located in one region of rice chromosome 9 encompassed by the YAC contigs have exhibited restriction fragment length polymorphism (RFLP) using deletion lines for the Ph1 locus. This has allowed demarcation of the region of rice chromosome 9 syntenous with the ph1b and ph1c deletions in wheat chromosome 5B. A group of probes located in wheat homoeologous group 5 and barley chromosome 5H, however, have synteny with rice chromosomes other than 9. This suggests that the usefulness of comparative trait analysis and of the rice genome as a tool to facilitate gene isolation will differ from one region to the next, and implies that the rice genome is more ancestral in structure than those of the Triticeae.  相似文献   

7.
Genomic libraries of rice,Oryza sativa L. cv. Nipponbare, in yeast artificial chromosomes were prepared for construction of a rice physical map. High-molecular-weight genomic DNA was extracted from cultured suspension cells embedded in agarose plugs. After size fractionation of theEco RI- andNot I-digested DNA fragments, they were ligated with pYAC4 and pYAC55, respectively, and used to transformSaccharomyces cerevisiae AB1380. A total of 6932 clones were obtained containing on average ca. 350 kb DNA. The YAC library was estimated to contain six haploid genome equivalents. The YACs were examined for their chimerism by mapping both ends on an RFLP linkage map. Most YACs withEco RI fragments below 400 kb were intact colinear clones. About 40% of clones were chimeric. Genetic mapping of end clones from large size YACs revealed that the physical distance corresponding to 1 cM genetic distance varies from 120 to 1000 kb, depending on the chromosome region. To select and order YAC clones for making contig maps, high-density colony hybridization using ECL was applied. With several probes, at least one and at most ten YAC clones could be selected in this library. The library size and clone insert size indicate that this YAC library is suitable for physical map construction and map-based cloning.  相似文献   

8.
"Chimeric" yeast artificial chromosomes (YACs) are clones containing two or more noncontiguous segments of DNA and represent the most common artifact found in total genomic YAC libraries currently used for large-scale genome mapping. These YACs create spurious mapping information that complicates the construction of YAC contigs and leads to erroneous maps during chromosome walks. The presence of these artifactual clones necessitates laborious and time-consuming characterization of each isolated YAC clone, either by comparison of the physical map of the YAC with the corresponding source genomic DNA, or by demonstrating discrepant chromosomal origins for the two ends of the YAC by hybridization or polymerase chain reaction (PCR). Here, we describe a rapid and sensitive method for the assessment of YAC colinearity by fluorescence in situ suppression hybridization (FISSH) by utilizing fluorescein-12-dUTP for labeling YAC clones. We have analyzed 51 YACs and found that 43% (22 out of 51) are chimeric and significantly larger (302 kb) than colinear ones (228 kb). One of the 51 YAC clones (2%) examined contains portions of three chromosomes and 2 (4%) seem to map to a chromosome different than that of the identifying STS. FISSH analysis offers a straightforward visualization of the entire YAC insert on the chromosomes and can be used to examine many YACs simultaneously in few days.  相似文献   

9.
Physical mapping of the rice genome with YAC clones   总被引:6,自引:0,他引:6  
Construction of a rice physical map covered by YAC clones which have been arranged over half of the genome length is presented here. A total of 1285 RFLP and RAPD markers almost evenly distributed on the rice genetic map could select 2974 YAC clones and 2443 clones of them were located on their original positions. Rice YACs carrying 350 kb average insert fragments of 2443 clones could cover 222 megabase length of the rice genome, corresponding to 52% of the whole genome size (4.3 Mb). Chromosome landing with many YAC clones on the high-density genetic map loci efficiently integrated the genetic map with a physical map. This is the first step to generate a comprehensive genome map of rice. An integrated genome map should be an indispensable tool to figure out genome structure as well as to clone trait genes by map-based cloning.  相似文献   

10.
First efforts for physical mapping of rice chromosomes 8 and9 were carried out by ordering YAC clones of a rice genomicDNA library covering six genome equivalents with mapped DNAmarkers. A total of 79 and 74 markers from chromosomes 8 and9, respectively, were analyzed by YAC colony and Southern hybridizationusing RFLP markers of cDNA and genomic clones, and by polymerasechain reaction (PCR) screening using PCR-derived and sequence-taggedsite (STS) markers. As a result, 252 YAC clones were confirmedto contain the mapped DNA fragments on both chromosomes. A contigmap was constructed by ordering these YAC clones and about 53%and 43% genome coverage was obtained for chromosomes 8 and 9,respectively, assuming a YAC clone size of 350 kb and overlapbetween neighboring YACs of 50%. A continuous array of YAC cloneswith minimum overlap gave a total size of 18.9 Mb for chromosome8 and 15.6 Mb for chromosome 9, which are close to previousestimates. These contig maps may provide valuable informationthat can be useful in understanding chromosome structure andisolating specific genes by map-based cloning.  相似文献   

11.
Using yeast artificial chromosomes, we have generated a high-resolution physical map for 2.7 Mb of human chromosomal region 3q27. The YAC clones group into three contigs, one of which has also been linked to the CEPH YAC contig map of human chromosome 3. Fluorescencein situhybridization has been used to order the contigs on the chromosome and to estimate the distance between them. Expressed sequence tags for five genes, including three members of the cystatin gene family and a gene thought to be involved in B-cell non-Hodgkin lymphoma, have been placed within the YAC contigs, and 12 putative CpG islands have been identified. These YACs provide a useful resource to complete the physical mapping of 3q27 and to begin identification and characterization of further genes that are located there.  相似文献   

12.
A method for linking genomic sequences cloned in yeast artificial chromosomes (YACs) has been tested using Caenorhabditis elegans as a model system. Yeast clones carrying YACs with repeated sequences were selected from a C. elegans genomic library, total DNA was digested with restriction enzymes, transferred to nylon membranes and probed with a variety of repetitive DNA probes. YAC clones that overlap share common bands with one or more repetitive DNA probes. In 159 YAC clones tested with one restriction enzyme and six probes 28 overlapping clones were detected. The advantages and limitations of this method for construction of YAC physical maps is discussed.  相似文献   

13.
A strategy for the analysis of yeast artificial chromosome (YAC) clones that relies on polymerase chain reaction (PCR) amplification of small restriction fragments from isolated YACs following adapter ligation was developed. Using this method, termed YACadapt, we have amplified several YACs from a human Xq24-qter library and have used the PCR products for physical mapping by somatic cell hybrid deletion analysis and fluorescent in situ hybridization. One YAC, RS46, was mapped to band Xq27.3, near the fragile X mutation. The PCR product is an excellent renewable source of YAC DNA for analyses involving hybridization of YAC inserts to a variety of DNA/RNA sources.  相似文献   

14.
The major QTL for submergence tolerance was locate in the 5.9 cM interval between flanking RFLP markers. To narrow down this region, a physical map was constructed using YAC and BAC clones. A 400-kb YAC was identified in this region and later its end fragments were used to screen a rice BAC library. Through chromosome walking, 24 positive BAC clones formed two contigs around linked-RFLP markers, R1164 and RZ698. Using one YAC end, six BAC ends and three RFLP markers, a fine-scale map was constructed of the 6.8-cM interval of S10709-RZ698 on rice chromosome 9. The submergence tolerance and related trait were located in a small, well-defined region around BAC-end marker 180D1R and RFLP marker R1164. The physical-to-map distance ratio in this region is as small as 172.5 kb/cM, showing that this region is a hot spot for recombination in the rice genome.  相似文献   

15.
A mutable slender glume gene slg, which often reverts to the wild-type state, was induced by gamma-ray irradiation of seeds of the japonica rice cultivar 'Gimbozu'. The final goal was to understand whether the slender glume mutation was associated with the insertion of a transposable element, utilizing map-based cloning techniques. The RFLP (restriction fragment length polymorphism) analysis revealed that the slg locus was located between two RFLP loci, XNpb33 and R1440, on chromosome 7 with recombination values of 3.1% and 1.0%, respectively. Using these two RFLP loci as probes, five YAC (yeast artificial chromosome) clones containing either of these two loci were selected from a YAC library. Subsequently, both end fragments of these YAC clones, amplified by the inverse PCR (IPCR) method, were used to select new YAC clones more closely located to the slg locus. After repeating such a procedure, we successfully constructed a 6-cM YAC contig, and identified four overlapping YAC clones, Y1774, Y3356, Y5124, and Y5762, covering the slg locus. The chromosomal location of the slg was narrowed down to the region with a physical distance of less than 280 kb between the right-end fragments of Y1774 and Y3356.  相似文献   

16.
A rapid and safe method of Yeast Artificial Chromosome (YAC) physical mapping by cosmid 'fingerprinting' is presented. YACs are subcloned into cosmids which are prepared without previous separation of cloned DNA from host DNA. Groups of overlapping clones are detected according to their restriction fragments size and intensity after hybridization with total human DNA. To test this approach, a cosmid library was constructed from total DNA of a yeast strain containing a 420 kb YAC. A single contig of 84 clones was obtained with a minimal detectable overlap of 60% i.e. a 9.2 fold representative library. Large scale physical mapping of YACs would take full advantage of the DNA preparation procedure employed in this work and allows to take into account restriction fragment intensities.  相似文献   

17.
We have isolated four repetitive DNA fragments from maize DNA. Only one of these sequences showed homology to sequences within the EMBL database, despite each having an estimated copy number of between 3 x 104 and 5 x 104 per haploid genome. Hybridization of the four repeats to maize mitotic chromosomes showed that the sequences are evenly dispersed throughout most, but not all, of the maize genome, whereas hybridization to yeast colonies containing random maize DNA fragments inserted into yeast artificial chromosomes (YACs) indicated that there was considerable clustering of the repeats at a local level. We have exploited the distribution of the repeats to produce repetitive sequence fingerprints of individual YAC clones. These fingerprints not only provide information about the occurrence and organization of the repetitive sequences within the maize genome, but they can also be used to determine the organization of overlapping maize YAC clones within a contiguous fragment (contigs). Key words : maize, repetitive DNA, YACs.  相似文献   

18.
Yeast artificial chromosome (YAC) clones were arranged on thepositions of restriction fragment length polymorphism (RFLP)and sequence-tagged site (STS) markers already mapped on thehigh-resolution genetic maps of rice chromosomes 3 and 11. Froma total of 416 and 242 YAC clones selected by colony/Southernhybridization and polymerase chain reaction (PCR) analysis,238 and 135 YAC clones were located on chromosomes 3 and 11,respectively. For chromosomes 3 and 11, 24 YAC contigs and islandswith total coverage of about 46% and 12 contigs and islandswith coverage of about 40%, respectively, were assigned. Althoughmany DNA fragments of multiple copy marker sequences could notbe mapped to their original locations on the genetic map bySouthern hybridization because of a lack of RFLP, the physicalmapping of YAC clones could often assign specific locationsof such multiple copy sequences on the genome. The informationprovided here on contig formation and similar sequence distributionrevealed by ordering YAC clones will help to unravel the genomeorganization of rice as well as being useful in isolation ofgenes by map-based cloning.  相似文献   

19.
S J Hsu  R P Erickson 《Génome》2000,43(3):427-433
Four yeast artificial chromosome (YAC) contigs, physically approximately 8 Mb, have been constructed spanning a 10-cM region on mouse proximal chromosome 18 and include the sites of 21 known genes, including those near the twirler (Tw) locus and the recently isolated Niemann-Pick type C1 (npc1) gene, formerly designated as the spm locus. This physical map consists of 49 YAC clones that cover roughly 15% of the chromosome. The physical order of 38 microsatellite sequence-tagged sites (STSs) could be assembled and confirmed based on their presence or absence in individual YACs, from proximal D18Mit109 through distal D18Mit68. These YACs provide an important resource for the further characterization and identification of known and unknown genes. The physical map has been integrated with our previously published genetic linkage map and showed an average genetic to physical distance of cM/Mb > 1.1.  相似文献   

20.
Mapping the whole human genome by fingerprinting yeast artificial chromosomes.   总被引:18,自引:0,他引:18  
Physical mapping of the human genome has until now been envisioned through single chromosome strategies. We demonstrate that by using large insert yeast artificial chromosomes (YACs) a whole genome approach becomes feasible. YACs (22,000) of 810 kb mean size (5 genome equivalents) have been fingerprinted to obtain individual patterns of restriction fragments detected by a LINE-1 (L1) probe. More than 1000 contigs were assembled. Ten randomly chosen contigs were validated by metaphase chromosome fluorescence in situ hybridization, as well as by analyzing the inter-Alu PCR patterns of their constituent YACs. We estimate that 15% to 20% of the human genome, mainly the L1-rich regions, is already covered with contigs larger than 3 Mb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号