首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
神经系统老化问题   总被引:7,自引:0,他引:7  
  相似文献   

2.
神经生长因子   总被引:21,自引:0,他引:21  
神经生长因子是一类能促进神经生长的多肽,近年来的研究表明它在非神经系统及肿瘤的发生中也有重要作用。本文综述了神经生长因子的结构、生物合成、作用机制及生理、病理作用等方面的研究进展。  相似文献   

3.
1,25二羧基维生素D3对L929细胞神经生长因子的诱导作用   总被引:1,自引:0,他引:1  
  相似文献   

4.
神经生长因子与周期神经再生   总被引:2,自引:0,他引:2  
介绍了神经生长因子的研究概况及基在周围神经再生过程的作用,并对神经生 长因子的应用前景作了展望。  相似文献   

5.
神经生长因子主要由来源于神经嵴的神经元支配的靶组织产生,其被这些神经元轴突摄取后逆行运输至胞体,通过多种途径调节神经细胞的基因转录而发挥生物效应,维持神经元的存活、刺激轴突的生长.并对外周神经的发育、营养起重要的作用.在骨组织和骨折骨痴中均可见神经生长因子及其受体的表达,神经生长因子主要是通过促进骨折部位神经的再生参与骨折修复.骨折愈合的机制十分复杂,神经生长因子对骨组织的作用也是多方面、多层次和相互交叉的,其机制尚未完全明确.虽然神经生长因子促进骨折修复作用机制的研究已经取得一些进展,但仍处于初级阶段,其作用机制仍不明确.  相似文献   

6.
神经生长因子与细胞凋亡   总被引:8,自引:0,他引:8  
神经生长因子(NGF)是第一个被发现、也是目前为止研究得最清楚的一个神经营养因子(neurotrophicfactor)。它能够促进发育中的感觉神经元及交感神经元的存活及分化,营养成熟的神经元,维持其正常的生物学功能。然而,近两年来研究发现,NGF也...  相似文献   

7.
神经生长因子及其受体   总被引:1,自引:0,他引:1  
  相似文献   

8.
目前有研究证实microRNA参与了神经系统生长发育和生理功能的调控,它也与可塑性障碍性疾病、神经系统退行性疾病、神经系统肿瘤、脑血管疾病等重大疾病的发生发展相关.随着microRNA研究领域的发展,一些重大神经系统疾病的相关发病机制将有可能被阐释.  相似文献   

9.
microRNA(miRNA)介导的基因沉默是生物体内普遍存在的重要基因表达调控方式,其调控失常与很多人类疾病相关.miRNA在神经组织表达丰富.神经系统miRNA的功能研究是近年非常活跃的新领域.基于近期的研究进展,本文重点讨论了miRNA在神经轴模式化、神经元命运决定、神经细胞发生、神经元突触形成及成熟神经元突触重塑中的重要作用.  相似文献   

10.
神经生长因子应用研究进展   总被引:13,自引:0,他引:13  
神经生长因子的研究已经进入应用阶段,国内外科学工作者完成了天然神经生长因子及其基因重组表达神经生长因子的中试研究和药理学研究,结果显示,NGF在外周神经损伤后有肯定的促进再生作用,毒理学研究方面尚未见到NGF有何严重不良反应的报道。目前,国内外正进行了临床研究工作,初步结果表明神经生长因子可能成为治疗周围神经病的潜在药物之一  相似文献   

11.
肝细胞生长因子是一多效性细胞因子。在神经系统发育和再生过程中,肝细胞生长因子作为神经营养因子发挥作用。本文就肝细胞生长因子的分子生物学特性以及在神经系统中的分布和生物学作用进行综述。  相似文献   

12.
PC12 cells possess specific receptors for both nerve growth factor and epidermal growth factor, and by an unknown mechanism, nerve growth factor is able to attenuate the propagation of a mitogenic response to epidermal growth factor. The differentiation response of PC12 cells to nerve growth factor, therefore, predominates over the proliferative response to epidermal growth factor. We have observed that the addition of nerve growth factor to PC12 cells rapidly produces a decrease in surface 125I-epidermal growth factor binding capacity. Unlike previously described nerve growth factor effects on 125I-epidermal growth factor binding capacity, which required several days of nerve growth factor exposure, the decreases we report occur within minutes of nerve growth factor addition: A 50% decrease in 125I-epidermal growth factor binding capacity is evident at 10 min. This rapid nerve growth factor response is concentration dependent; inhibition of 125I-epidermal growth factor binding is detectable at nerve growth factor levels as low as 0.2 ng/ml and is maximal at approximately 50 ng/ml, consistent with known ranges of biological activity. No demonstrable differences in the rate of epidermal growth factor receptor synthesis or degradation were observed in cells acutely exposed to nerve growth factor. Scatchard analysis revealed that acute nerve growth factor treatment decreased the number of both high- and low-affinity 125I-epidermal growth factor binding sites, while the receptor affinity remained unchanged. We have also investigated the involvement of various potential intracellular mediators of nerve growth factor action and of known intracellular modulatory systems of the epidermal growth factor receptor for their capacity to participate in this nerve growth factor activity.  相似文献   

13.
Abstract: Previous investigations from our laboratory have demonstrated that the covalent modification of a variety of proteins, including antioxidant enzymes, with the naturally occurring polyamines—putrescine (PUT), spermidine, and spermine—dramatically increases their permeability coefficient-surface area product (PS) at the blood-brain and blood-nerve barriers after parenteral administration. In the present study, we have covalently modified nerve growth factor (NGF) with PUT by targeting carboxylic groups for their graded modification by controlling the ionization of these groups with pH. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, western, and isoelectric focusing analyses demonstrated conversion of NGF to its polyamine-modified derivatives at different pH values. Although the immunoreactivity of PUT-NGF determined by ELISA and western analysis decreased with decreasing pH, the biological activity of PUT-NGF was not affected at any pH as determined by survival and neurite extension of dorsal root ganglia and PC12 cultures. Plasma pharmacokinetics after a single intravenous bolus administration revealed intact PUT-NGF through 10 min and 73–82% intact protein at 15 min. The PS value for PUT-NGF was maximized and the residual plasma volume (Vp) of the protein in the blood vessels minimized when the pH of the modification reaction was >6.4. The biodistribution of PUT-NGF at 15 min showed 22–33% intact protein in different brain regions, which represented 0.4–5.9 ng of PUT-NGF in different brain regions, a physiological dose that is capable of eliciting a bioresponse. The design of this polyamine-modified NGF derivative that has enhanced permeability at the blood-brain and blood-nerve barriers with retained bioactivity may obviate the necessity to create small-molecule mimics of NGF and may be applicable to neurotrophins, engineered multifunctional chimeric neurotrophins, antioxidant enzymes, and other therapeutic proteins with specific clinical application to neurological diseases.  相似文献   

14.
Primary cultures of neonatal rat cortical astrocytes contain low cellular levels (about 2 pg/mg of protein) of nerve growth factor (NGF), but secrete significant amounts of NGF into the culture medium (about 540 pg of NGF/mg of cell protein/38-h incubation). Incubation of astrocytes with interleukin-1 (IL-1) increased the cellular content of NGF and the amount secreted by about threefold. In comparison, cerebellar astrocytes secreted significant amounts of NGF, and the secretion was also stimulated by IL-1. The stimulatory action of IL-1 on astrocytes prepared from cortex was dose- and time-dependent. Concentrations of IL-1 causing half-maximal and maximal stimulation of NGF secretion were 1 and 10 U/ml, respectively). Maximal NGF secretion induced by IL-1 (10 U/ml) was seen following 38 h of incubation. The basal secretion of NGF was reduced by about 50% under Ca2(+)-free conditions; however, the percent stimulation of NGF secretion by IL-1 was the same in the absence or presence of Ca2+. The stimulatory action of IL-1 was specific, because other glial growth factors and cytokines were almost ineffective in stimulating NGF secretion from cortical astroglial cells. IL-1 treatment also increased cellular NGF mRNA content twofold. The results indicate that IL-1 specifically triggers a cascade of events, independent of cell growth, which regulate NGF mRNA content and NGF secretion by astrocytes.  相似文献   

15.
Nerve growth factor (NGF) mRNAs were detected and quantified in a variety of normal and neoplastic human tissues by northern blot hybridization. Human heart contained the highest NGF mRNA levels, whereas lower but comparable levels were found in the placenta, prostate, and kidney. All tissues examined coexpressed the low-affinity NGF receptor (LNGFR), whereas none of these tissues expressed the high-affinity NGF receptor encoded by the trk protooncogene. The widespread distribution of the LNGFR suggests that it plays a role in the regulation of normal cell growth. No overexpression of NGF or LNGFR mRNA was detected in neoplastic tissues, whereas LNGFR-like immunoreactivity was localized outside of tumor cells. Transforming growth factor-alpha and protooncogene c-fos expression in these tissues did not show a systematic correlation with NGF/LNGFR expression. Furthermore, regulation of the human NGF gene was studied in DU145 cells, a prostatic adenocarcinoma cell line that synthesizes significant NGF mRNA levels. Serum induced, whereas dexamethasone inhibited, NGF mRNA synthesis in these cells. Serum induction was preceded by a rapid and transient activation of the c-fos protooncogene.  相似文献   

16.
Receptors for the nerve growth factor protein (NGF) have been isolated from three cell types [embryonic chicken sensory neurons (dorsal root sensory ganglia; DRG), rat pheochromocytoma (PC12) and human neuroblastoma (LAN-1) cells] and have been shown to be similar with respect to equilibrium dissociation constants. The present results demonstrate that there are multiple molecular weight species for NGF receptors from DRG neurons and PC12 cells. NGF receptors can be isolated from DRG as four different molecular species of 228, 187, 125, and 112 kilodaltons, and PC12 cells as three molecular species of 203, 118, and 107 kilodaltons. The NGF receptors isolated from DRG show different pH-binding profiles for high- and low-affinity binding. High-affinity binding displays a bell-shaped pH profile with maximum binding between pH 7.0 and 7.9, whereas low-affinity binding is constant between pH 5.0 and 9.1, with a twofold greater binding at pH 3.6. At 22 degrees C, the association rate constant was found to be 9.5 +/- 1.0 X 10(6) M-1 s-1. Two dissociation rate constants were observed. The fast dissociating receptor has a dissociation rate constant of 3.0 +/- 1.5 X 10(-2) s-1, whereas the slow dissociating receptor constant was 2.4 +/- 1.0 X 10(-4) s-1. The equilibrium dissociation constants calculated from the ratio of dissociation to association rate constants are 2.5 X 109-11) M for the high-affinity receptor (type I) and 3.2 X 10(-9) M for the low-affinity receptor (type II). These values are the same as those determined by equilibrium experiments on the isolated receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Recent studies with sympathetic neurons using radiolabeled nerve growth factor have indicated that a high-molecular-weight covalent complex is formed. This complex is between the nerve growth factor and the high-affinity (type I) receptor and occurs through the formation of a disulfide bond. Studies presented in the present article demonstrate a similar complex is formed on chicken embryonic sensory neurons. The formation of this complex is inhibited by the addition of unlabeled nerve growth factor, metabolic energy inhibitors (dinitrophenol and NaF), and of sulfhydryl reagents. On the other hand, formation of this complex is not inhibited by temperature, or by the addition of insulin or epidermal growth factor. The receptor involved in the covalent complex formation is the high-affinity (type I) receptor. The molecular weight of this complex is approximately 232,000 daltons. Evidence indicates that this covalent complex may be required for the biological activity of the nerve growth factor.  相似文献   

18.
介绍了一种灵敏的神经生长因子化学发光免疫测定方法。小鼠神经生长因子(mNGF)的抗体IgG用亲和层析纯化并用吖啶酯标记。该法可用于大鼠组织中NGF含量的测定。方法的灵敏度为10pg/mLNGF;批内批间变异系数分别为8.7%及13.2%;回收率平均为103%。mNGF抗体对人的NGF也有极强的交叉反应,故本方法也可能用于病人血清或脑脊液中NGF含量的测定。  相似文献   

19.
Abstract: Receptors for insulin-like growth factor I (IGF-I) were studied on PC12EY cells, a subclone of PC12. Differentiation of PC12EY cells with nerve growth factor (NGF) did not alter either the number of IGF-I receptors nor their affinity for IGF-I. IGF-I receptors remained fully functional during differentiation, promoting increases in thymidine incorporation, glucose uptake, amino acid uptake, and the phosphorylation of the S6 protein of the ribosomes. IGF-I also increased the proportion of differentiated cells found in S-phase. But although the addition of IGF-I to naive cells caused an increase in cell number, there was no comparable increase when IGF-I was added to differentiated cells. Thus, although the receptor for IGF-I continues to be present and functional, IGF-I fails to induce cell proliferation in differentiated PC12 cells.  相似文献   

20.
Levels of the beta-subunit of nerve growth factor (beta-NGF) were measured in the central nervous and peripheral tissues of mice using a highly sensitive, sandwich-type enzyme immunoassay system. Antiserum was raised in rabbits against the 7S form of NGF, which was purified from mouse submandibular glands. beta-NGF-specific antibody isolated on a column of Sepharose CL-4B coupled with purified beta-NGF reacted only with beta-NGF. The assay for beta-NGF was performed by incubation of F(ab')2 fragments of the antibody immobilized on a polystyrene ball with tissue extract and then with the same antibody Fab' fragments labeled with beta-D-galactosidase, followed by measurement of galactosidase activity. Our assay system was found to be highly sensitive (minimal detection limit, 0.3 pg/0.3 ml of assay mixture). Furthermore, the presence of gelatin hydrolysates and protease inhibitors during preparation of tissue extracts enabled us to determine the precise levels of beta-NGF in almost all organs of mice. The amount of beta-NGF in submandibular glands was extremely high, and its level increased rapidly until mice were 2 months of age; then, the level continued to increase slowly until mice were 1 year old (3-5 mg/g of tissue). In serum, some of the 2-month-old males, but none of the females, exhibited a fairly high level of beta-NGF (greater than 100 pg/ml).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号