首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atrazine metabolism in resistant corn and sorghum   总被引:3,自引:1,他引:2       下载免费PDF全文
Shimabukuro RH 《Plant physiology》1968,43(12):1925-1930
The metabolism of 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) in the resistant species, corn (Zea mays L.) and sorghum (Sorghum vulgare Pers.) was not the same. In corn, atrazine was metabolized via both the 2-hydroxylation and N-dealkylation pathways while sorghum metabolized atrazine via the N-dealkylation pathway. Atrazine metabolism in corn yielded the metabolites, 2-hydroxy-4-ethylamino-6-isopropylamino-s-triazine (hydroxyatrazine), 2-hydroxy-4-amino-6-isopropylamino-s-triazine (hydroxycompound I), and 2-hydroxy-4-amino-6-ethylamino-s-triazine (hydroxycompound II). None of these hydroxylated derivatives appeared as metabolites of atrazine in sorghum.

Hydroxycompounds I and II were formed in 2 ways in corn: (1) by benzoxazinone-catalyzed hydrolysis of 2-chloro-4-amino-6-isopropylamino-s-triazine (compound I) and 2-chloro-4-amino-6-ethylamino-s-triazine (compound II) that were formed by N-dealkylation of atrazine and (2) by N-dealkylation of hydroxyatrazine, the major atrazine metabolite in corn. The interaction of the 2-hydroxylation and N-dealkylation pathways in corn results in the formation of the 3 hydroxylated non-phytotoxic derivatives of atrazine.

  相似文献   

2.
Glutathione conjugation: atrazine detoxication mechanism in corn   总被引:6,自引:5,他引:1       下载免费PDF全文
Glutathione conjugation (GS-atrazine) of the herbicide, 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) is another major detoxication mechanism in leaf tissue of corn (Zea mays, L.). The identification of GS-atrazine is the first example of glutathione conjugation as a biotransformation mechanism of a pesticide in plants. Recovery of atrazine-inhibited photosynthesis was accompanied by a rapid conversion of atrazine to GS-atrazine when the herbicide was introduced directly into leaf tissue. N-De-alkylation pathway is relatively inactive in both roots and shoots. The nonenzymatic detoxication of atrazine to hydroxyatrazine is negligible in leaf tissue. The hydroxylation pathway contributed significantly to the total detoxication of atrazine only when the herbicide was introduced into the plant through the roots. The metabolism of atrazine to GS-atrazine may be the primary factor in the resistance of corn to atrazine.  相似文献   

3.
Atrazine, a herbicide widely used in corn production, is a frequently detected groundwater contaminant. Fourteen bacterial strains able to use this herbicide as a sole source of nitrogen were isolated from soils obtained from two farms in Canada and two farms in France. These strains were indistinguishable from each other based on repetitive extragenic palindromic PCR genomic fingerprinting performed with primers ERIC1R, ERIC2, and BOXA1R. Based on 16S rRNA sequence analysis of one representative isolate, strain C147, the isolates belong to the genus Pseudaminobacter in the family Rhizobiaceae. Strain C147 did not form nodules on the legumes alfalfa (Medicago sativa L.), birdsfoot trefoil (Lotus corniculatus L.), red clover (Trifolium pratense L.), chickpea (Cicer arietinum L.), and soybean (Glycine max L.). A number of chloro-substituted s-triazine herbicides were degraded, but methylthio-substituted s-triazine herbicides were not degraded. Based on metabolite identification data, the fact that oxygen was not required, and hybridization of genomic DNA to the atzABC genes, atrazine degradation occurred via a series of hydrolytic reactions initiated by dechlorination and followed by dealkylation. Most strains could mineralize [ring-U-14C]atrazine, and those that could not mineralize atrazine lacked atzB or atzBC. The atzABC genes, which were plasmid borne in every atrazine-degrading isolate examined, were unstable and were not always clustered together on the same plasmid. Loss of atzB was accompanied by loss of a copy of IS1071. Our results indicate that an atrazine-degrading Pseudaminobacter sp. with remarkably little diversity is widely distributed in agricultural soils and that genes of the atrazine degradation pathway carried by independent isolates of this organism are not clustered, can be independently lost, and may be associated with a catabolic transposon. We propose that the widespread distribution of the atrazine-degrading Pseudaminobacter sp. in agricultural soils exposed to atrazine is due to the characteristic ability of this organism to utilize alkylamines, and therefore atrazine, as sole sources of carbon when the atzABC genes are acquired.  相似文献   

4.
Evolution of atrazine-degrading capabilities in the environment   总被引:2,自引:0,他引:2  
Since their first introduction in the mid 1950s, man-made s-triazine herbicides such as atrazine have extensively been used in agriculture to control broadleaf weed growth in different crops, and thus contributed to improving crop yield and quality. Atrazine is the most widely used s-triazine herbicide for the control of weeds in crops such as corn and sorghum. Although atrazine was initially found to be slowly and partially biodegradable, predominantly by nonspecific P450 monoxygenases which do not sustain microbial growth, microorganisms gradually evolved as a result of repeated exposure, started using it as a growth substrate and eventually succeeded in mineralizing it. Within three decades, an entirely new hydrolase-dependent pathway for atrazine mineralization emerged and rapidly spread worldwide among genetically different bacteria. This review focuses on the enzymes involved in atrazine mineralization and their evolutionary histories, the genetic composition of microbial populations involved in atrazine degradation and the biotechnologies that have been developed, based on these systems, for the bioremediation of atrazine contamination in the environment.  相似文献   

5.
The degradation of herbicide atrazine (2-chloro-4-ethylamino-6-isopropylamino-1, 3, 5-triazine) by a soil bacterium is reported. The bacterium involved is a species of Nocardia, which utilizes the atrazine as the sole source of carbon and nitrogen. A new metabolite, 4-amino-2-chloro-1, 3, 5-triazine, of the degradation of atrazine in the presence of glucose has been identified. The results further substantiated that atrazine can be degraded by soil microorganisms and indicated that deamination can also occur, as well as dealkylation. 4-Amino-2-chloro-1,3,5-triazine did not show phytotoxic activity to oat (Avena sativa L.), demonstrating that deamination insures detoxification.  相似文献   

6.
The inclusion of sub-lethal amounts ofthe herbicide atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] in the nutrient solution supplied to maize and barley increased the growth of the root and shoot and the uptake of nitrate. The activities of nitrate and nitrite reductases, glutamine synthetase and glutamate synthase were enhanced and the amino acid and nitrate contents of the xylem sap increased. All these effects of atrazine were found only in plants grown with nitrate as the nitrogen source. The uptake of 15NO3? and its incorporation into protein in the root and shoot of maize and barley seedlings was significantly greater in the atrazine treated plants. However, a stimulation in the incorporation of leucine-[14C] into TCA-precipitable protein of detached leaves from 7-day-old barley seedlings was obtained only in the absence of a supply of combined nitrogen either in the culture medium or in the in vitro incubation mixture containing the labelled amino acid.  相似文献   

7.
The effects of the photosystem II herbicides diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) and atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) on the photosynthetic membranes of a cyanobacterium, Aphanocapsa 6308, were compared to the effects on a higher plant, Spinacia oleracea. The inhibition of photosystem II electron transport by these herbicides was investigated by measuring the photoreduction of the dye 2,6-dichlorophenol-indophenol spectrophotometrically using isolated membranes. The concentration of herbicide that caused 50% inhibition of electron transport (I50 value) in Aphanocapsa membranes for diuron was 6.8 × 10−9 molar and the I50 value for atrazine was 8.8 × 10−8 molar. 14C-labeled diuron and atrazine were used to investigate herbicide binding with calculated binding constants (K) being 8.2 × 10−8 molar for atrazine and 1.7 × 10−7 molar for diuron. Competitive binding studies carried out on Aphanocapsa membranes using radiolabeled [14C]atrazine and unlabeled diuron revealed that diuron competed with atrazine for the herbicide-binding site. Experiments involving the photoaffinity label [14C]azidoatrazine (2-azido-4-ethylamino-6-isopropylamino-2-triazine) and autoradiography of polyacrylamide gels indicated that the herbicide atrazine binds to a 32-kilodalton protein in Aphanocapsa 6308 cell extracts.  相似文献   

8.
Summary The application of the algal method for soil bioassay has been extended to herbicide (atrazine). The method is capable of detecting less than 0.5 ppm of atrazine in solution. In residual herbicide assay the method is suitable for screening soils. For herbicide requirement prediction, the technique appeared to be superior to chemical analysis and applicable to soils of widely different characteristics. This has been demonstrated with oat pot trial.-2-chloro-4-ethylamino-6 isopropylamino-s-triazine.  相似文献   

9.
Atrazine is a widely used herbicide with great environmental concern due to its high potential to contaminate soil and waters. An atrazine-degrading bacterial strain HB-6 was isolated from industrial wastewater and the 16S rRNA gene sequencing identified HB-6 as a Bacillus subtilis. PCR assays indicated that HB-6 contained atrazine-degrading genes trzN, atzB and atzC. The strain HB-6 was capable of utilizing atrazine and cyanuric acid as a sole nitrogen source for growth and even cleaved the s-triazine ring and mineralized atrazine. The strain demonstrated a very high efficiency of atrazine biodegradation with a broad optimum pH and temperature ranges and could be enhanced by cooperating with other bacteria, suggesting its huge potential for remediation of atrazine-contaminated sites. To our knowledge, there are few Bacillus subtilis strains reported that can mineralize atrazine, therefore, the present work might provide some new insights on atrazine remediation.  相似文献   

10.
《Plant science》1986,47(3):173-179
Intermediate biotypes for atrazine herbicide resistance in Chenopodium polyspermum and Amaranthus bouchonii were characterized by a peculiar chlorophyll fluorescence induction curve. The intermediate biotypes were isolated from progenies of susceptible plants in maize grown in alternate years without atrazine. The lethal dose in seedling treatments was lower than that of the resistant plants but higher than for susceptible plants. Atrazine at 10 μM was near the I50-value for in vivo nitrite reductase activity in both intermediate biotypes. The activity of nitrite reducttase in the intermediate biotypes was about 75% of that of susceptible biotypes. These characteristics of intermediate biotypes were maternally inherited in crosses.  相似文献   

11.
The s-triazine herbicide atrazine was rapidly mineralized (i.e., about 60% of 14C-ring-labelled atrazine released as 14CO2 within 21 days) by an agricultural soil from the Nile Delta (Egypt) that had been cropped with corn and periodically treated with this herbicide. Seven strains able to degrade atrazine were isolated by enrichment cultures of this soil. DNA fingerprint and phylogenetic studies based on 16S rRNA analysis showed that the seven strains were identical and belonged to the phylogeny of the genus Arthrobacter (99% similarity with Arthrobacter sp. AD38, EU710554). One strain, designated Arthrobacter sp. strain TES6, degraded atrazine and mineralized the 14C-chain-labelled atrazine. However, it was unable to mineralize the 14C-ring-labelled atrazine. Atrazine biodegradation ended in a metabolite that co-eluted with cyanuric acid in HPLC. This was consistent with its atrazine-degrading genetic potential, shown to be dependent on the trzN, atzB, and atzC gene combination. Southern blot analysis revealed that the three genes were located on a large plasmid of about 175 kb and clustered on a 22-kb SmaI fragment. These results reveal for the first time the adaptation of a North African agricultural soil to atrazine mineralization and raise interesting questions about the pandemic dispersion of the trzN, atzBC genes among atrazine-degrading bacteria worldwide.  相似文献   

12.
Atrazine, a herbicide widely used in corn production, is a frequently detected groundwater contaminant. Nine gram-positive bacterial strains able to use this herbicide as a sole source of nitrogen were isolated from four farms in central Canada. The strains were divided into two groups based on repetitive extragenic palindromic (rep)-PCR genomic fingerprinting with ERIC and BOXA1R primers. Based on 16S ribosomal DNA sequence analysis, both groups were identified as Nocardioides sp. strains. None of the isolates mineralized [ring-U-14C]atrazine. There was no hybridization to genomic DNA from these strains using atzABC cloned from Pseudomonas sp. strain ADP or trzA cloned from Rhodococcus corallinus. S-Triazine degradation was studied in detail in Nocardioides sp. strain C190. Oxygen was not required for atrazine degradation by whole cells or cell extracts. Based on high-pressure liquid chromatography and mass spectrometric analyses of products formed from atrazine in incubations of whole cells with H218O, sequential hydrolytic reactions converted atrazine to hydroxyatrazine and then to the end product N-ethylammelide. Isopropylamine, the putative product of the second hydrolytic reaction, supported growth as the sole carbon and nitrogen source. The triazine hydrolase from strain C190 was isolated and purified and found to have a Km for atrazine of 25 μM and a Vmax of 31 μmol/min/mg of protein. The subunit molecular mass of the protein was 52 kDa. Atrazine hydrolysis was not inhibited by 500 μM EDTA but was inhibited by 100 μM Mg, Cu, Co, or Zn. Whole cells and purified triazine hydrolase converted a range of chlorine or methylthio-substituted herbicides to the corresponding hydroxy derivatives. In summary, an atrazine-metabolizing Nocardioides sp. widely distributed in agricultural soils degrades a range of s-triazine herbicides by means of a novel s-triazine hydrolase.  相似文献   

13.
2-Chloro-4,6-diamino-s-triazine (CAAT) is a metabolite of atrazine biodegradation in soils. Atrazine chlorohydrolase (AtzA) catalyzes the dechlorination of atrazine but is unreactive with CAAT. In this study, melamine deaminase (TriA), which is 98% identical to AtzA, catalyzed deamination of CAAT to produce 2-chloro-4-amino-6-hydroxy-s-triazine (CAOT). CAOT underwent dechlorination via hydroxyatrazine ethylaminohydrolase (AtzB) to yield ammelide. This represents a newly discovered dechlorination reaction for AtzB. Ammelide was subsequently hydrolyzed by N-isopropylammelide isopropylaminohydrolase to produce cyanuric acid, a compound metabolized by a variety of soil bacteria.  相似文献   

14.
Atrazine chlorohydrolase, TrzN (triazine hydrolase or atrazine chlorohydrolase 2), initiates bacterial metabolism of the herbicide atrazine by hydrolytic displacement of a chlorine substituent from the s-triazine ring. The present study describes crystal structures and reactivity of wild-type and active site mutant TrzN enzymes. The homodimer native enzyme structure, solved to 1.40 Å resolution, is a (βα)8 barrel, characteristic of members of the amidohydrolase superfamily. TrzN uniquely positions threonine 325 in place of a conserved aspartate that ligates the metal in most mononuclear amidohydrolases superfamily members. The threonine side chain oxygen atom is 3.3 Å from the zinc atom and 2.6 Å from the oxygen atom of zinc-coordinated water. Mutation of the threonine to a serine resulted in a 12-fold decrease in kcat/Km, largely due to kcat, whereas the T325D and T325E mutants had immeasurable activity. The structure and kinetics of TrzN are reminiscent of carbonic anhydrase, which uses a threonine to assist in positioning water for reaction with carbon dioxide. An isosteric substitution in the active site glutamate, E241Q, showed a large diminution in activity with ametryn, no detectable activity with atratone, and a 10-fold decrease with atrazine, when compared with wild-type TrzN. Activity with the E241Q mutant was nearly constant from pH 6.0 to 10.0, consistent with the loss of a proton-donating group. Structures for TrzN-E241Q were solved with bound ametryn and atratone to 1.93 and 1.64 Å resolution, respectively. Both structure and kinetic determinations suggest that the Glu241 side chain provides a proton to N-1 of the s-triazine substrate to facilitate nucleophilic displacement at the adjacent C-2.  相似文献   

15.
The widespread use and relative persistence of s-triazine compounds such as atrazine and simazine have led to increasing concern about environmental contamination by these compounds. Few microbial isolates capable of transforming substituted s-triazines have been identified. Rhodococcus corallinus NRRL B-15444 has previously been shown to possess a hydrolase activity that is responsible for the dechlorination of the triazine compounds deethylsimazine (6-chloro-N-ethyl-1,3,5-triazine-2,4-diamine) (CEAT) and deethylatrazine (6-chloro-N-isopropyl-1,3,5-triazine-2,4-diamine) (CIAT). The enzyme responsible for this activity was purified and shown to be composed of four identical subunits of 54,000 Da. Kinetic experiments revealed that the purified enzyme is also capable of deaminating the structurally related s-triazine compounds melamine (2,4,6-triamino-1,3,5-triazine) (AAAT) and CAAT (2-chloro-4,6-diamino-1,3,5-triazine), as well as the pyrimidine compounds 2,4,6-triaminopyrimidine (AAAP) and 4-chloro-2,6-diaminopyrimidine (CAAP). The triazine herbicides atrazine and simazine inhibit the hydrolytic activities of the enzyme but are not substrates. Induction experiments demonstrate that triazine hydrolytic activity is inducible and that this activity rises approximately 20-fold during induction.  相似文献   

16.
In the last years the chloro-s-triazine active substance terbuthylazine has been increasingly used as an herbicide and may leave residues in the environment which can be of concern. The present study aimed at developing a bioaugmentation tool based on the soil bacterium Arthrobacter aurescens strain TC1 for the remediation of terbuthylazine contaminated soils and at examining its efficacy for both soil and aquatic compartments. First, the feasibility of growing the bioaugmentation bacterium inocula on simple sole nitrogen sources (ammonium and nitrate) instead of atrazine, while still maintaining its efficiency to biodegrade terbuthylazine was shown. In sequence, the successful and quick (3 days) bioremediation efficacy of ammonium-grown A. aurescens TC1 cells was proven in a natural soil freshly spiked or four-months aged with commercial terbuthylazine at a dose 10× higher than the recommended in corn cultivation, to mimic spill situations. Ecotoxicity assessment of the soil eluates towards a freshwater microalga supported the effectiveness of the bioaugmentation tool. Obtained results highlight the potential to decontaminate soil while minimizing terbuthylazine from reaching aquatic compartments via the soil-water pathway. The usefulness of this bioaugmentation tool to provide rapid environment decontamination is particularly relevant in the event of accidental high herbicide contamination. Its limitations and advantages are discussed.  相似文献   

17.
A population ofLolium rigidum Gaud. displays resistance to the herbicide chlorotoluron endowed by enhanced metabolism of this herbicide. The level of resistance in intact plants of this population is light dependent. Resistance is about 4-fold at 110 mol photons·m–2·s–1, but increases to 11-fold at 600 mol photons·m–2·s–1. For seedlings grown in the dark, the rate of chlorotoluron metabolism is identical between biotypes; however, seedlings of the resistant biotype grown in the light display enhanced chlorotoluron metabolism compared to the susceptible biotype. Specifically, light with blue wavelengths induces chlorotoluron metabolism in the resistant biotype. An analysis of the metabolites produced indicates that two routes of chlorotoluron metabolism occur inL. rigidum. These are characterised by initial reactions leading to ringmethyl hydroxylation orN-demethylation of the herbicide. The ring-methyl hydroxylation pathway is increased greatly in light-grown resistant seedlings compared to susceptible seedlings, whereas theN-demethylation pathway is only slightly increased. The differential induction of these two pathways in resistantL. rigidum by light suggests that enhanced activity of two different enzymes may be involved in chlorotoluron resistance.Abbreviations ABT 1-aminobenzotriazole - LD50 dose giving 50% mortality - LSS liquid scintillation spectroscopy  相似文献   

18.
A significant increase in protein content of bean cotyledons resulted by applications of 0.5 ppm of atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), simazine [2-chloro-4,6-bis(ethylamino)-s-triazine], terbutryn (2-methylmercapto-4-ethylamino-6-isobutylamino-.s-triazine), or GS-14254 (2-methoxy-4-isopropylamino-6-butylamino-s-triazine) to the foliage of 5-6 week old bean plants grown in a controlled environment or field conditions. Aen electron microscopic study indicated that in the cotyledonary cells s-triazines inducd a 2-fold increase in the number of cisternae of rough endoplasmic reticulum. These treatments also increased the number of vesicles, which apparently contain protein, and the amount of cytoplasmic ribosomes.  相似文献   

19.
A variety of s-triazine herbicides and nitrogen fertilizers frequently occur as co-contaminants at pesticide manufacturing and distribution facilities. The degradation of atrazine and cyanazine by the bacterial isolate M91-3 was investigated in washed-cell suspensions and crude cellular extracts. Cyanazine competitively inhibited atrazine degradation. The maximum atrazine degradation rate (V max) was 41 times higher and the half-saturation constant for the inhibitor (K i) was 1.3 times higher in the crude cellular extract than in the washed-cell suspension, suggesting that cellular uptake influenced degradation of the s-triazines. Cultures that had received prior exposure to atrazine and simazine exhibited comparable atrazine degradation rates, while cells exposed to cyanazine, propazine, ametryne, cyanuric acid, 2-hydroxyatrazine, biuret, and urea exhibited a lack of atrazine-degradative activity. Growth in the presence of exogenous inorganic nitrogen inhibited subsequent atrazine-degradative activity in washed-cell suspensions, suggesting that regulation of s-triazine and nitrogen metabolism are linked in this bacterial isolate. These findings have significant implications for the environmental fate of s-triazines in agricultural settings since these herbicides are frequently applied to soils receiving N fertilizers. Furthermore, these results suggest that bioremediation of s-triazine-contaminated sites (common at pesticide distribution facilities in the cornbelt) may be inhibited by the presence of N fertilizers that occur as co-contaminants. Received: 3 March 1998 / Received revision: 24 September 1998 / Accepted: 11 October 1998  相似文献   

20.
Experiments were conducted to assess the ability of Streptomyces (strain PS1/5) to metabolize twelve herbicides representing several different classes including: acetanilides, triazines, ureas, uracils, and imidazoles. Incubations in aqueous culture with dextrin as carbon source and either ammonium or Casamino acids as nitrogen source resulted in transformations (>50%) of eight of the herbicides tested: alachlor, metolachlor, atrazine, prometryne, ametryne, linuron, tebuthiuron, and bromacil; the remaining four herbicides (cyanazine, diuron, metribuzin, and imazapyr) were also transformed, but to a lesser extent. In most instances, biotransformations occurred concurrently with growth and results were consistent regardless of the nitrogen source (ammonium vs. Casamino acids). However, in some instances there were differences in rates of biotransformation as a consequence of the nitrogen source (e.g. alachlor, metribuzin), suggesting the selective induction of certain metabolic enzymes; in other instances biotransformations were not associated with growth, suggesting secondary metabolism. An experiment was also conducted to assess the ability of Streptomyces (strain PS1/5) to metabolize atrazine contaminated soil. Inoculation of soil amended with 20 μg/g of atrazine and 5% chitin as carbon source resulted in ca. 78% removal of atrazine within 28 days. These data suggest that Streptomyces species may be potential candidates for soil inoculation to bioremediate herbicide contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号