首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
采用SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)对236份新疆小麦地方品种的高分子量麦谷蛋白亚基(HMW-GS)的组成进行了分析。结果表明:Glu-1位点共有19种等位基因,其中Glu-A1位点3种,Glu-B1位点7种,Glu-D1位点9种;亚基null、7+8、2+12在各自的位点上出现频率最高,分别达到91.95%、85.17%、80.93%;亚基组成类型共有21种,主要为null/7+8/2+12,频率达70.34%;同时筛选出33份含有1、2*、13+16、14+15、5+10、1.5+10、17+18等优质亚基的材料,可作为优质基因源。利用酸性聚丙烯酰胺凝胶电泳(A-PAGE)对其中的65份地方品种进行醇溶蛋白多样性分析。结果表明:电泳出现64条迁移率不同的谱带,构成65种组合,其中ω区出现的谱带最多,达17条,其次是β和γ区各16条,α区出现的谱带数最少,为15条。从每条谱带在65份材料中出现的频率看,总的变异范围为1.54%~93.85%;α、β、γ和ω四个分区多样性指数(H′)分别为0.498、0.386、0.523和0.348。这表明新疆麦区小麦地方品种贮藏蛋白位点存在丰富的遗传多样性。  相似文献   

2.
西北春麦区小麦地方品种高分子量麦谷蛋白亚基组成分析   总被引:3,自引:1,他引:2  
为了给品质改良提供基础材料,并了解西北春麦区小麦地方品种的遗传多样性,采用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)方法,分析了493份小麦地方品种的高分子量麦谷蛋白亚基(HMW-GS)的组成.结果表明:在供试材料中,Glu-1位点共有26个等位基因,其中Glu-A1位点3个,Glu-B1位点9个,Glu-D1位点14个,亚基null、7+8、2+12在各自的位点上出现频率最高,分别达到了94.53%、92.92%、86.24%;亚基组成类型共有30种,主要为null/7+8/2+12,频率达79.76%;同时筛选出一些含有1、2*、13+16、14+15、5+10、1.5+10等优质亚基或亚基对的材料,可作为优质基因源;西北春麦区小麦地方品种间Glu-1位点的遗传多样性,以Glu-D1位点最高,其次是Glu-B1位点,Glu-A1位点最低.  相似文献   

3.
西南冬麦区地方品种HMW-GS组成遗传多样性研究   总被引:2,自引:0,他引:2  
采用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)对西南冬麦区(云南、贵州、四川)3个省份共计560份小麦地方品种的高分子量谷蛋白亚基(HMW-GS)组成进行了研究。结果表明:Glu-1位点共有22种等位基因,其中Glu-A1位点4种、Glu-B1位点11种、Glu-D1位点7种;亚基null、7 8和2 12在各自位点的频率最高,分别为89.64%、68.21%和96.43%。亚基组成类型共有46种,以null/7 8/2 12和null/7 9/2 12为主,频率分别为50.89%和11.79%。在这些材料中筛选出一些含有1、2*、17 18、14 15、5 10等优质亚基的材料,其中有52份材料含有优质亚基组合。  相似文献   

4.
陈国跃  李立会 《西北植物学报》2006,26(12):2439-2444
运用酸性聚丙烯酰胺凝胶电泳(A-PAGE)技术,对96份人工合成六倍体小麦的醇溶蛋白多样性进行了分析。结果显示,96份人工合成小麦中,共分离出65条不同的醇溶蛋白谱带,其中ω区22条,β和γ区各17条,α区9条,但各醇溶蛋白在电泳图谱中出现的频率差异较大,其变化范围为1.04%~91.67%。醇溶蛋白遗传多样性指数(H′)及多态性信息含量(PIC)分析结果显示,β、ω两个谱带区醇溶蛋白组成最为丰富,而α区最低;聚类分析结果显示,材料间的平均遗传距离为0.86,在遗传距离为0.83水平上,96份材料被划分为4个主要类群,类群间的关系基本反映了合成双二倍体的亲缘关系。研究结果表明,人工合成六倍体小麦醇溶蛋白基因位点表现出广泛的遗传变异,具有丰富的遗传多样性。  相似文献   

5.
为了研究小麦品种阿勃在青海省不同生态区种植的广适性,本试验采用十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDSPAGE)技术,以青海省不同生态区15份阿勃为材料进行高分子量麦谷蛋白亚基(HMW-GS)的遗传多样性分析。结果表明:阿勃HMW-GS的亚基组合类型有8种,主要为1/7+8/2+12;有11种亚基,各个亚基出现的频率范围6.67%~100%;Glu-B1位点遗传多样性指数较大,为0.239;供试材料群体间GS的变化范围为0.35~1.00,平均为0.675,所有阿勃聚为3类,其中13份阿勃材料聚在第Ⅰ类,另2份分别聚在第Ⅱ和第Ⅲ类,说明在青海不同生态区本土种植保留下的阿勃HMW-GS遗传多样性丰富。  相似文献   

6.
采用酸性聚丙烯酰胺凝胶电泳(APAGE)法对11份A担心Aegilops kotschyi及其S^1染色体组供体种Ae.longissima2份和U染色体组供体种Ae.umbellulata6份进行了醇溶蛋白位点的研究。结果表明:11份Ae.kotschyi共分离出32条带,31条具有多态性,占96.88%,每份材料可以分离出10-17条谱带,其中仅1条(3.12%)是共有带;11份Ae.kotschyi的遗传距离的变异范围在0-0.704之间,平均为0.409;11份Ae.kotschyi分离出的多数醇溶蛋白谱带均与其染色体组供体种Ae.longissi-ma及Ae.umbellulata相同,但仍有8条谱带未在两供体种中找到;11份Ae.kotschyi的醇溶蛋白多态性(96.88%)明显高于Ae.longissima(52.94%)与Ae.umbellulata(88.89%)11份Ae.kotschyi中有4份表现出了一定的特征带,分析知可能在γ区发生了较大的变异。  相似文献   

7.
为了挖掘新的种质资源,对引自美国的67份小麦种质材料进行了高分子量麦谷蛋白亚基组成与品质性状分析。HMW-GS组成分析表明,在供试材料中共检测到20种亚基类型和25种亚基组合,表明这批材料的遗传多样性较高。在GluA1位点上,亚基1与2*的出现频率分别为16.4%与35.8%;Glu-B1位点有9个等位变异,其中出现频率最高的为7+9亚基对(47.8%);Glu-D1位点有8个等位变异,以5+10亚基对为主要类型,出现频率高达74.6%。在Glu-B1位点上发现3个不常见亚基7*、8*、8**和3个未知亚基a、b、c,还发现1个未知亚基,暂时将其标记为5*,可能位于Glu-D1位点上。亚基组合类型中,"null,7+8,5+10"的出现频率最高,为22.4%。亚基评分在5~10分之间,平均8.2分,得分在8分及其以上的材料有42份(62.69%),其中得10分的材料有9份(13.43%)。利用DA7200近红外成分分析仪对这批小麦材料的品质性状进行初步分析,结果表明其品质指标较低。这67份美国小麦材料含有的优质亚基比例较高,可作为中间材料以改良我国黄淮麦区小麦品种的亚基组成。  相似文献   

8.
利用A-PAGE(acid-polyacrylamide gel electrophoresis)法对采自以色列的野生大麦的一个野生自然群体的15个系和来自世界不同国家的14份栽培大麦品种醇溶蛋白的遗传多样性进行了分析.结果表明:在所有的29份供试材料中,共发现52条相对迁移率不同的谱带.52条谱带的出现频率为3.44%~93.1%,多样性指数为0.066~0.368;以中国春醇溶蛋白为标准,ω区大麦醇溶蛋白的谱带数最多,其次是β区;野生大麦Shannon多样性指数依次为β区>ω区>α区>γ区,而栽培大麦Shannon多样性指数依次为ω区β>区>γ区>a区;野生大麦自然群体和栽培大麦品种间的遗传相似系数变幅相当,且聚类分析结果显示,野生大麦自然群体和来自全球不同区域栽培大麦品种间的醇溶蛋白遗传多样性同样丰富.以上结果说明,野生大麦中保存了较栽培大麦更为丰富的基因资源,今后栽培大麦的品质改良应该重视野生大麦资源的合理利用.  相似文献   

9.
为了解67份美国材料的遗传多样性及其醇溶蛋白亚基对品质性状的影响,利用酸性聚丙烯酰胺凝胶电泳(APAGE)技术进行醇溶蛋白谱带分析,测定了面团流变学特性及理化品质。结果表明,在67份美国材料中共分离出1332条谱带,49种不同迁移率类型的谱带,大部分谱带具有多态性。单个材料谱带总数变异幅度为13~28。谱带数在α、β、γ、ω4个区的分布存在较大差异。没有发现电泳谱带完全相同的材料。GS值变异范围0.54~0.90,平均值为0.731。在GS=0.607水平上,聚类分析将这67份材料分为6类。49条不同迁移率的谱带中有17条谱带与36项品质性状的相关性达到显著或极显著差异。6条谱带(迁移率为49.6、56.2、56.7、62.2、79.4、86.8)与湿面筋含量、蛋白质含量和沉淀值呈正相关,而迁移率为60.5的谱带与之呈负相关。11条谱带(迁移率为26.5、42.0、49.6、52.5、56.2、56.7、62.2、64.1、72.0、79.4、86.8)与面团稳定时间、面团形成时间、延伸面积等面团流变学特征呈正相关,而迁移率为34.4、47.5、49.0、60.5、69.4、85.4的6条谱带则与之呈负相关。说明供试材料间存在着丰富的遗传多样性以及与优质品质相关的谱带,为进一步利用这67份种质资源和优质小麦品种的选育提供了理论依据。  相似文献   

10.
普通小麦品种间醇溶蛋白遗传多样性分析   总被引:12,自引:3,他引:12  
采用酸性聚丙烯酰胺凝胶电泳(A—PAGE)对43个不同来源的普通小麦品种进行了醇溶蛋白位点特异性检测,分析了不同基因型间醇溶蛋白的遗传差异和遗传多样性。结果表明:43个供试品种在醇溶蛋白带型上差异显著。醇溶蛋白电泳共分离出51条迁移率不同的带,其中有4条稳定表达带(均为100%表达).47条具有多态性,占97.6%。供试品种间遗传距离(GD)在0.35~0.82之间,平均值为0.58,遗传变异较大。聚类分析可将其分为5大类。分析认为:供试品种醇溶蛋白变异丰富,存在广泛的遗传多样性。  相似文献   

11.
Fluorescence microsatellite markers were employed to reveal genetic diversity of 340 wheat accessions consisting of 229 landraces and 111 modern varieties from the Northwest Spring Wheat Region in China. The 340 accessions were chosen as candidate core collections for wheat germplasm in this region. A core collection representing the genetic diversity of these accessions was identified based on a cluster dendrogram of 78 SSR loci. A total of 967 alleles were detected with a mean of 13.6 alleles (5–32) per locus. Mean PIC was 0.64, ranged from 0.05 to 0.91. All loci were distributed relatively evenly in the A, B and D wheat genomes. Mean genetic richness of A, B and D genomes for both landraces and modern varieties was B > A > D. However, mean genetic diversity indices of landraces changed to B > D > A. As a whole, genetic diversity of the landraces was considerably higher than that of the modern varieties. The big difference of genetic diversity indices in the three genomes suggested that breeding has exerted greater selection pressure in the D than the A or B genomes in this region. Changes of allelic proportions represented in the proposed core collection at different sampling scales suggested that the sampling percentage of the core collection in the Northwest Spring Wheat Region should be greater than 4% of the base collection to ensure that more than 70% of the variation is represented by the core collection. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

12.
Genetic diversity at Gli-1, Gli-2 and Glu-1 loci was investigated in 89 Sichuan wheat ( Triticum aestivum L.) landraces by using acid polyacrylamide gel electrophoresis (APAGE) and SDS-PAGE. In these landraces, a total of 32 gliadin and 3 high-molecular-weight (HMW) glutenin patterns were observed. In total, 14, 15 and 5 alleles were identified at Gli-1, Gli-2 and Glu-1, respectively. At each locus, the alleles in higher frequency were Gli-A1a (89%), Gli-B1 h (46%), Gli-D1a (65%), Gli-A2a (64%), Gli-B2j (45%), Gli-D2 a (48%), Glu-A1c (99%), Glu-B1b (99%) and Glu-D1a (100%). The Nei's genetic variation index (H) of Sichuan wheat landraces was 0.3706, varying from 0 to 0.7087. The highest genetic diversity was found at Gli-B2 locus, while the lowest was found at Glu-D1 . The genetic diversity at Gli loci was higher than that of Glu-1 loci among these landraces, but it was much lower than that of modern wheat cultivars. These results indicated a narrow genetic base of Sichuan wheat landraces. In this study, “Chengdu-guangtou” had the identical gliadin and HMW-glutenin patterns with “Chinese Spring”, further supporting the proposal that “Chinese Spring” is a strain of “Chengdu-guangtou”.  相似文献   

13.
新疆的小麦品种(系)麦谷蛋白优质亚基分布规律研究   总被引:1,自引:0,他引:1  
麦谷蛋白亚基对小麦品质有重要影响,优质亚基的利用是小麦品质遗传改良的重要途径。为了探讨新疆小麦优质亚基的分布规律,利用已开发的优质亚基和1B/1R易位系的分子标记,对新疆1242份小麦品种资源进行检测,结果表明,在新疆小麦品种资源中,优质亚基2*、7+8、5+10、glu A3d、glu B3b、glu B3d、glu B3g的分布频率依次为20.2%、22.0%、21.9%、16.9%、14.3%、11.9%、10.3%;1B/1R易位系的分布频率为12.6%。在冬小麦品种资源中,国外品种(系)5+10、1B/1R易位系的分布频率均最高,7+8、glu B3d、glu B3g的分布频率均最低;审定品种2*、glu B3d、glu B3g的分布频率均最高。在春小麦品种资源中,国外品种(系)glu B3d的分布频率最高;国内品种(系)5+10、glu A3d、1B/1R易位系的分布频率最高,2*、glu B3d的最低;审定品种2*的分布频率最高,glu B3b、glu B3g的最低。总体来看,新疆春小麦优质亚基的分布频率总体高于冬小麦;导入LMW-GS优质亚基是新疆小麦品质进一步改良的重要方向;地方品种是LMW-GS优质亚基的良好供体。从1242份新疆小麦品种(系)中挑选出兼含多个优质亚基的冬、春小麦品种(系)各21份、24份,可在小麦品质遗传改良中加强利用。  相似文献   

14.
Genetic relationships among common wheat varieties from the 10 wheat growing regions of China were assessed using SSR markers. The wheat varieties included 33 modern varieties and 63 landraces selected from the national gene bank collection of China. One hundred and four pairs of selected primers detected a total of 802 alleles, of which 234 were specific to A genome, 309 to B genome, and 221 to D genome. The average genetic richness per locus (A ij /loci) for A, B and D genomes were 6.88, 7.92 and 7.62, respectively. Their average genetic dispersion indices (H t ) were 0.637, 0.694 and 0.656, respectively. The B genome showed the highest genetic diversity among the three wheat genomes. The landraces had a higher genetic diversity than the modern varieties, and the major difference between the landraces and the modern varieties in China existed in the D genome, followed by B and A genomes. The majority of the accessions (65.6%) had heterogeneity at the 112 loci detected. The highest heterogeneity locus percentages were 9.09 and 12.73 in the modern varieties and the landraces, respectively. SSR data were analyzed with NTSYS-pc software. The genetic similarities between accessions were estimated with the DICE coefficient. The accessions clustered into two groups, the modern varieties and the landraces by the un-weighted pair-group method using arithmetic average (UPGMA). The trend of correlation coefficients between genetic similarity matrices based on different numbers of random alleles and that of 802 alleles showed that 550 alleles were sufficient to construct a robust dendrogram. The separated simulations from six sub-samples revealed that 550 alleles were the minimum number required to confidently determine the genetic relationships. It was shown that the number of alleles (loci) needed do not have a strong association with the number of wheat lines in the sample size. These data suggested that 73 loci with good polymorphism are needed to reflect genetic relationships among accessions with more than 90% certainty. In the dendrogram, most accessions from the same wheat region were clustered together, and those from geographically adjacent regions usually appeared in the same small group. This indicated that genetic diversity of Chinese common wheat has a close association with their geographic distribution and ecological environment.  相似文献   

15.
Genetic diversity at Gli-1, Gli-2 and Glu-1 loci was investigated in 32 accessions of Chinese endemic wheat by using acid polyacrylamide gel electrophoresis (APAGE) and sodium dodecyl sulfate (SDS)-PAGE. There were 8 gliadin and 3 high-molecular-weight (HMW)-glutenin patterns in 14 Yunnan hulled wheat ( Triticum aestivum ssp. yunnanese King) accessions, 9 gliadin and 4 HMW-glutenin patterns in 9 Tibetan weedrace ( T. aestivum ssp. tibetanum Shao ) accessions, and 9 gliadin and 5 HMW-glutenin patterns in 9 Xinjiang rice wheat ( T. petropavlovskyi Udacz. et Migusch.) accessions. One accession (i.e. Daomai 2) carried new subunits 2.1+10.1 encoded by Glu-D1 . Among the three Chinese endemic wheat groups, a total of 10, 14 and 11 alleles at Gli-1 locus; 11, 14 and 12 alleles at Gli-2 locus; and 5, 6 and 8 alleles at Glu-1 locus were identified, respectively. Among Yunnan hulled wheat, Tibetan weedrace and Xinjiang rice wheat, the Nei's genetic variation indexes were 0.3798, 0.5625 and 0.5693, respectively. These results suggested that Tibetan weedrace and Xinjiang rice wheat had higher genetic diversity than Yunnan hulled wheat.  相似文献   

16.
In common wheat (Triticum aestivum L.), allelic variations of Glu-1 loci have important influences on grain end-use quality. The allelic variations in high molecular weight glutenin subunits (HMW-GSs) were identified in 151 hexaploid wheat varieties representing a historical trend in the cultivars introduced or released in Hebei province of China from the years 1970s to 2010s. Thirteen distinct alleles were detected for Glu-1. At Glu-A1, Glu-B1 and Glu-D1, we found that the most frequent alleles were the 1 (43.0%), 7+8 (64.9%), 2+12 (74.8%) alleles, respectively, in wheat varieties. Twenty two different HMW-GS compositions were observed in wheat. Twenty-five (16.6%) genotypes possessed the combination of subunits 1, 7+8, 2+12, 25 (16.6%) genotypes had subunit composition of 2*, 7+8, 2+12; 20 (13.2%) genotypes had subunit composition of null, 7+8, 2+12. The frequency of other subunit composition was less than 10%. The Glu-1 quality score greater than or equal to 9 accounted for 20.6% of the wheat varieties. The percentage of superior subunits (1 or 2* subunit at Glu-A1 locus; 7+8, 14+15 or 17+18 at Glu-B1 locus; 5+10 or 5+12 at Glu-D1 locus) was an upward trend over the last 40 years. The more different superior alleles correlated with good bread-making quality should be introduced for their usage in wheat improvement efforts.  相似文献   

17.
中国普通小麦初选核心种质的产生   总被引:68,自引:8,他引:60  
对中国普通小麦种质资源构建了初选核心种质。地方品种和选育品种分别构建。按栽培区(地理生态区)分组。地方品种按亚区分为28组,选育品种按大区分为10组。各组内在21个表型性状聚类的基础上,按平方根法取样,并依遗传多样性指数与遗传丰富度加以调整。提出在生产上或育种中起过重要作用的品种为必选材料。初步选定的材料经种植核对,淘汰错杂后,产生初选核心种质。地方品种全部供试材料11694份,初选核心种质3283份,取样比例为28.18%。选育品种全部11441份,初选核心种质1684份,取样比例为14.9%。计划经分子标记分析,最后核心种质的比例占全部种质的10%左右。根据全部材料21个性状遗传多样性指数测验,初选核心种质,除芒和壳两性状外,与全部种质的遗传差异均未达到显水平。讨论了初选核心种质的构建方法。指出陕南部西山地和汾渭谷地是中国小麦地方品种遗传变异多样性的富集地。育成品种多样性程度以西南冬麦区和黄淮冬麦区为最高。  相似文献   

18.
小麦新品种(系)Glu-1位点等位基因变异研究   总被引:3,自引:1,他引:2  
应用SDS-PAGE技术分析了40份小麦新品种(系)的高分子量麦谷蛋白亚基等位基因变异。在Glu-1位点共检测到10种变异类型,其中Glu-Al位点有3种类型:Null、1、26 ,Glu-B1位点有5种类型:7 8、7 9、14 15、7、17 18,Glu-D1位点有2种类型:2 12、5 10;Null(54.3%)、7 8(51.4%)和2 12(62.9%)分别是Glu-Al、Glu-B1和Glu-D1位点上的主要亚基变异类型。另外,在2份材料的Glu-B1和Glu-D1位点各检测到1个新的亚基,分别命名为1By8.1和1Dx5^ 。Glu-1位点的Nei‘s遗传变异指数平均为0,5648,Glu-B1的遗传多样性最高,Glu-D1最低。供试小麦材料Glu-1位点的HMW-GS组合共有17种类型,以(Null,7 8,2 12)组合为主要类型,占31.4%;有9种亚基组合类型分别只在1份材料中出现,占26.1%。结果表明,这些小麦新品种(系)存在着丰富的亚基组合类型。  相似文献   

19.
中国特有小麦Gli-1、Gli-2和Glu-1位点的遗传多样性(英文)   总被引:13,自引:0,他引:13  
运用APAGE和SDS_PAGE方法 ,研究了 32份中国特有小麦Gli_1、Gli_2和Glu_1位点的遗传多样性。在 1 4份云南铁壳麦 (Triticumaestivumssp .yunnaneseKing)中 ,共出现 8种醇溶蛋白带型和 3种高分子谷蛋白带型。在 9份西藏半野生小麦 (T .aestivumssp .tibetanumShao )中 ,发现 9种醇溶蛋白带型和 4种高分子谷蛋白带型。在 9份新疆稻麦 (T .petropavlovskyiUdacz.etMigusch .)中 ,观察到 9种醇溶蛋白带型和 5种高分子谷蛋白带型 ,其中 1份新疆稻麦 (稻麦 2 )具有Glu_D1编码的新亚基 2 .1 1 0 .1。在这 3种中国特有小麦群体中 ,Gli_1位点分别检测出 1 0、1 4和1 1个等位基因 ;Gli_2位点各具有 1 1、1 4和 1 2个等位基因 ;Glu_1位点也分别出现 5、6和 8个等位基因。云南铁壳麦、西藏半野生小麦和新疆稻麦群体内的Nei’s遗传变异系数分别为 0 .3798、0 .56 2 5和 0 .56 93。这些结果说明 ,与云南铁壳麦相比 ,西藏半野生小麦和新疆稻麦群体内的遗传变异相对较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号