首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The compound eyes of adult stomatopod crustaceans have two to six ommatidial rows at the equator, called the midband, that are often specialized for color and polarization vision. Beneath the retina, this midband specialization is represented as enlarged optic lobe lamina cartridges and a hernia‐like expansion in the medulla. We studied how the optic lobe transforms from the larvae, which possess typical crustacean larval compound eyes without a specialized midband, through metamorphosis into the adults with the midband in a two midband‐row species Alima pacifica. Using histological staining, immunolabeling, and 3D reconstruction, we show that the last‐stage stomatopod larvae possess double‐retina eyes, in which the developing adult visual system forms adjacent to, but separate from, the larval visual system. Beneath the two retinas, the optic lobe also contains two sets of optic neuropils, comprising of a larval lamina, medulla, and lobula, as well as an adult lamina, medulla, and lobula. The larval eye and all larval optic neuropils degenerate and disappear approximately a week after metamorphosis. In stomatopods, the unique adult visual system and all optic neuropils develop alongside the larval system in the eyestalk of last‐stage larvae, where two visual systems and two independent visual processing pathways coexist. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 3–14, 2018  相似文献   

2.
At hatching (252–264 hr. at 25 ± 0.5°C), the visual system in larvae of Lytta viridana consists of paired stemmata, stemmatal nerves, optic neuropiles, and inner and outer imaginal optic lobe anlagen. It originates between 64 and 72 hr. with invagination of an optic lobe primordium in the side of each protocephalic lobe. These primordia later differentiate into protocerebral ganglion cells and the imaginal optic lobe anlagen. Each stemma arises at 72 hr. from epidermis below and behind the optic lobe invagination and subsequently becomes cupshaped, closes over, and differentiates. At hatching, it consists of a planoconvex corneal lens, a corneagenous layer, and an everse retina of numerous, pigmented retinular cells, each with a terminal rhabdomere. Between 96 and 104 hr, proximal ends of the retinular cells grow posteromedially into a transverse, horizontal fold in the posterior wall of each optic lobe invagination and along its length to the protocerebral neuropile, which they contact by 112 hr. As the brain withdraws posteriorly within the head, these axons elongate correspondingly. Sheath cells of stemmata and stemmatal nerves descend either from protocerebral perineurium or the optic lobe primordia. Structure and development of the larval visual system in L. viridana are compared with those of other insects and its various components are shown to be homologous throughout the Insecta. However, the stemmata of this insect more closely resemble the atypical imaginal eyes of male scale insects than the photoreceptors of other holometabolous larvae–a similarity arising through convergence.  相似文献   

3.
Panorpa larvae possess stemmata (lateral ocelli), which have the structure of compound eyes, and stemma lamina and stemma medulla neuropils. A distinct lobula neuropil is lacking. The stemma neuropils have a columnar organization. They contain lamina monopolar cells, and both short and long visual fibers. All the identified larval monopolar neurons have radially arranged dendrites along the entire depth of the lamina neuropil and a single terminal arborization within the medulla (L1/L2-type). The terminals of visual fibers have short spiny lateral projections. Long fibers possess en passant synapses within the lamina. The same principles of organization of first and second order visual neuropils are found in Panorpa imagines. In contrast to the larvae, a lobula neuropil is present. Adults have monopolar cells of the L1-type that are similar to the L1-neurons found in Diptera. The columnar organization, the presence of short and long visual fibers, and lamina monopolar neurons are thus features common to both visual systems, viz., the larval (stemmata) and the imaginal (compound eyes).  相似文献   

4.
Adult stemmata are distinctive insect photoreceptors located on the posterior surfaces of the optic lobes. They originate as larval eyes that migrate inward during metamorphosis. We used a combination of light microscopy and in situ hybridization to examine their anatomical organization in the butterfly Vanessa cardui and to test for the presence of visual pigments, the light sensitive components of the visual transduction pathway. The bilateral cluster of six internal stemmata is located near the ventral edge of the lamina. They retain the dark screening pigment and overlying crystalline cones of the larval stemmata. We found two opsin mRNAs expressed in the stemmata that are also expressed, respectively, in UV-sensitive and green-sensitive photoreceptor cells in the compound eye. A third mRNA that is expressed in blue-sensitive photoreceptor cells of the compound eye was not expressed in the stemmata. Our results reinforce the idea that the adult stemmata are not merely developmental remnants of larval eyes, but remain functional, possibly as components of the circadian input channel.This work was supported by grants from the National Science Foundation to A.D.B. (IBN-0346765) and R.H.W (IBN-9874493).  相似文献   

5.
The evolutionary origin of holometabolous larvae is a long‐standing and controversial issue. The Mecoptera are unique in Holometabola for their larvae possessing a pair of compound eyes instead of stemmata. The ultrastructure of the larval eyes of the scorpionfly Panorpa dubia Chou and Wang, 1981 was investigated using transmission electron microscopy. Each ommatidium possesses a cornea, a tetrapartite eucone crystalline cone, eight retinula cells, two primary pigment cells, and an undetermined number of secondary pigment cells. The rhabdomeres of the eight retinula cells form a centrally‐fused, tiered rhabdom of four distal and four proximal retinula cells. The rhabdomeres of the four distal retinula cells extend distally into a funnel shape around the basal surface of the crystalline cone. Based on the similarity of the larval eyes of Panorpidae to the eyes of the hemimetabolous insects and the difference from the stemmata of the holometabolous larvae, the evolutionary origin of the holometabolous larvae is briefly discussed. Morphol., 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Larvae of the predaceous diving beetle Thermonectus marmoratus bear six stemmata on each side of their head, two of which form relatively long tubes with linear retinas at their proximal ends. The physical organization of these eyes results in extremely narrow visual fields that extend only laterally in the horizontal body plane. There are other examples of animals possessing eyes with predominantly linear retinas, or with linear arrangements of specific receptor types. In these animals, the eyes, or parts of the eyes, are movable and perform scanning movements to increase the visual field. Based on anatomical data and observations of relatively transparent, immobilized young larvae, we report here that T. marmoratus larvae are incapable of moving their eyes or any part of their eyes within the head capsule. However, they do perform a series of bodily dorso-ventral pivots prior to prey capture, behaviorally extending the vertical visual field from 2° to up to 50°. Frame-by-frame analysis shows that such behavior is performed within a characteristic distance to the prey. These data provide first insights into the function of the very peculiar anatomical eye organization of T. marmoratus larvae.  相似文献   

7.
During metamorphosis, the dioptric apparatus of the larval compound eye of Chaoborus crystallinus (Diptera : Nematocera) is radically reconstructed. The thin larval cornea of the ommatidia is replaced by strongly curved corneal lenses, and the eucone larval cone is replaced by an imaginal cone of the acone type. Curvature of the future lens is already apparent in very young pupae, in which the cornea consists only of a thin epicuticle with corneal nipples. Fibrillary cuticle is secreted by cone and primary pigment cells throughout pupal development. Lens formation is accompanied by movement of the nuclei of the accessory pigment cells. The larval cone disintegrates unexpectedly late in young, images. During late pupal development, 7 cone cell projections emerge. In contrast to the dioptric apparatus, the retinula cells and rhabdom remain almost unchanged during metamorphosis. The main refractive element of the larval ommatidium appears to be the cone, while that of the imaginal ommatidium is the corneal lens. In addition to the compound eyes, the pairs of stemmata are retained during the whole post-larval development. Pupal stemmata show no structural differences from the larval stemmata. The stemmata are still present in 2-day-old images (“retained stemmata”), but the primary stemma loses its dioptric apparatus and is proximally relocated to the basal region of the compound eye. The reconstructions in the visual system of Chaoborus, which occur during ontogeny, are probably connected with the change from aquatic living larvae to aerial adults, and appear to fulfill stage-specific needs of vision.  相似文献   

8.
Ultrastructure of stemmata (larval eyes), stemmatal nerves, and the optic neuropils of 5th-instar larvae of cotton bollworm, Heliothis armigera (Hübner) (Lepidoptera : Noctuidae), were examined with scanning and transmission electron microscopes. Six stemmata are on each side of the head. Each stemma consists of 7 retinula cells arranged into 2 tiers. Stemmata I and II have 4 distal retinula cells and 3 proximal cells, the other 4 stemmata (III–IV) have 3 distal cells and 4 proximal cells. Stemmata I and IV have a short proximal rhabdom and the rhabdomere of each proximal cell has its microvilli projecting in only one direction. On the other hand, each stemma (in stemmata II–V) has a long proximal rhabdom and the rhabdomere of each proximal cell has microvilli pitched in several different directions relative to the horizontal plane. An axon projects proximally from each retinula cell body. The stemmatal nerve is composed of the 42 retinular axons from all of the 6 stemmata on the same side of the head. Each stemmatal nerve projects to the ipsilateral optic neuropil. Axons from each stemma are in a fasicle (within the stemmatal nerve), which consists of 7 axons, 3–4 of them are thick and terminate synaptically in the proximal neuropil; the others are thinner and terminate in the distal neuropil. Organelles, particularly lysosomes, undergo ultrastructural transformations relative to ambient light levels. The functional significance of abovementioned structures are discussed in light of current knowledge.  相似文献   

9.
Evolutionary pathways to the larval eyes of insects. Higher Dipteran stemmata and the evolutionary development of Bolwig's organ 1. A cornrehensive morphological study of the photoreceptors in the so-called hemi — Institut für Biologie I (Zoologie) der Albert-Ludwigs-Universität, Albertstr. 21a, D-7800 Freiburg i. Brsg., FRGand acephalic lrvae of Brachycera was undertaken. In Brachyceran larvae the head casule originally is more or less retracted into the thorax. The larval hotoreceptor in Musca and Drosophila, here called Bolwig's organ, is situated on the outer side of the cephalopharyngeal apparatus, well below the surface. The aim of this study is to elucidate the homology of Bolwig's organ, i. e. whether Bolwig's organ originated from typical stemmata during the evolution of Cyclor-rhaphan larval organlsation or whether it represents a unique type of hotoreceptor. Larval photoreceptors and the anatomy of the head capsules of representative Erachycerans were examined by means of light and electron microscopy. In particular, the site and the structure of the photofecetors of Stratiomys (Stratiomyidae, Solva (Solvidae), Atherix ibis (Athericidae), Rhagio (Rhagionidae), Thereva (derevidae), Lonchoptera (Lonchoteridae), Epistrohe balteata, Volu-cella bombylans, Eristalis tenax (Syrphidae), Drosophila (f;rosophilidae), jannia and Musca domestica (Muscidae) were investigated. 2. Brachyceran stemmata are either situated on the ocular plates of the free remnant of the head (Stratiomyidae, Therevidae), or on the inner wall of an epidermal invaination, which includes epithelia of the head as well as of the thorax (Tabaniformia). In adfition, they can be found on the outer side of the tentorial phragmata (Cyclorrhapha). In all taxa studied, stemmata keep contact directly with the epithelium or through short processes of eithelial cells. 3. Ancestral Brachycera have fused stemmata that correspond with typical larval eyes of other holometabolan insects. 4. A cornea is found solely in Stratiomyidae and Xylophagidae, in contrast to all other taxa, where no dioptric apparatus is found. 5. In “Orthorrapha” and in “Aschiza”, rhabdomeric photoreceptors occur, forming a fused, star-shaped or Ktticed rhabdom. In Schizophoran larvae, retinular cells are distinguished by a different type of surface enlargement of the photoreceptor cell membrane. Here, the membrane forms flat ramella. The latter originate from transformed and/or rudimentary rhabdomeric microvilli. 6. In the primitive “Orthorrhapha”, pigment cups can be found, that are composed of retinular pirnent, whereas in derived Brachycera, pigment grains are absent. In Cyclorrhapha, tentorial piramata and their optic deressions operate as external and functional piment cups 7. In Therevidae and in Syrphidae, a tracheal tapetum lucidum can be founfi which la, been evolved independently in both families. The tapetum is always found together with inversely orientated retinular cells. 8. The homology of Brachceran stemmata is shown by a transformation series of stem-mata's site and fine structure. The homology is corroborated by the identical innervation in primitive and derived taxa, the identical site within Cyclorrhaha, and structural similarities of “Orthorrhaphan” and primitive Cylorrhaphan stemmata. Although transformations of the fine structure appear as a sequence or reductions, particular adaptations such as multilication of retinular celfs (Epistrophe), or deepening of the pigment cup (Musca) have evolved separately. Despite the fact that in Brachyceran larvae the head has been reorganized, the eyes still keep contact with the epithelium of the frontal sacks and/or tentorial phragmata. 9. The transformation series given shows that Bolwig's organ represents a highly modified stemma.  相似文献   

10.
Stemmata or “larval” eyes are of crucial importance for the understanding of the evolution and ontogeny of the hexapod's main visual organs, the compound eyes. Using classical neuroanatomical techniques, I showed that the persisting stemmata of Chaoborus imagos are connected to persisting stemma neuropils neighboring the first and second order neuropils of the compound eyes, and therefore also the imago possesses a stemma lamina and medulla closely associated with the architecture and the developmental pattern of those of the compound eyes. The findings are compared with other arthropods, e.g. accessory lateral eyes in Amandibulata and Myriapoda, suggesting some ancestral rather than derived character states. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Summary Retained larval eyes (stemmata) were studied in the imagines of three species of Trichoptera: Phrygania grandis, Agrypnia varia, and Trichostegia minor. At the light-microscopic level the stemmata of all three species appeared to represent different stages of reduction with respect to size, shape and number of lenses. However, in all three species electron-microscopic studies showed units with monolayered rhabdoms, each formed by four retinula cells. By use of immunocytochemistry the presence of S-antigen was demonstrated in the retinula cells and their axons. This method also revealed the central projections of the axons of the retinula cells, which were found (i) to terminate either in the lamina accessoria or (ii) to penetrate this area to join the fibers of the outer chiasma of the optic lobes and then terminate in the medulla accessoria. The lamina accessoria and the medulla accessoria are the assumed remnants of the larval optic lobes. It is suggested that the imaginal stemmata might still be functioning photoreceptors.  相似文献   

12.
In various insect and arachnid species, three different types of photoreceptors that do not serve image processing have been discovered and analyzed by means of neurobiological methods: They can be found for example: (1) as lamina and lobula organs (LaOs and LoOs) next to the optic neuropils in the optic lobes of holo- and hemimetabolous insects; (2) inside the last ganglia of the cord of the scorpion and a marine midge; and (3) as modified visual photoreceptors in metamorphosized larval stemmata and the lateral eyes of scorpions, which have been compound eyes in fossil scorpion relatives. Imnunocytology with various antibodies against proteins of the phototransduction cascade, the rhabdom turnover cycle and neurotransmitters of afferent and efferent pathways, was combined with light- and ultrastructural investigations in well-defined adaptational states, in order to study their photoreceptive function and neuronal wiring. Pilot chronobiological experiments with a newly developed twilight simulating lamp, behavioral studies, and model calculations provide evidence that these photoreceptors may well serve a role in the complex task of detecting time cues out of natural dawn and dusk.  相似文献   

13.
A number of invertebrates are known to be sensitive to the polarization of light and use this trait in orientation, communication, or prey detection. In these animals polarization sensitivity tends to originate in rhabdomeric photoreceptors that are more or less uniformly straight and parallel. Typically, polarization sensitivity is based on paired sets of photoreceptors with orthogonal orientation of their rhabdomeres. Sunburst diving beetle larvae are active swimmers and highly visual hunters which could potentially profit from polarization sensitivity. These larvae, like those of most Dytiscids, have a cluster of six lens eyes or stemmata (designated E1 through E6) on each side of the head capsule. We examined the ultrastructure of the photoreceptor cells of the principal eyes (E1 and E2) of first instar larvae to determine whether their rhabdomeric organization could support polarization sensitivity. A detailed electron microscopical study shows that the proximal retinas of E1 and E2 are in fact composed of photoreceptors with predominantly parallel microvilli and that neighboring rhabdomeres are oriented approximately perpendicularly to one another. A similar organization is observed in the medial retina of E1, but not in the distal retinas of E1&2. Our findings suggest that T. marmoratus larvae might be able to analyze polarized light. If so, this could be used by freshly hatched larvae to find water or within the water to break the camouflage of common prey items such as mosquito larvae. Physiological and behavioral tests are planned to determine whether larvae of T. marmoratus can actually detect and exploit polarization signals.  相似文献   

14.
In various insect and arachnid species, three different types of photoreceptors that do not serve image processing have been discovered and analyzed by means of neurobiological methods: They can be found for example: (1) as lamina and lobula organs (LaOs and LoOs) next to the optic neuropils in the optic lobes of holo‐ and hemimetabolous insects; (2) inside the last ganglia of the cord of the scorpion and a marine midge; and (3) as modified visual photoreceptors in metamorphosized larval stemmata and the lateral eyes of scorpions, which have been compound eyes in fossil scorpion relatives. Immunocytology with various antibodies against proteins of the phototransduction cascade, the rhabdom turnover cycle and neurotransmitters of afferent and efferent pathways, was combined with light‐ and ultrastructural investigations in well‐defined adaptational states, in order to study their photoreceptive function and neuronal wiring. Pilot chronobiological experiments with a newly developed twilight simulating lamp, behavioral studies, and model calculations provide evidence that these photoreceptors may well serve a role in the complex task of detecting time cues out of natural dawn and dusk.

…Clearly more work will be necessary before truly informed judgements can be made about the functional significance of the diversity in photoreception for entrainment. A first step will be the precise identification of photoreceptors and investigations of the mechanisms of transduction, processing and transmission of temporal information provided by the daily light cycle.…” ()  相似文献   

15.
Abstract The stemmata of last–instar Nannochoristalarvae are compound eyes composed of 10 or more ommatidia. Each ommatidium has four Semper cells, four distal and four proximal retinula cells which form a cruciform and layered rhabdom. The ommatidia are separated by epidermal cells (possibly rudimentary pigment cells). Corneal lenses are lacking. At the posterior edge, aberrant stemma units may be present which lack a dioptric apparatus and have a star–shaped rhabdom composed of at least six retinula cells. The stemmata of Nannochoristaappear to be derived from stemmata of the Panorpa-type (Mecoptera-Panorpidae). Differences between the stemmata of Nannochoristaand Panorpacan be explained as adaptations to aquatic life (flat cornea) or as regression. A compound larval eye is ascribed to the ground plan of the Mecoptera sensu latoand is considered a genuine plesiomorphy. The identical basic number (seven) of stemmata in the Neuropteroid/Coleoptera assemblage, Amphiesmenoptera and some Mecoptera (Bittacidae, Boreidae) is attributed to parallel evolution.  相似文献   

16.
According to molecular sequence data Crustacea and not Myriapoda seem to be the sister‐group to Insecta. This makes it necessary to reconsider how the morphology of their eyes fit with these new cladograms. Homology of facetted eye structures in Insecta (Hexapoda in the sense of Ento‐ and Ectognatha) and Crustacea is clearly supported by identical numbers of cells in an ommatidium (two corneageneous or primary pigment cells, four Semper cells which build the crystalline cone and primarily eight retinula cells). These cell numbers are retained even when great functional modification occurs, especially in the region of the dioptric apparatus. There are two different possibilities to explain differences in eye structure in Myriapoda depending on their phylogenetic position in the cladogram of Mandibulata. In the traditional Tracheata cladogram, eyes of Myriapoda must be secondarily modified. This modification can be explained using the different evolutionary pathways of insect facetted eyes to insect larval eyes (stemmata) as an analogous model system. Comparative morphology of larval insect eyes from all holometabolan orders shows that there are several evolutionary pathways which have led to different types of stemmata and that the process always involved the breaking up the compound eye into individual larval ommatidia. Further evolution led on many occasions to so‐called fusion‐stemmata that occur convergently in each holometabolic order and reveals, in part, great structural similarities to the lateral ocelli of myriapods. As myriapodan eyes cannot be regarded as typical mandibulate ommatidia, their structure can be explained as a modified complex eye evolved in a comparable way to the development to the fusion‐stemmata of insect larvae. The facetted eyes of Scutigera (Myriapoda, Chilopoda) must be considered as secondarily reorganized lateral myriapodan stemmata, the so‐called ‘pseudo‐compound eyes’. New is a crystalline cone‐like vitreous body within the dioptric apparatus. In the new cladogram with Crustacea and Insecta as sister‐groups however, the facetted eyes of Scutigera can be interpreted as an old precursor of the Crustacea – Insecta facetted eye with modified ommatidia having a four‐part crystalline cone, etc. as a synapomorphy. Lateral ocelli of all the other Myriapoda are then modified like insect stemmata. The precursor is then the Scutigera‐Ommatidium. In addition further interpretations of evolutionary pathways of myriapodan morphological characters are discussed.  相似文献   

17.
The role of the stemmata in photoperiodism has been examined in holometabolic insects, but the only reliable results in Coleoptera have been obtained in Leptocarabus kumagaii (Carabidae), the larvae of which do not respond to photoperiod without stemmata. In the present study, photoperiodism was examined in another coleopteran, Psacothea hilaris (Pascoe) (Cerambycidae), after surgical removal of the stemmata. Larvae reared under short-day conditions and transferred to long-day conditions on day 2 of the 5th instar pupated without further larval molts, whereas those continuously reared under short-day conditions underwent supernumerary molts and did not pupate. When the stemmata were removed on day 2 of the 5th instar, the larvae pupated under long-day conditions but did not do so under short-day conditions. However, under long-day conditions some underwent supernumerary molts before pupation. Larvae from which the sensilla trichodeum were removed showed a similar response to that of stemmata-deficient larvae, and larvae from which stemmata were removed at a younger stage (day 2 of the 4th instar) responded to photoperiod similarly to intact larvae. Thus, supernumerary molts under long-day conditions after removal of the stemmata were attributed to injury due to surgery, rather than a change in photoperiodic photoreception. Therefore, we conclude that larvae of P. hilaris show a photoperiodic response after removal of stemmata, in contrast to larvae of L. kumagaii.  相似文献   

18.
Mantispids (Neuroptera: Mantispidae) are remarkable insects as a result of their close resemblance to the praying mantis (order Mantodea). Although not closely related phylogenetically, as a result of similar selective pressures, both mantispids and mantids have evolved powerful raptorial forelegs for capturing insects. Another striking feature is the hypermetamorphosis in mantispid development, as well as the parasitizing behaviour of the first‐instar larvae. The present review focuses on the role of mantispid vision. First, the morphology and functional significance of the larval eyes (stemmata) are examined. In principle, the stemmata are suitable for spatial vision because of their arrangement and structure. This is then followed by a discussion of how adult mantispids are able to capture fast‐moving insects successfully, although, in contrast to the praying mantis, mantispids rely on superposition eyes rather than on apposition eyes with a frontal region of high acuity. For both larvae and adults, comparisons are made with other insect groups. The present review also addresses the role of mantispid vision as an important cue for triggering mating behaviour; accordingly, sex‐specific differences are considered. Finally, vision in the context of orientation flight is discussed.  相似文献   

19.

Larvae of decapod and stomatopod crustaceans possess paired compound eyes not unlike those of adult crustaceans. However, the visual demands of larval and adult life differ considerably. Furthermore, the eyes of adult stomatopods appear to be far more specialized than those of the larvae. We examined eyes of several stomatopod species just before and after larval metamorphosis. At this time, the entire larval retina is joined by a new, adult‐type retinal array which gradually replaces the remnants of the larval retina. The new retina of the postlarva is anatomically similar to that of the full‐grown adult, and has virtually identical assemblages of intrarhabdomal filters. We determined the photopigments of Gonodactylus aloha, the only species for which we were able to obtain both larval and adult specimens, using microspectrophotometry. The single middle‐wavelength larval rhodopsin (λmax= 499 nm) disappears at metamorphosis; none of the 10 classes of adult rhodopsins has λmax between 473 and 510 nm. This metamorphic change of visual pigment does not occur in a comparison species of decapod crustacean, the blue crab Callinectes sapidus. Here, rhodopsins both of the megalops larva and the adult had λmax at 503–504 nm. The difference between these two species can be explained by the varying ecological requirements of their larvae and adults, and more study of visual pigments in retinas of larval and adult crustaceans is warranted.  相似文献   

20.
In malacostracan crustaceans and insects three nested optic lobe neuropils are linked by two successive chiasmata that reverse and then reverse again horizontal rows of retinotopic columns. Entomostracan crustaceans possess but two retinotopic neuropils connected by uncrossed axons: a distal lamina and an inner plate-like neuropil, here termed the visual tectum that is contiguous with the protocerebrum. This account proposes an evolutionary trajectory that explains the origin of chiasmata from an ancestral taxon lacking chiasmata. A central argument employed is that the two optic lobe neuropils of entomostracans are homologous to the lamina and lobula plate of insects and malacostracans, all of which contain circuits for motion detection—an archaic attribute of visual systems. An ancestral duplication of a cell lineage originally providing the entomostracan lamina is proposed to have given rise to an outer and inner plexiform layer. It is suggested that a single evolutionary step resulted in the separation of these layers and, as a consequence, their developmental connection by a chiasma with the inner layer, the malacostracan-insect medulla, still retaining its uncrossed connections to the deep plate-like neuropil. It is postulated that duplication of cell lineages of the inner proliferation zone gave rise to a novel neuropil, the lobula. An explanation for the second chiasma is that it derives from uncrossed axons originally supplying the visual tectum that subsequently supply collaterals to the opposing surface of the newly evolved lobula. A cladistic analysis based on optic lobe anatomy of taxa possessing compound eyes supports a common ancestor of the entomostracans, malacostracan crustaceans, and insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号