首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and Aims

Cereals have two root systems. The primary system originates from the embryo when the seed germinates and can support the plant until it produces grain. The nodal system can emerge from stem nodes throughout the plant''s life; its value for yield is unclear and depends on the environment. The aim of this study was to test the role of nodal roots of sorghum and millet in plant growth in response to variation in soil moisture. Sorghum and millet were chosen as both are adapted to dry conditions.

Methods

Sorghum and millet were grown in a split-pot system that allowed the primary and nodal roots to be watered separately.

Key Results

When primary and nodal roots were watered (12 % soil water content; SWC), millet nodal roots were seven times longer than those of sorghum and six times longer than millet plants in dry treatments, mainly from an 8-fold increase in branch root length. When soil was allowed to dry in both compartments, millet nodal roots responded and grew 20 % longer branch roots than in the well-watered control. Sorghum nodal roots were unchanged. When only primary roots received water, nodal roots of both species emerged and elongated into extremely dry soil (0·6–1·5 % SWC), possibly with phloem-delivered water from the primary roots in the moist inner pot. Nodal roots were thick, short, branchless and vertical, indicating a tropism that was more pronounced in millet. Total nodal root length increased in both species when the dry soil was covered with plastic, suggesting that stubble retention or leaf mulching could facilitate nodal roots reaching deeper moist layers in dry climates. Greater nodal root length in millet than in sorghum was associated with increased shoot biomass, water uptake and water use efficiency (shoot mass per water). Millet had a more plastic response than sorghum to moisture around the nodal roots due to (1) faster growth and progression through ontogeny for earlier nodal root branch length and (2) partitioning to nodal root length from primary roots, independent of shoot size.

Conclusions

Nodal and primary roots have distinct responses to soil moisture that depend on species. They can be selected independently in a breeding programme to shape root architecture. A rapid rate of plant development and enhanced responsiveness to local moisture may be traits that favour nodal roots and water use efficiency at no cost to shoot growth.  相似文献   

2.
Our understanding of wood anatomy and radial growth in tree roots remains very incomplete, particularly with respect to how ecological factors affect root growth at a relatively small spatial scale, i.e., within a single root system. Here, we compared root growth with and without trampling exposure on a hiking trail. We conducted a quantitative analysis of radial growth and wood anatomical changes, including compression wood (CW) and blue rings (BRs), of two adjacent Scots pine roots in high resolution. A total of 32 cross sections from two roots sampled every 25 cm at the same distance from the respective stem were compared. The buried root (B) was completely buried and had an unexposed segment on a hiking trail. In contrast, the exposed root (E) had an exposed segment that was trampled. 1706 growth rings were analysed for the common period 1954–2015.We found that the volume of the E root in the trampling zone exceeded ten times the volume of the B root. The root surface area of the exposed sections of the E root was on average 14 times larger than that of the unexposed B root section in the trampling zone. The highest number of missing rings was found in the B root. Root sections sampled at the shortest distance from the stem showed the highest coherence in radial growth pattern, which decreased with increasing distance from the stem.BRs were recognized for the first time in tree roots. In total 25 tree rings contained BRs, and their occurrence was restricted to cross sections of the exposed root. BRs were formed over the course of 25 calendar years, i.e., in 40% of tree rings from the common period 1954–2015. Mean monthly temperatures for the years with and without BRs formation showed that colder November (p = 0. 012) and, albeit only slightly, colder September (p = 0.051) temperatures favoured formation of BRs in Scots pine roots. In addition, mean monthly precipitation in July (p = 0.017) was significantly higher for BR years, suggesting an impact of moisture availability on the formation of BRs in Scots pine roots. The study highlights a high rate of growth discrepancies within a single root system. Further, altered growth of trampled roots with high proportions of BRs opens a new challenge for future dendroecological studies on tree roots.  相似文献   

3.
Bingham  I.J.  Bengough  A.G. 《Plant and Soil》2003,250(2):273-282
Root systems of individual crop plants may encounter large variations in mechanical impedance to root penetration. Split-root experiments were conducted to compare the effects of spatial variation in soil strength on the morphological plasticity of wheat and barley roots, and its relationship to shoot growth. Plants of spring barley (Hordeum vulgare cv Prisma) and spring wheat (Triticum aestivum cv Alexandria) were grown for 12 days with their seminal roots divided between two halves of a cylinder packed with sandy loam soil. Three treatment combinations were imposed: loose soil where both halves of the cylinder were packed to 1.1 g cm–3 (penetrometer resistance 0.3 MPa), dense soil where both halves were packed to 1.4 g cm–3 (penetrometer resistance 1 MPa), and a split-root treatment where one half was packed to 1.1 and the other to 1.4 g cm–3. In barley, uniform high soil strength restricted the extension of main seminal root axes more than laterals. In the split-root treatment, the length of laterals and the dry weight of main axes and laterals were increased in the loose soil half and reduced in the dense soil half compared with their respective loose and dense-soil controls. No such compensatory adjustments between main axis and laterals and between individual seminal roots were found in wheat. Variation in soil strength had no effect on the density of lateral roots (number per unit main axis length) in either barley or wheat. The nature and extent of wheat root plasticity in response to variation in soil strength was very different from that in response to changes in N-supply in previous experiments. In spite of the compensatory adjustments in growth between individual seminal roots of barley, the growth of barley shoots, as in wheat, was reduced when part of the root system was in compacted soil.  相似文献   

4.
利用发根农杆菌A4转化甘薯品种徐薯18和胡萝卜品种天红2号的发根,建立甘薯茎线虫病病原线虫(马铃薯腐烂线虫)的单寄主培养体系。通过该体系对马铃薯腐烂线虫的行为进行观察以及繁殖情况进行调查。结果表明:(1)马铃薯腐烂线虫在甘薯和胡萝卜发根上都能正常发育和繁殖,完成其生活周期;(2)培养4周和8周后,在甘薯发根上线虫繁殖倍数分别为2.6和50.6倍;在胡萝卜发根上线虫繁殖倍数分别为1.7和9.9倍;相同培养时间内,线虫在甘薯发根上的繁殖数极显著高于在胡萝卜发根上的繁殖数。(3)利用发根系统繁殖马铃薯腐烂线虫,便于研究其行为,在显微镜下可以直接观察到线虫在发根上活动情况,这对研究发根和线虫相互关系十分有利。基于上述结果,初步证实构建甘薯发根单寄主培养体系繁殖马铃薯腐烂线虫是可行的,且优于胡萝卜发根繁殖马铃薯腐烂线虫体系。  相似文献   

5.
The phytohormone abscisic acid (ABA) plays a major role in regulating root growth. Most work to date has investigated the influence of root‐sourced ABA on root growth during water stress. Here, we tested whether foliage‐derived ABA could be transported to the roots, and whether this foliage‐derived ABA had an influence on root growth under well‐watered conditions. Using both application studies of deuterium‐labelled ABA and reciprocal grafting between wild‐type and ABA‐biosynthetic mutant plants, we show that both ABA levels in the roots and root growth in representative angiosperms are controlled by ABA synthesized in the leaves rather than sourced from the roots. Foliage‐derived ABA was found to promote root growth relative to shoot growth but to inhibit the development of lateral roots. Increased root auxin (IAA) levels in plants with ABA‐deficient scions suggest that foliage‐derived ABA inhibits root growth through the root growth‐inhibitor IAA. These results highlight the physiological and morphological importance, beyond the control of stomata, of foliage‐derived ABA. The use of foliar ABA as a signal for root growth has important implications for regulating root to shoot growth under normal conditions and suggests that leaf rather than root hydration is the main signal for regulating plant responses to moisture.  相似文献   

6.
Root effects on soil water and hydraulic properties   总被引:1,自引:0,他引:1  
Plants can affect soil moisture and the soil hydraulic properties both directly by root water uptake and indirectly by modifying the soil structure. Furthermore, water in plant roots is mostly neglected when studying soil hydraulic properties. In this contribution, we analyze effects of the moisture content inside roots as compared to bulk soil moisture contents and speculate on implications of non-capillary-bound root water for determination of soil moisture and calibration of soil hydraulic properties. In a field crop of maize (Zea mays) of 75 cm row spacing, we sampled the total soil volumes of 0.7 m × 0.4 m and 0.3 m deep plots at the time of tasseling. For each of the 84 soil cubes of 10 cm edge length, root mass and length as well as moisture content and soil bulk density were determined. Roots were separated in 3 size classes for which a mean root porosity of 0.82 was obtained from the relation between root dry mass density and root bulk density using pycnometers. The spatially distributed fractions of root water contents were compared with those of the water in capillary pores of the soil matrix. Water inside roots was mostly below 2–5% of total soil water content; however, locally near the plant rows it was up to 20%. The results suggest that soil moisture in roots should be separately considered. Upon drying, the relation between the soil and root water may change towards water remaining in roots. Relations depend especially on soil water retention properties, growth stages, and root distributions. Gravimetric soil water content measurement could be misleading and TDR probes providing an integrated signal are difficult to interpret. Root effects should be more intensively studied for improved field soil water balance calculations. Presented at the International Conference on Bioclimatology and Natural Hazards, Pol’ana nad Detvou, Slovakia, 17–20 September 2007.  相似文献   

7.
This study investigated aerenchyma formation and function in adventitious roots of wheat (Triticum aestivum L.) when only a part of the root system was exposed to O2 deficiency. Two experimental systems were used: (1) plants in soil waterlogged at 200 mm below the surface; or (2) a nutrient solution system with only the apical region of a single root exposed to deoxygenated stagnant agar solution with the remainder of the root system in aerated nutrient solution. Porosity increased two‐ to three‐fold along the entire length of the adventitious roots that grew into the water‐saturated zone 200 mm below the soil surface, and also increased in roots that grew in the aerobic soil above the water‐saturated zone. Likewise, adventitious roots with only the tips growing into deoxygenated stagnant agar solution developed aerenchyma along the entire main axis. Measurements of radial O2 loss (ROL), taken using root‐sleeving O2 electrodes, showed this aerenchyma was functional in conducting O2. The ROL measured near tips of intact roots in deoxygenated stagnant agar solution, while the basal part of the root remained in aerated solution, was sustained when the atmosphere around the shoot was replaced by N2. This illustrates the importance of O2 diffusion into the basal regions of roots within an aerobic zone, and the subsequent longitudinal movement of O2 within the aerenchyma, to supply O2 to the tip growing in an O2 deficient zone.  相似文献   

8.
Root respiration has important implications for understanding plant growth as well as terrestrial carbon flux with a changing climate. Although soil temperature and soil moisture often interact, rarely have these interactions on root respiration been studied. This report is on the individual and combined effects of soil moisture and temperature on respiratory responses of single branch roots of 1-year-old Concord grape (Vitis labruscana Bailey) vines grown in a greenhouse. Under moist soil conditions, root respiration increased exponentially to short-term (1 h) increases in temperature between 10 degrees C and 33 degrees C. Negligible increases in root respiration occurred between 33 degrees C and 38 degrees C. By contrast to a slowly decreasing Q10 from short-term temperature increases, when roots were exposed to constant temperatures for 3 d, the respiratory Q10 between 10 degrees C and 30 degrees C diminished steeply with an increase in temperature. Above 30 degrees C, respiration declined with an increase in temperature. Membrane leakage was 89-98% higher and nitrogen concentration was about 18% lower for roots exposed to 35 degrees C for 3 d than for those exposed to 25 degrees C and 15 degrees C. There was a strong interaction of respiration with a combination of elevated temperature and soil drying. At low soil temperatures (10 degrees C), respiration was little influenced by soil drying, while at moderate to high temperatures (20 degrees C and 30 degrees C), respiration exhibited rapid declines with decreases in soil moisture. Roots exposed to drying soil also exhibited increased membrane leakage and reduced N. These findings of acclimation of root respiration are important to modelling respiration under different moisture and temperature regimes.  相似文献   

9.
This investigation was performed to study the effect on plant water relations and growth when some of roots grow into dry soil. Common spring water (Triticum aestivum) plants were grown from seed in soil in 1.2 m long PVC (polyvinyl chloride) tubes. Some of the tubes had a PVC partition along their center so that plants developed a split root system (SPR). Part of the roots grew in fully irrigated soil on one side of the partition while the rest of the roots grew into a very dry (-4.1 MPa) soil on the other side of the partition. Split root plants were compared with plants grown from emergence on stored soil moisture (STOR) and with plants that were fully irrigated as needed (IRR). The experiment was duplicated over two temperature regimes (10°/20°C and 15°/25°C, night/day temperatures) in growth chambers. Data were collected on root dry matter distribution, soil moisture status, midday leaf water potential (LWP), leaf relative water content (RWC) and parameters of plant growth and yield.Some roots were found in the dry side of SPR already at 21 DAE (days after emergence) at a soil depth of 15 to 25 cm. Soil water potential around these roots was -0.7 to -1.0 MPa at midday, as compared with the initial value of -4.1 MPa. Therefore, water apparently flowed from the plant into the dry soil, probably during the night. Despite having most of their roots (around 2/3 of the total) in wet soil, SPR plants developed severe plant water stress, even in comparison with STOR plants. Already at 21 DAE, SPR plants had a LWP of -1.5 to -2.0 MPa, while IRR and STOR had a LWP of -0.5 MPa or higher. As a consequence of their greater plant water stress, SPR as compared with IRR plants were lower in tiller number, ear number, shoot dry matter, root dry matter, total biomass, plant height and grain yield and had more epicuticular wax on their leaves.It was concluded that the exposure of a relatively small part of a plant root system to a dry soil may result in a plant-to-soil water potential gradient which may cause severe plant water stress, leading to reduced plant growth and yield.  相似文献   

10.
A study of the tensile force required to pull wheat roots from soil   总被引:3,自引:0,他引:3  
Experiments were carried out to determine the tensile properties of mature wheat roots and the force necessary to pull roots from undisturbed soils at a range of moisture contents using an Instron materials testing rig. Roots decreased in cross sectional area from 1.5 to 0.1 mm2and in tensile strength from 7.0 to 2.3 Newtons (N) along the first 12 cm of their length. Breaking strain was constant along the root but the breaking stress increased. Increased seeding rate decreased root diameter and tensile strength but plant growth regulators and fertiliser nitrogen level did not affect the tensile properties. Roots were pulled from mesh tubes of soil (25 mm ± 75 mm) into which they had grown. The peak loads for sandy clay loam and sandy loam soils were 4.8 and 3.9 N respectively and increasing the soil moisture from 17% to 26% reduced the peak load from 5.2 N to 3.5 N. With the drier soil the inner stele pulled free leaving the outer periderm in the soil in a higher proportion of the roots indicating a stronger root/soil bond than in the wetter soil. The load us displacement relationship when pulling roots from soil resembled that for a fibre reinforced composite material. The presence of branch roots resulted in an uneven trace in which there were a number of sub-peaks as branch roots gave way. It is suggested that soil wetting could contribute to lodging of wheat by reducing the resistance of roots to slippage and breaking.  相似文献   

11.
Simulations of crop productivity and environmental quality depend strongly on the root activity model used. Flexible, generic root system models are needed that can easily be coupled to various process-based soil models and can easily be modified to test various hypotheses about how roots respond to their environment. In this paper, we develop a convective-diffusive model of root growth and proliferation, and use it to test some of these hypotheses with data on the growth of roots on potted chrysanthemum cuttings. The proliferation of roots is viewed as a result of a diffusion-like gradient-driven propagation in all directions and convection-like propagation downwards caused by geotropism. The finite element method was used to solve the boundary problem for the convective-diffusive equation. To test hypotheses, we wrote modules in a way that caused a test parameter to be zero, should the hypothesis be rejected. These modules were added or removed to test each hypothesis in turn and in various combinations. The model explained 92% of the variation in the experimental data of Chen and Lieth (1993) on root growth of potted chrysanthemum cuttings. For this dataset the following hypotheses were accepted: (1) root diffusivity (colonization of new soil) did not depend on root density, (2) there was no geotropic trend in root development, (3) potential root growth increased linearly with root density, (4) there were (at least) two classes of roots with different rates of growth and proliferation, and (5) potential root growth rate decreased with distance from the plant stem base.  相似文献   

12.
The direction of root growth can be studied by analyzing the trajectories of roots growing in soil. Both the primary seminal root and nodal roots of maize attain a preferred, or liminal, angle of growth that deviates from the vertical. These roots are said to be plagiogravitropic. Experiments using plants grown in soil-filled boxes revealed that the primary seminal root is truly plagiogravitropic. It shows both positive and negative gravitropism in response to gravity stimuli and tends to maintain its direction even after growing around obstacles. These are experimental results suggesting that plagiogravitropic growth is controlled by internal factors. The orientation of the grain affects the establishment of the liminal angle of the primary seminal root, and both the position of their node of origin and the root diameter are closely related to the plagiogravitropic behaviour of nodal roots. Several external factors are also known to influence plagiogravitropism. Low soil water content causes a decrease in the angle of growth and soil mechanical resistance suppresses the gravitropic curvature. Plagiogravitropic behaviour of both seminal and nodal roots plays a significant role in shaping the root system.  相似文献   

13.
Changes in surface phosphatase activity of tomato root ( Lycopersicon esculentum L. cv. Marmande) have been studied in relation to its P status. Experiments were performed either with excised roots cultured in vitro or with entire plants (split root method) grown in various conditions (P deficiency, renewal of P supply). In some experiments different parts of the root were separated according to their P status during their primary growth.
The surface phosphatase in different root parts depends first of all on P status during their primary growth. Moreover the cell wall phosphatase of tomato root is stable in vivo . Thus the changes in the surface phosphatase of a root system result mainly from the growth of new roots, which bear an enzyme activity that is either high if they are P deficient or low if they are P provided. The control of the cell wall phosphatase synthesis appears to be a repression-derepression process mediated by the root cell concentration in some P compound, probably orthophosphate. Cycloheximide stops or alters the growth of excised roots, so that this inhibitor was found unsuitable to study the synthesis of cell wall phosphatase under in vivo conditions. Split root experiment shows that the increase in surface phosphatase activity may occur locally, i.e. only in the parts of the root system which are P deficient. Agricultural and ecological aspects of these findings are pointed out.  相似文献   

14.
细根空间分布特征能够反映植物对环境的利用程度和适应性,这对评价植物适应逆境至关重要。为了探究胡杨细根空间分布在干旱环境下的适应性特征,以塔里木河下游极端干旱区不同地下水埋深条件下的成年胡杨(Populus euphratica Oliv.)为对象,采用人工挖掘法,对胡杨细根(D≤2 mm)空间分布及其与地下水埋深和土壤水分的关系进行了研究。结果显示:(1)在水平方向上(550 cm范围内),胡杨细根的根长密度(RLD)、表面积密度(SAD)、根质量密度(RMD)随水平距离的增加未发生显著变化;(2)在垂直方向上,土壤表层基本无细根分布,随土壤深度加深,胡杨细根RLD、RMD呈先增加后减少的分布特征,并且在地下水埋深较深处,胡杨细根在较深土壤层(280 cm)仍保持较高的比根长(SRL)和比表面积(SRA);(3)胡杨细根RLD、RMD与上层土壤(0~180 cm)含水量存在较高的正相关关系,而与深层土壤(180 cm以下)含水量存在空间差异。本研究表明生长在上层土壤(0~180 cm)的胡杨细根主要受水分的限制,而生长在土壤深层的细根很可能受地下水埋深的影响,同时为了应对干旱环境,胡杨根系不仅具有较强的水平扩展能力,也会向深层湿润的土壤发展。研究结果可为极端干旱环境下胡杨适应机制的研究提供参考。  相似文献   

15.
为了阐明根区交替控制灌溉(CRDAI)条件下玉米根系吸水规律,通过田间试验,在沟灌垄植模式下采用根区交替控制灌溉研究玉米根区不同点位(沟位、坡位和垄位)的根长密度(RLD)及根系吸水动态。研究表明,根区土壤水分的干湿交替引起玉米RLD的空间动态变化,在垄位两侧不对称分布,并存在层间差异;土壤水分和RLD是根区交替控制灌溉下根系吸水速率的主要限制因素。在同一土层,根系吸水贡献率以垄位最大,沟位最低;玉米营养生长阶段,10—30 cm土层的根系吸水速率最大;玉米生殖生长阶段,20—70 cm为根系吸水速率最大的土层,根系吸水贡献率为43.21%—55.48%。研究阐明了交替控制灌溉下根系吸水与土壤水分、RLD间相互作用的动态规律,对控制灌溉下水分调控机理研究具有理论意义。  相似文献   

16.
Watt  Michelle  Evans  John R. 《Plant and Soil》2003,248(1-2):271-283
White lupin and soybean have contrasting root morphologies: white lupin develops proteoid or cluster roots, roots with discreet clusters of short, determinate branch roots (rootlets) while soybean develops a more fibrous root system with evenly distributed, longer branch roots. Growth and P acquisition by white lupin and soybean were compared in a soil high in bound, total P, with or without additional inorganic P applied in solution. Additional P increased biomass by 25% and doubled total P in soybean. In contrast, white lupin did not respond to additional P in biomass or total P. However added P decreased cluster development on proteoid roots indicating that white lupin sensed the added P. The reduction in cluster weight per plant was exactly countered by an increase in dry weight of other roots. Soybean root development responded to P application, proliferating branch roots with active meristems in the upper portion of the soil profile where P was applied, and reducing root weight to plant weight by 13%. White lupin did not proliferate roots in response to P application. When P was not added to soil, soybean and lupin acquired similar P per unit root dry weight. However, white lupin accumulated 4.8 times more P per unit root length, suggesting that P acquisition in these plants involved other mechanisms such as the exudation of P solubilizing compounds. Soybean accessed P by developing more root length thus colonising more soil volume than white lupin and, therefore, was better able to take advantage of the added P. Pericycle and root tip meristem activities were critical to the differences in root development between white lupin and soybean, and therefore their responses to plant and soil P.  相似文献   

17.
Background and AimsAlthough root penetration of strong soils has been intensively studied at the scale of individual root axes, interactions between soil physical properties and soil foraging by whole plants are less clear. Here we investigate how variation in the penetration ability of distinct root classes and bulk density profiles common to real-world soils interact to affect soil foraging strategies.MethodsWe utilize the functional–structural plant model ‘OpenSimRoot’ to simulate the growth of maize (Zea mays) root systems with variable penetration ability of axial and lateral roots in soils with (1) uniform bulk density, (2) plow pans and (3) increasing bulk density with depth. We also modify the availability and leaching of nitrate to uncover reciprocal interactions between these factors and the capture of mobile resources.Key ResultsSoils with plow pans and bulk density gradients affected overall size, distribution and carbon costs of the root system. Soils with high bulk density at depth impeded rooting depth and reduced leaching of nitrate, thereby improving the coincidence of nitrogen and root length. While increasing penetration ability of either axial or lateral root classes produced root systems of comparable net length, improved penetration of axial roots increased allocation of root length in deeper soil, thereby amplifying N acquisition and shoot biomass. Although enhanced penetration ability of both root classes was associated with greater root system carbon costs, the benefit to plant fitness from improved soil exploration and resource capture offset these.ConclusionsWhile lateral roots comprise the bulk of root length, axial roots function as a scaffold determining the distribution of these laterals. In soils with high soil strength and leaching, root systems with enhanced penetration ability of axial roots have greater distribution of root length at depth, thereby improving capture of mobile resources.  相似文献   

18.
A significant proportion of arable land in south-western Australia is highly susceptible to subsoil compaction, which limits access of roots of wheat to water and nutrients at depth. Genotypic variation in the ability of roots to penetrate a hardpan has been reported for other cereals, using a pot technique, where a thin wax-layer of paraffin wax and petroleum jelly is placed in a soil column to simulate a hardpan. Previously we have modified and validated this technique for measuring root penetration ability of wheat seedlings under contrasting water regimes. Here we report on a series of five experiments (runs), two in well-watered and three in drought stress conditions, which evaluated seminal and nodal root penetration ability through thin wax layers among 24 Australian wheat cultivars and breeding lines (entries). These results were compared with observations on their rooting depths in two contrasting soil types in field trials, including a sandy duplex that contained a hardpan and a red clay that increased in soil strength with depth. Nodal roots ceased growth early under soil water deficit, and water uptake was instead dependant on seminal roots under conditions imposed in the pots. Plants were then reliant on the ability of seminal roots to penetrate the wax layer. Eight entries had superior root penetration ability in both well-watered and drought stressed conditions. Roots of three other entries, which failed to penetrate the wax layers, died under drought stress conditions. In field trials, there was a significant interaction between site and entry for maximum root depth. Our results from the pot studies and field trials indicate that there exists genotypic variation in root traits that are required to penetrate uniformly hard soil, dry soil or soil containing a hardpan. As four of the eight superior entries also showed superior root penetration ability at both sites in the field, there was an overall consistency, but there were exceptions at individual field sites. Factors likely to result in such exceptions were discussed, and topics for further research identified.  相似文献   

19.
Although roots are normally hidden in soil, they may inadvertently be exposed to low light levels in experiments or in natural conditions through cracks or light transmittance through the soil. Light has been implicated in root morphogenesis. Thus, effects of low light conditions on lentil (Lens culinaris L. cv. Verte du Puy) root morphology and root pigmentation were studied. Lentil seedlings were grown in peat or transparent, nutrient-fortified agar at a 12-h light (PAR 240 μmol · m(-2) · s(-1)), 12-h dark cycle. Roots were exposed to low levels (≈ 1-10 μmol · m(-2) · s(-1)) of broadband white light, either directly or indirectly by aboveground light penetrating the growth medium. Control roots were grown in darkness. In situ spectroscopy was used to measure transmittance and reflectance spectra of intact root tissue by mounting the upper part of the primary root directly in a spectrophotometer equipped with an integrating sphere attachment. The transmittance and reflectance spectra were used to calculate the in situ root absorbance spectrum. Absorbance bands were found in the regions 480-500 nm and 650-680 nm, possibly due to low levels of root-localised carotenoids and chlorophylls, respectively. Low light levels (≈ 1-10 μmol · m(-2) · s(-1) ) transmitted through the growth medium significantly increased root pigment concentration and root biomass, and altered root morphology by enhancing lateral root formation and inhibiting root elongation relative to roots grown in complete darkness. The light-induced changes in root morphogenesis and pigmentation appear to be primarily due to upper root light perception.  相似文献   

20.
不同类型沙地上差巴嘎蒿细根的分布状态   总被引:9,自引:0,他引:9       下载免费PDF全文
 以生长于流动沙地和固定沙地上,处于植被演替不同阶段的半灌木差巴嘎蒿(Artemisia halodendron)种群为对象,用土钻取样法研究了生长季(2000年)降雨期前后差巴嘎蒿的根系随土壤深度的分布、生长动态及其与根际土壤含水量的动态关系,观察到:1)降雨期前各土层的根际土壤含水量随深度的增加而升高,增加的幅度为流动沙地>固定沙地;降雨期后根际土壤含水量随深度的增加而减少,减少的幅度为固定沙地>流动沙地。2)表土层(0~15 cm)中差巴嘎蒿的主根分布量在流动沙地显著高于固定沙地。3)降雨期前,差巴嘎蒿细根(直径<1 mm)分布比例在两种不同类型沙地上的差异表现为:在土层0~45cm中固定沙地(84.9%)极显著高于流动沙地(61.9%),而在深土层(>45 cm)中流动沙地(38.1%)显著高于固定沙地(22%);降雨期后,不论是在固定沙地还是流动沙地细根多集中于0~15 cm的表土层中,流动沙地的细根分布比例由降雨期前33%增至降雨期后的78%,固定沙地由降雨期前的49%增至降雨期后的63%。表明流动沙地差巴嘎蒿种群细根的生长比固定沙地活跃,能够在生长季降雨期后迅速调整细根的分布比例,使细根分布适应降雨期后浅层土壤含水量高的特点。固定沙地的细根分布难以迅速适应土壤水分的变化,不利于差巴嘎蒿对水分的吸收,成为种群衰退的一个重要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号