首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inoculating legumes with commercial rhizobial inoculants is a common agriculture practice. Generally, inoculants are sold in liquid or in solid forms (mixed with carrier). The production of inoculants involves a step in which a high number of cells are produced, followed by the product formulation. This process is largely governed by the cost related to the medium used for rhizobial growth and by the availability of a carrier source (peat) for production of solid inoculant. Some industrial and agricultural by-products (e.g. cheese whey, malt sprouts) contain growth factors such as nitrogen and carbon, which can support growth of rhizobia. Other agro-industrial wastes (e.g. plant compost, filtermud, fly-ash) can be used as a carrier for rhizobial inoculant. More recently, wastewater sludge, a worldwide recyclable waste, has shown good potential for inoculant production as a growth medium and as a carrier (dehydrated sludge). Sludge usually contains nutrient elements at concentrations sufficient to sustain rhizobial growth and heavy metals are usually below the recommended level. In some cases, growth conditions can be optimized by a sludge pre-treatment or by the addition of nutrients. Inoculants produced in wastewater sludge are efficient for nodulation and nitrogen fixation with legumes as compared to standard inoculants. This new approach described in this review offers a safe environmental alternative for both waste treatment/disposal and inoculant production.  相似文献   

2.
We have examined the survival of four cowpea rhizobia strains in Jamaican peat to determine its suitability as inoculant carrier. All strains survived well since more than 107 cells of rhizobia per gram of peat were recovered from the inoculant after storage for 6 months at 30C. Survival of cowpea rhizobia was better when inoculants were stored at 4 than 30C. The native strains JRC29 and JRW3 (isolated in Jamaica) survived much better than the introduced strains MI-50A and IRC291 (isolated in West Africa). Survival of cowpea rhizobia was not significantly increased when peat was mixed with 1% sucrose. Our results suggest that Jamaican peat may be used as a carrier for inoculant production.  相似文献   

3.
The effects of inoculant carrier, temperature, and storage period on the survival of Rhizobium strains were determined by plate count and most-probable-number analyses. Preliminary experiments showed that survival of rhizobia was affected by each of these factors and their interactions. Results of further studies indicated that six strains of rhizobia survived better at high temperatures when lyophilized and suspended in an oil carrier as compared to finely ground peat. The oil base inocula contained ca. 105 viable rhizobia per g after 56 days of incubation at 60°C, whereas peat base inocula contained ≤10 rhizobia per g. These results suggest that an oil carrier will protect rhizobia from rapid death at usually lethal high temperatures.  相似文献   

4.
Screening was performed on nine carriers to find an improved formulation for Agrobacterium radiobacter K84 cells. The survival data showed that it is possible to preserve A. radiobacter cells on dry solid supports for a long time provided that the storage temperature is 4 degrees C and that the inoculation volume for 4 x 10(9) CFU g-1 is not less than 0.15 ml g of carrier-1. On the other hand, a substantial carrier water content was necessary for room temperature storage. Many materials proved to be suitable as microbial carriers; in some cases, vermiculite allowed long storage times comparable to those reported for peat or carboxymethyl cellulose, which are already employed in some commercial A. radiobacter K84 products. Furthermore, vermiculite assured full and immediate biological activity in the prevention of crown gall, showing that it is suitable for a new formulation of strain K84. A hypothesis to explain the different survival abilities in wet and dry conditions is presented.  相似文献   

5.
Screening was performed on nine carriers to find an improved formulation for Agrobacterium radiobacter K84 cells. The survival data showed that it is possible to preserve A. radiobacter cells on dry solid supports for a long time provided that the storage temperature is 4 degrees C and that the inoculation volume for 4 x 10(9) CFU g-1 is not less than 0.15 ml g of carrier-1. On the other hand, a substantial carrier water content was necessary for room temperature storage. Many materials proved to be suitable as microbial carriers; in some cases, vermiculite allowed long storage times comparable to those reported for peat or carboxymethyl cellulose, which are already employed in some commercial A. radiobacter K84 products. Furthermore, vermiculite assured full and immediate biological activity in the prevention of crown gall, showing that it is suitable for a new formulation of strain K84. A hypothesis to explain the different survival abilities in wet and dry conditions is presented.  相似文献   

6.
The effect of a variety factors on the survival of several rhizobia strains on inoculants and inoculated seeds has been evaluated. Since the rhizobia strains showed different cell-density-evolution patterns on peat-based inoculants and on inoculated seeds, several inoculant formulations with highly effective Rhizobium/Bradyrhizobium strains (for Lupinus, Hedysarum, Phaseolus and Glycine max.) were monitored under the following storage conditions: (a) the inoculants were kept refrigerated (at 4 °C), or (b) at room temperature (25 °C). The effect of water content (30–50%, w/w) in the inoculants as well as that of several seed-coating adhesives were also investigated. Alternative carriers including perlite and vermiculite were tested. For all of the strains, survival on sterile peat-based inoculants was higher than on the corresponding unsterile peat formulation; for the latter, refrigerated storage conditions are recommended to ensure high bacterial densities. The water content of the inoculants had a differential effect on strain survival depending on the sterility of the peat, such that a high water content was more detrimental when unsterilized peat was employed. The best adherent for rhizobia survival was a gum arabic/water solution. Perlite was as effective as peat in maintaining a high population of rhizobia, at least for 6 months of storage. Electronic Publication  相似文献   

7.
Fully grown broth cultures of various fast- and slow-growing rhizobia were deliberately diluted with various diluents before their aseptic incorporation into autoclaved peat in polypropylene bags (aseptic method) or mixed with the peat autoclaved in trays (tray method). In a factorial experiment with the aseptic method, autoclaved and irradiated peat samples from five countries were used to prepare inoculants with water-diluted cultures of three Rhizobium spp. When distilled water was used as the diluent, the multiplication and survival of rhizobia in the peat was similar to that with diluents having a high nutrient status when the aseptic method was used. In the factorial experiment, the mean viable counts per gram of inoculant were log 9.23 (strain TAL 102) > log 8.92 (strain TAL 82) > log 7.89 (strain TAL 182) after 24 weeks of storage at 28°C. The peat from Argentina was the most superior for the three Rhizobium spp., with a mean viable count of log 9.0 per g at the end of the storage period. The quality of inoculants produced with diluted cultures was significantly (P = 0.05) better with irradiated than with autoclaved peat, as shown from the factorial experiment. With the tray method, rhizobia in cultures diluted 1,000-fold or less multiplied and stored satisfactorily in the presence of postinoculation contaminants, as determined by plate counts, membrane filter immunofluorescence, and plant infection procedures. All strains of rhizobia used in both the methods showed various degrees of population decline in the inoculants when stored at 28°C. Fast- and slow-growing rhizobia in matured inoculants produced by the two methods showed significant (P < 0.01) decline in viability when stored at 4°C, whereas the viability of some strains increased significantly (P < 0.01) at the same temperature. The plant effectiveness of inoculants produced with diluted cultures and autoclaved peat did not differ significantly from that of inoculants produced with undiluted cultures and gamma-irradiated peat.  相似文献   

8.
The effect of various carrier formulations of Bacillus subtilis and Pseudomonas putida were tested on germination, growth, and yield of lettuce and cucumber crops in the presence of Pythium aphanidermatum and Fusarium oxysporum f.sp. cucurbitacearum, respectively. Survival of B. subtilis and P. putida in various carriers under refrigeration (about 0 degree C) and at room temperature (about 22 degrees C) was also studied. In all carrier formulations, B. subtilis strain BACT-0 survived up to 45 days. After 45 days of storage at room temperature (about 22 degrees C), populations B. subtilis strain BACT-0 were significantly higher in vermiculite, kaolin, and bacterial broth carriers compared with other carriers. Populations of P. putida were significantly higher in vermiculite, peat moss, wheat bran, and bacterial broth than in other carriers when stored either under refrigeration (about 0 degree C) or at room temperature (about 22 degrees C) for 15 or 45 days. Germination of lettuce seed was not affected in vermiculite, talc, kaolin, and peat moss carriers, but germination was significantly reduced in alginate and bacterial broth carriers of B. subtilis compared to the non-treated control. Germination of cucumber seed was not affected by any of the carriers. Significantly higher fresh lettuce and root weights were observed in vermiculite and kaolin carriers of B. subtilis compared with P. aphanidermatum-inoculated control plants. Lettuce treated with vermiculite, and kaolin carriers of B. subtilis, or non-inoculated control lettuce plants had significantly lower root rot ratings than talc, peat moss, bacterial broth, and P. aphanidermatum-inoculated control plants. Growth and yield of cucumber plants were significantly higher in vermiculite-based carrier of P. putida than the other carriers and Fusarium oxysporum f.sp. cucurbitacearum-inoculated plants.  相似文献   

9.
Whey, a by-product of the dairy industry, has been found to protect the rhizobia cells during freezing and thawing. Cells of rhizobia grown on whey sustained freezing better at −18°C than did cells grown on mannitol or sucrose. Suspensions of cells grown on whey or mannitol that were suspended in whey performed equally well at −18 and −80°C, with 94 and 100% survival, respectively. Whey-grown rhizobia in pellets withstood desiccation better than did their mannitol-grown equivalents. Rhizobia that were grown on whey and then inoculated onto commercial peat showed a survival rate of 100% after 23 weeks at −4°C. Whey-grown cells in peat performed better at various temperatures during storage, even when they were exposed to desiccation, than did mannitol-grown cells in peat. Whey, therefore, offers interesting possibilities as a Rhizobium protectant for the inoculum industry.  相似文献   

10.
Enumeration of rhizobia by enzyme-linked immunosorbent assay (ELISA)   总被引:1,自引:1,他引:0  
The use of the enzyme-linked immunosorbent assay (ELISA) to enumerate rhizobia in peat carrier and in soil has been investigated. The ELISA technique takes less time than the conventional plant infection technique often used to enumerate rhizobia present in the presence of other micro-organisms. A minimum of 102–103 cells are required for a detectable ELISA reaction, limiting the use of this technique when the number of rhizobia is low.  相似文献   

11.
Recovery of Rhizobium leguminosarum cells by centrifugation after growth in an industrial fermenter was 100-fold higher when cells were grown on yeast extract (5 g/1) as sole source of carbon and nitrogen when compared with the yields recovered when cells were grown in standard mannitol-yeast extract medium. Methods of storing concentrated suspensions of R. leguminosarum were investigated. Freeze-drying caused a marked decrease in viable cell numbers. Viable cell numbers of bacterial concentrates stored in peat decreased steadily from 1011-1012 cfu/g to 109 cfu/g or less during 26 weeks storage at room temperature or at 4°C. Cell concentrates stored in 40% glycerol at — 20°C maintained viable numbers higher than 1011 cfu/ml during a 76 week storage period.  相似文献   

12.
AIMS: To develop bacterial inoculation treatments on sugar-beet seed that will maintain a commercially acceptable degree of viability for a minimum of 4 months storage at ambient temperature. METHODS AND RESULTS: Single rifampicin-resistant (Rif(+)) strains of both Gram-positive and negative bacterial isolates (mostly pseudomonads) were applied in turn to sugar-beet seed in a comparative study by seed soaking, encapsulation in alginate, pelleting using an inoculated peat carrier or seed priming. The treated seed was assessed for bacterial survival over a time course by plating out homogenized samples onto a selective medium. Priming inoculation offered a significant improvement over all the other application strategies tested. After pelleting with fungicides and drying at 40 degrees C, Pseudomonas marginalis/putida P1W1 maintained populations of >6.6 log(10) CFU g(-1) seed during 4 months storage at 15 degrees C. Subsequent experiments verified a stabilized population under these storage conditions with commercial pellets at <7% moisture content. CONCLUSION: An inoculation method was established which allowed the survival on seed of a Gram-negative bacterium at ambient temperature with little loss in viability. SIGNIFICANCE AND IMPACT OF THE STUDY: This has promising implications for the delivery of beneficial bacteria, especially Gram-negative strains, on sugar beet.  相似文献   

13.
The growth and survival of two strains of rhizobia ( Rhizobium leguminosarum bv. trifolii strain WU95 and R. spp. strain CB3060) injected into finely milled, sterile peat contained in packets of various packaging films were compared after 2, 4 and 8 weeks storage at 26°C. The films were 50 μm and 100 μm low density polyethylene (LDPE), 50 μm high density polyethylene (HDPE) and polyethylene laminated foil and were chosen to provide a range of gas transmission and water permeability properties. Survival of both strains varied directly with the transmission and permeability properties of the film, under controlled storage conditions. These findings provide further evidence that a degree of aeration is necessary for survival of rhizobia in peat-based legume inoculants. The choice of the most suitable film needs consideration of the moisture characteristic curve of the carrier.  相似文献   

14.
Summary The growth and survival of rhizobium were studied in neutralized and sterilized soil-peat cultures containing alder bog peat, old moss peat, young reed peat, or young moss peat enriched with lucerne meal and sucrose. Although all these media proved to be excellent carriers for rhizobium, old moss peat from the 0–20 cm layer was less favourable than old moss peat from the 20–40 and 40–60 cm layer, while young moss peat proved to be the least satisfactory type of peat. A low storage temperature is always beneficial for the survival of rhizobia. Neutralization with CaCO3 is to be preferred to that with CaCO3+KH2PO4. Neutralization with NH4OH exerted a detrimental effect. Much higher numbers of rhizobium were found in sterilized than in unsterilized soil-peat cultures. An antagonistic bacillus, isolated from peat, exerted a marked growth depression on rhizobium when both organisms were inoculated in sterilized soil-peat or in quartz sand media. Sterilization of the media permitted a rapid growth of the rhizobia and favoured their viability during storage, especially in autoclaved media containing nutrients. For the rhizobium ofLotonus bainesii sterilization of the peat proved essential for good growth. A harmful effect on the numbers of rhizobia was noted during the first week after the inoculation of the soil-peat mixtures when autoclaving had been carried out for 5 hours. This harmful effect proved, however, to be of a temporary nature.  相似文献   

15.
The survival of the Bradyrhizobium elkanii strains SEMIA 587 and SEMIA 5019 ( = 29W) used for soybean inoculation was evaluated in the biopolymer carrier xanthan together with Jatai gum for up to eight months of storage. Peat carrier was used for comparison. The synthetic polymers polyvinylpyrrolidone (PVP) and polyethyleneglycol (PEG) were added to the broth cultures which were injected into the peat and polymer carriers. Best results were obtained after the fourth month of storage with the mixture of the gums plus PVP broth, or without the additive, and these were superior to the gums plus PEG and to the peat carrier with or without PVP.  相似文献   

16.
Survival and nitrogenase efficiency ofNostoc commune andN. austinii were evaluated monthly in four carrier materials (sugarcane bagasse, wheat straw, wheat bran and peat) at 10, 30 and 40 °C. Survival, as well as nitrogenase activity, of both species was much better in peat, followed by wheat bran, sugarcane bagasse than in wheat straw at 10 and 30 °C up to three months, the activity ofN. commune being better thanN. austinii. None of the materials tested was found to be superior to peat as carrier ofNostoc species but the results indicated that wheat bran and sugarcane bagasse can be used as inoculant carriers with relative success. Storage of inoculants in these carriers is feasible at 30 °C up to three months.  相似文献   

17.
Peat from three sources was dried, milled and packed separately in polyethylene bags and sterilized by irradiation. The carrier was impregnated with broth cultures of either Rhizobium leguminosarum bv. trifolii strain WU95, Bradyrhizobium japonicum strain CB1809 or B. lupini strain WU425 and sterile water to provide five moisture potentials in the range > - 1 × 104 - 1 × 106 Pa. The packets were stored at 26°C under conditions which restricted moisture loss. Numbers of root nodule bacteria were counted at intervals up to 12 weeks. No single moisture potential was optimum for all strains in all carriers because of a significant ( P < 0.05) interaction between moisture potential × strain × carrier × time. Where direct comparisons could be made, all strains survived best at - 1 × 104 and/or −3.2 × 104 Pa. Seeds of Trifolium subterraneum and polypropylene beads (used to avoid seed coat toxicity), were inoculated with WU95 prepared in two sources of peat and at each of the above moisture potentials and stored at 15°C. Seed coat toxicity significantly effected the log death rate ( k ) of WU95 on subterraneum clover seed for the period 0–0.25 d ( k 1.796) compared with k - 0.399 for polypropylene beads. In the first 24 h moisture did not affect survival but by 28 d rhizobia grown in Badenoch peat survived best at −3.2 × 104 Pa. In Millicent peat, survival was equally as good at −3.2 × 104 and −1 × 104 Pa.  相似文献   

18.
Evaluation of methods to solubilize and analyze cell-associated ectoenzymes   总被引:4,自引:0,他引:4  
A protocol for production, storage, and use of Shock 1 (Shk1) bioreporter cells for toxicity monitoring in wastewater treatment facilities was developed. Shk1 is a bioluminescent toxicity bioreporter for activated sludge previously constructed by the incorporation of lux genes into an activated sludge microorganism.

A number of factors affecting Shk1 growth and bioluminescence were examined including the growth medium, tetracycline concentration, storage conditions, and test media. Based on the results of these experiments, a toxicity testing protocol was developed that involved growth of cultures in nutrient broth with tetracycline, storage of cultures at 4 °C, cell activation by reinoculation into nutrient broth, and toxicity testing by cell injection into the test media. Effective use of this approach required standardized time intervals for cell growth, storage, activation and exposure in the test media.

Bioluminescence from Shk1 cells was measured in nutrient broth and influent wastewater and activated sludge mixed liquor from a municipal wastewater treatment plant. Using the Shk1 toxicity testing protocol, Zn EC50 values for bioluminescence in nutrient broth, influent wastewater, and activated sludge mixed liquor were approximately 42, 7, and 32 mg/l, respectively. Zn concentrations as low as 1 mg/l could be detected in influent wastewater. The detection limit in influent wastewater is below the Zn concentrations typically reported to affect the activated sludge process.  相似文献   


19.
The production and quality of rhizobial inoculants in many developing countries is limited by the availability of suitable carriers or technological limitations. Experiments were conducted to evaluate the potential of various inexpensive and widely available carrier materials. The carriers, evaluated, were: perlite with pH adjusted with calcium carbonate or charcoal, 1:4 mixtures of perlite and malt residue, sugarcane bagasse, coal, and rice husk. We also contrasted sterilisation procedures (autoclaving or gamma irradiation) and incubation after injection (with or without initial two weeks incubation at 28 °C) for these various carriers. Survival of Bradyrhizobium japonicum strain CB1809 was monitored over a period of 6 months upon storage at 4 °C. Most carriers evaluated, were able to maintain rhizobial populations of more than 1 × 109 rhizobia per gram of inoculant over that time period, with mixtures of perlite with either sugarcane bagasse or malt residue supporting the largest rhizobial populations and a mixture of perlite and rice husk the lowest. All carriers supported rhizobial growth over the 6 months period. Initially, rhizobial populations were greater with gamma irradiation than autoclaving, however after 6 months, this response was significant only with the perlite and sugarcane bagasse mixture. The incubation of the inoculant after injection also ultimately did not benefit rhizobial levels for any of the carriers, tested. Using simple sterilisation procedures and without incubating after injection, perlite based carriers can produce high quality inexpensive inoculants, maintaining bacterial populations of more than 1 × 109/g rhizobia for at least 6 months.  相似文献   

20.
Liquid media containing potato extract and 1% of glucose or sucrose were used to culture root-nodule bacteria (rhizobia) in shaken Erlenmeyer flasks. For comparison, these bacteria were also cultured in yeast extract-mannitol broth (YEMB) as a standard medium. Proliferation of rhizobia was monitored by measuring optical densities (OD550) of the cultures and by plate counting of the viable cells (c.f.u) of the bacteria. In general, multiplication of the rhizobia in potato extract-glucose broth (PEGB) and potato extract-sucrose broth (PESB) was markedly faster, as indicated by higher values of OD550, than in YEMB. The numbers of R. leguminosarum by. vicae GGL and S. meliloti 330 in PEGB and PEGB were high and ranged from 1.2 x 10(10) to 4.9 x 10(10) mL(-1) after 48 h of incubation at 28 degrees C. B. japonicum B3S culture in PEGB contained 6.4 x 10(9) c.f.u. ml(-1) after 72 h of incubation. PEGB and YEMB cultures of the rhizobia were similar with respect to their beneficial effects on nodulation of the host-plants of these bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号