首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High-throughput screening (HTS) has grown rapidly in the past decade, with many advances in new assay formats, detection technologies, and laboratory automation. Recently, several studies have shown that the choice of assay technology used for the screening process is particularly important and can yield quite different primary screening outcomes. However, because the screening assays in these previous studies were performed in a single-point determination, it is not clear to what extent the difference observed in the screening results between different assay technologies is attributable to inherent assay variability and day-to-day measurement variation. To address this question, a nuclear receptor coactivator recruitment assay was carried out in 2 different assay formats, namely, AlphaScreen and time-resolved fluorescence resonance energy transfer, which probed the same biochemical binding events but with different detection technologies. For each assay format, 4 independent screening runs in a typical HTS setting were completed to evaluate the run-to-run screening variability. These multiple tests with 2 assay formats allow an unambiguous comparison between the discrepancies of different assay formats and the effects of the variability of assay and screening measurements on the screening outcomes. The results provide further support that the choice of assay format or technology is a critical factor in HTS assay development.  相似文献   

2.
New developments in detection technologies are providing a variety of biomolecular screening strategies from which to choose. Consequently, we performed a detailed analysis of both separation-based and non-separation-based formats for screening nuclear receptor ligands. In this study, time-resolved fluorescence resonance energy transfer (TR-FRET), ALPHAScreen, and time-resolved fluorescence (TRF) assays were optimized and compared with respect to sensitivity, reproducibility, and miniaturization capability. The results showed that the ALPHAScreen system had the best sensitivity and dynamic range. The TRF assay was more time consuming because of the number of wash steps necessary. The TR-FRET assay had less interwell variation, most likely because of ratiometric measurement. Both the ALPHAScreen and the TR-FRET assays were miniaturized to 8-microl volumes. Of the photomultiplier tube-based readers, the ALPHAScreen reader (ALPHAQuest) presented the advantage of faster reading times through simultaneous reading with four photomultiplier tubes.  相似文献   

3.
High-throughput screening (HTS) has become an important part of drug discovery at most pharmaceutical and many biotechnology companies worldwide, and use of HTS technologies is expanding into new areas. Target validation, assay development, secondary screening, ADME/Tox, and lead optimization are among the areas in which there is an increasing use of HTS technologies. It is becoming fully integrated within drug discovery, both upstream and downstream, which includes increasing use of cell-based assays and high-content screening (HCS) technologies to achieve more physiologically relevant results and to find higher quality leads. In addition, HTS laboratories are continually evaluating new technologies as they struggle to increase their success rate for finding drug candidates. The material in this article is based on a 900-page HTS industry report involving 54 HTS directors representing 58 HTS laboratories and 34 suppliers.  相似文献   

4.
The rapidly changing developments in genomics and combinatorial chemistry, generating new drug targets and large numbers of compounds, have caused a revolution in high-throughput screening technologies. Key to this revolution has been the introduction of robotics and automation, together with new biological assay technologies (e.g., homogeneous time resolved fluorescence). With ever increasing workloads, together with economic and logistical constraints, miniaturisation is rapidly becoming essential for the future of high-throughput screening and combinatorial chemistry. This is evident from the introduction of high-density microtitre plates, small volume liquid handling robots and associated detection technology.  相似文献   

5.
The use of microarrays for parallel screening of nucleic acid profiles has become an industry standard. Similar efforts for screening protein-protein interactions are gaining momentum, however, they remain limited by the requirement for relatively large sample volumes. One strategy for overcoming this problem is to significantly decrease the size and consequently the sample volume of the protein interaction assay. We report here on our progress over the last two years in the construction of ultraminiaturized, functional protein capture assays. Each one micron spot in these array-based assays covers less than 1/1000(th) of the surface area of a conventional microarray spot while still maintaining enough antibodies to provide a useful dynamic range. These nanoarray assays can be read by conventional optical fluorescence microscopy as well as by novel label-free methods such as atomic force microscopy. The size reduction realized by functional protein nanoarrays also creates opportunities for novel applications including highly multiplexed single cell analysis and integration with microfluidics and other "lab-on-a-chip" technologies.  相似文献   

6.
High-throughput screening (HTS) of large chemical libraries has become the main source of new lead compounds for drug development. Several specialized detection technologies have been developed to facilitate the cost- and time-efficient screening of millions of compounds. However, concerns have been raised, claiming that different HTS technologies may produce different hits, thus limiting trust in the reliability of HTS data. This study was aimed to investigate the reliability of the authors most frequently used assay techniques: scintillation proximity assay (SPA) and homogeneous time-resolved fluorescence resonance energy transfer (TR-FRET). To investigate the data concordance between these 2 detection technologies, the authors screened a large subset of the Schering compound library consisting of 300,000 compounds for inhibitors of a nonreceptor tyrosine kinase. They chose to set up this study in realistic HTS scale to ensure statistical significance of the results. The findings clearly demonstrate that the choice of detection technology has no significant impact on hit finding, provided that assays are biochemically equivalent. Data concordance is up to 90%. The little differences in hit findings are caused by threshold setting but not by systematic differences between the technologies. The most significant difference between the compared techniques is that in the SPA format, more false-positive primary hits were obtained.  相似文献   

7.
In today's high-throughput screening (HTS) environment, an increasing number of assay detection technologies are routinely utilized in lead finding programs. Because of the relatively broad applicability of several of these technologies, one is often faced with a choice of which technology to utilize for a specific assay. The aim of this study was to address the question of whether the same compounds would be identified from screening a set of samples in three different versions of an HTS assay. Here, three different versions of a tyrosine kinase assay were established using scintillation proximity assay (SPA), homogeneous time-resolved fluorescence resonance energy transfer (HTR-FRET), and fluorescence polarization (FP) technologies. In this study, 30,000 compounds were evaluated in each version of the kinase assay in primary screening, deconvolution, and dose-response experiments. From this effort, there was only a small degree of overlap of active compounds identified subsequent to the deconvolution experiment. When all active compounds were then profiled in all three assays, 100 and 101 active compounds were identified in the HTR-FRET and FP assays, respectively. In contrast, 40 compounds were identified in the SPA version of the kinase assay, whereas all of these compounds were detected in the HTR-FRET assay only 35 were active in the FP assay. Although there was good correlation between the IC(50) values obtained in the HTR-FRET and FP assays, poor correlations were obtained with the IC(50) values obtained in the SPA assay. These findings suggest that significant differences can be observed from HTS depending on the assay technology that is utilized, particularly in assays with high hit rates.  相似文献   

8.
A key trend in high-throughput screening is assay miniaturization to control reagent costs and increase throughput. For this purpose, liquid-handling devices are used that transfer nano-to low-microliter volumes into all currently used microtiter well plates. One drawback of many available dispenser and pipetting systems are high dead volumes. Therefore, the authors were looking for an easy and simple solution to modify their standard liquid-handling device, PerkinElmer's FlexDrop Precision IV, allowing for a dead volume reduction to receive maximum benefit from miniaturized assay formats. Internal reservoirs were developed and constructed by Schering's Technical Development Laboratory (TDL), which are directly connected to the dispenser banks of FlexDrop without tubing. Using these newly built reservoirs, the dead volume was decreased by a factor of 5 in comparison to the manufacturer's reservoirs without compromising liquid-handling parameters such as accuracy and precision. The modified system displayed a high robustness and reliability under routine high-throughput screening conditions.  相似文献   

9.
10.
During the past 15 years, most large pharmaceutical companies have decreased the screening of natural products for drug discovery in favor of synthetic compound libraries. Main reasons for this include the incompatibility of natural product libraries with high-throughput screening and the marginal improvement in core technologies for natural product screening in the late 1980s and early 1990 s. Recently, the development of new technologies has revolutionized the screening of natural products. Applying these technologies compensates for the inherent limitations of natural products and offers a unique opportunity to re-establish natural products as a major source for drug discovery. Examples of these new advances and technologies are described in this review.  相似文献   

11.
This protocol describes assay development, validation and implementation of automated immobilized metal affinity for phosphochemicals (IMAP)-based fluorescence polarization (FP) and time-resolved fluorescence resonance energy transfer (TR-FRET) high-throughput screening (HTS) assays for identification of low-molecular-weight kinase inhibitors. Both procedures are performed in miniaturized kinase reaction volumes and involve the stepwise addition of test or control compounds, enzyme and substrate/ATP. Kinase reactions are stopped by subsequent addition of IMAP-binding buffer. Assay attributes of the IMAP FP and TR-FRET methodologies are described. HTS assays developed using these procedures should result in Z-factors and low assay variability necessary for robust HTS assays. Providing that the required reagents and equipment are available, one scientist should be able to develop a 384-well, miniaturized HTS assay in approximately 6-8 weeks. Specific automated HTS assay conditions will determine the number of assay plates processed in a screening session, but two scientists should expect to process between 100 and 150 assay plates in one 8-h screening day.  相似文献   

12.
Many assay technologies currently exist to develop high-throughput screening assays, and the number of choices continues to increase. Results from a previous study comparing assay technologies in our laboratory do not support the common assumption that the same hits would be found regardless of which assay technology is used. To extend this investigation, a nuclear receptor antagonist assay was developed using 3 assay formats: AlphaScreen, time-resolved fluorescence (TRF), and time-resolved fluorescence resonance energy transfer (TR-FRET). Compounds ( approximately 42000) from the Novartis library were evaluated in all 3 assay formats. A total of 128 compounds were evaluated in dose-response experiments, and 109 compounds were confirmed active from all 3 formats. The AlphaScreen, TRF, and TR-FRET assay technologies identified 104, 23, and 57 active compounds, respectively, with only 18 compounds active in all 3 assay formats. A total of 128 compounds were evaluated in a cell-based functional assay, and 35 compounds demonstrated activity in this cellular assay. Furthermore, 34, 11, and 16 hits that were originally identified in the dose-response experiment by AlphaScreen, TRF, and TR-FRET assay technologies, respectively, were functionally active. The results of the study indicated that AlphaScreen identified the greatest number of functional antagonists.  相似文献   

13.
In the field of biotechnology and molecular biology, the use of small liquid volumes has significant advantages. In particular, screening and optimization runs with acceptable amounts of expensive and hardly available catalysts, reagents, or biomolecules are feasible with microfluidic technologies. The presented new microfluidic system is based on the inclusion of small liquid volumes by a protective shell of magnetizable microparticles. Hereby, discrete aqueous microreactor drops with volumes of 1–30 μL can be formed on a simple planar surface. A digital movement and manipulation of the microreactor is performed by overlapping magnetic forces. The magnetic forces are generated by an electrical coil matrix positioned below a glass plate. With the new platform technology, several discrete reaction compartments can be moved simultaneously on one surface. Due to the magnetic fields, the reactors can even be merged to initiate reactions by mixing or positioned above surface‐immobilized catalysts and then opened by magnetic force. Comparative synthesis routes of the magnetizable shell particles and superhydrophobic glass slides including their performance and stability with the reaction platform are described. The influence of diffusive mass transport during the catalyzed reaction is discussed by evaluation finite element model of the microreactor. Furthermore, a first model dye reaction of the enzyme laccase has been established.  相似文献   

14.
The rapid increase in size of compound libraries, as well as new targets emerging from the Human Genome Project, require progress in ultra-high-throughput screening (uHTS) systems. In a joint effort with scientists and engineers from the biotech and the pharmaceutical industry, a modular, fully integrated system for miniaturized uHTS was developed. The goal was to achieve high data quality in small assay volumes (1-4 microL) combined with reliable and unattended operation. Two new confocal fluorescence readers have been designed. One of the instruments is a 4-channel confocal fluorescence reader, measuring with 4 objectives in parallel. The fluorescence readout is based on single-molecule detection methods, allowing high sensitivity at low tracer concentrations and delivering an information-rich output. The other instrument is a confocal fluorescence imaging reader, where the images are analyzed in terms of generic patterns and quantified in units of intensity per pixel. Both readers are spanning the application range from assays with isolated targets in homogenous solution or membrane vesicle-based assays (4-channel reader) to cell-based assays (imaging reader). Results from a comprehensive test on these assay types demonstrate the high quality and robustness of this screening system.  相似文献   

15.
16.
G-protein-coupled receptors (GPCRs) are valuable molecular targets for drug discovery. An important aspect of the early drug discovery process is the design and implementation of high-throughput GPCR functional assays that allow the cost-effective screening of large compound libraries to identify novel drug candidates. Several functional assay kits based on fluorescence and/or chemiluminescence detection are commercially available for convenient screen development, each having advantages and disadvantages. In addition, new GPCR biosensors and high-content imaging technologies have recently been developed that hold promise for the development of functional GPCR screens in living cells.  相似文献   

17.
The HTRF (homogeneous time-resolved fluorescence) Transcreener ADP assay is a new kinase assay technology marketed by Cis-Bio International (Bagnols-Cèze, France). It measures kinase activity by detecting the formation of ADP using a monoclonal antibody and HTRF detection principles. In this article, we compare this technology with a standard HTRF kinase assay using EGFR [L858R/T790M] mutant enzyme as a case study. We demonstrate that the HTRF Transcreener ADP assay generated similar kinetic constants and inhibitor potency compared with the standard HTRF assay. However, the smaller dynamic window and lower Z′ factor of the HTRF Transcreener ADP assay make this format less preferable for high-throughput screening. Based on the assay principle, the HTRF Transcreener ADP assay can detect both kinase and ATPase activities simultaneously. The ability to probe ATPase activity opens up new avenues for assaying kinases with intrinsic ATPase activity without the need to identify substrates, and this can speed up the drug discovery process. However, caution must be exercised because any contaminating ATPase activity will result in an invalid assay. The inability to tolerate high concentrations of ATP in the assay will also limit the application of this technology, especially in compound mechanistic studies such as ATP competition. Overall, the HTRF Transcreener ADP assay provides a new alternative tool to complement existing assay technologies for drug discovery.  相似文献   

18.
Despite a large body of references on assay development, assay optimization, strategies, and methodologies for high-throughput screening (HTS), there have been few reports on investigations of the efficiency of primary screening in a systematic and quantitative manner for a typical HTS process. Recently, the authors investigated the primary hit comparison and the effect of measurement variability by screening a library of approximately 25,000 random compounds in multiple replicate tests in a nuclear receptor recruitment assay with 2 different assay detection technologies. In this report, we utilized these sets of multiple replicate screening data from a different perspective and conducted a systematic data analysis in order to gain some insights into the hit-finding efficiency of a typical primary screening process. Specifically, hit confirmation, false-positive (declaration) rates, and false-negative rates at different hit cutoff limits were explored and calculated from the 2 different assay formats. Results and analyses provided some quantitative estimation regarding the reliability and efficiency of the primary screening process. For the 2 assay formats tested in this report, the confirmation rate (activity repeated at or above a certain hit limit) was found to be 65% or above. It was also suggested that, at least in this case, applying some hit-selection strategies, it is possible to decrease the number of false-negative or false-positive hits without significantly increasing the efforts in primary screening.  相似文献   

19.
Recent progress in biocatalyst discovery and optimization   总被引:4,自引:0,他引:4  
The use of enzymes in industrial catalysis continues to grow because of the considerable advantages of natural catalytic systems. The need for enantiomerically pure fine chemicals and the movement away from chemically burdened technologies will drive the acceptance of enzyme-assisted processes. New technologies for enzyme discovery and optimization have enabled the application of enzymes in harsh industrial conditions and in processes demanding stringent selectivity. These discovery and laboratory evolution methods entail genomic approaches that by their nature engender screening of extremely large numbers of gene types and variants. By extension, the fitness of an individual high-throughput screen requires an intelligent, process-targeted assay amenable to a chosen screening platform.  相似文献   

20.
High-throughput screening (HTS) is used in modern drug discovery to screen hundreds of thousands to millions of compounds on selected protein targets. It is an industrial-scale process relying on sophisticated automation and state-of-the-art detection technologies. Quality control (QC) is an integral part of the process and is used to ensure good quality data and mini mize assay variability while maintaining assay sensitivity. The authors describe new QC methods and show numerous real examples from their biologist-friendly Stat Server HTS application, a custom-developed software tool built from the commercially available S-PLUS and Stat Server statistical analysis and server software. This system remotely processes HTS data using powerful and sophisticated statistical methodology but insulates users from the technical details by outputting results in a variety of readily interpretable graphs and tables. It allows users to visualize HTS data and examine assay performance during the HTS campaign to quickly react to or avoid quality problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号