首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
The haemochromatosis protein (HFE) is an important regulator of body iron stores. In the liver, HFE is required for appropriate expression of hepcidin, a humoral mediator of iron absorption. HFE is also present in enterocytes, though its function in the intestine is unknown; it is not intrinsically required for iron absorption, but can augment iron absorption when over-expressed—independent of hepcidin regulation by the liver. In this study, an antibody was raised against rat HFE and validated by enzyme-linked immunosorbent assay, Western blot and quenching of antibody function by the immunising peptide. The sub-cellular location of HFE in enterocytes of iron-deficient and control rats was determined by double-labelling experiments with markers for the microvillus membrane, terminal web, early endosomes, lysosomes and the transferrin receptor. Parallel studies were performed for the primary iron absorption protein, divalent metal transporter 1 (DMT1). HFE co-localised exclusively with the terminal web of intestinal enterocytes. HFE expression was increased in iron deficiency, consistent with a second regulatory role for HFE in iron absorption, independent of hepcidin from the liver. DMT1 was localised primarily on the microvillus membrane, but did partially co-localise with HFE raising the possibility that the two proteins may interact to regulate iron absorption.  相似文献   

7.
Inflammation and iron accumulation are present in a variety of neurodegenerative diseases that include Alzheimer's disease and Parkinson's disease. The study of the putative association between inflammation and iron accumulation in central nervous system cells is relevant to understand the contribution of these processes to the progression of neuronal death. In this study, we analyzed the effects of the inflammatory cytokines tumor necrosis factor alpha (TNF‐α) and interleukin 6 (IL‐6) and of lipopolysaccharide on total cell iron content and on the expression and abundance of the iron transporters divalent metal transporter 1 (DMT1) and Ferroportin 1 (FPN1) in neurons, astrocytes and microglia obtained from rat brain. Considering previous reports indicating that inflammatory stimuli induce the systemic synthesis of the master iron regulator hepcidin, we identified brain cells that produce hepcidin in response to inflammatory stimuli, as well as hepcidin‐target cells. We found that inflammatory stimuli increased the expression of DMT1 in neurons, astrocytes, and microglia. Inflammatory stimuli also induced the expression of hepcidin in astrocytes and microglia, but not in neurons. Incubation with hepcidin decreased the expression of FPN1 in the three cell types. The net result of these changes was increased iron accumulation in neurons and microglia but not in astrocytes. The data presented here establish for the first time a causal association between inflammation and iron accumulation in brain cells, probably promoted by changes in DMT1 and FPN1 expression and mediated in part by hepcidin. This connection may potentially contribute to the progression of neurodegenerative diseases by enhancing iron‐induced oxidative damage.  相似文献   

8.
9.
Although the recent identification of several genes has extended our knowledge on the maintenance of body iron homeostasis, their tissue specific expression patterns and the underlying regulatory networks are poorly understood. We studied C57black/Sv129 mice and HFE knockout (HFE -/-) variants thereof as a model for hemochromatosis, and investigated the expression of iron metabolism genes in the duodenum, liver, and kidney as a function of dietary iron challenge. In HFE +/+ mice dietary iron supplementation increased hepatic expression of hepcidin which was paralleled by decreased iron regulatory protein (IRP) activity, and reduced expression of divalent metal transporter-1 (DMT-1) and duodenal cytochrome b (Dcytb) in the enterocyte. In HFE -/- mice hepcidin formation was diminished upon iron challenge which was associated with decreased hepatic transferrin receptor (TfR)-2 levels. Accordingly, HFE -/- mice presented with high duodenal Dcytb and DMT-1 levels, and increased IRP and TfR expression, suggesting iron deficiency in the enterocyte and increased iron absorption. In parallel, HFE -/- resulted in reduced renal expression of Dcytb and DMT-1. Our data suggest that the feed back regulation of duodenal iron absorption by hepcidin is impaired in HFE -/- mice, a model for genetic hemochromatosis. This change may be linked to inappropriate iron sensing by the liver based on decreased TfR-2 expression, resulting in reduced circulating hepcidin levels and an inappropriate up-regulation of Dcytb and DMT-1 driven iron absorption. In addition, iron excretion/reabsorption by the kidneys may be altered, which may aggravate progressive iron overload.  相似文献   

10.
Following its identification as a liver-expressed antimicrobial peptide, the hepcidin peptide was later shown to be a key player in iron homoeostasis. It is now proposed to be the 'iron hormone' which, by interacting with the iron transporter ferroportin, prevents further iron import into the circulatory system. This conclusion was reached using the corresponding synthetic peptide, emphasizing the functional importance of the mature 25-mer peptide, but omitting the possible functionality of its maturation. From urine-purified native hepcidin, we recently demonstrated that a proportion of the purified hepcidin had formed iron-hepcidin complexes. This interaction was investigated further by computer modelling and, based on the sequence similarity of hepcidin with metallothionein, a three-dimensional model of hepcidin, containing one atom of iron, was constructed. To characterize these complexes further, the interaction with iron was analysed using different spectroscopic methods. Monoferric hepcidin was identified by MS, as were possibly other complexes containing two and three atoms of iron respectively, although these were present only in minor amounts. UV/visible absorbance and CD studies identified the iron-binding events which were facilitated at a physiological pH. EPR spectroscopy identified the ferric state of the bound metal, and indicated that the iron-hepcidin complex shares some similarities with the rubredoxin iron-sulfur complex, suggesting the presence of Fe(3+) in a tetrahedral sulfur co-ordination. The potential roles of iron binding for hepcidin are discussed, and we propose either a regulatory function in the maturation of pro-hepcidin into active hepcidin or as the necessary link in the interaction between hepcidin and ferroportin.  相似文献   

11.
Interacting signals in the control of hepcidin expression   总被引:2,自引:0,他引:2  
  相似文献   

12.
13.
14.
Hepcidin was originally identified as a liver-expressed antimicrobial peptide but further studies have shown that it also has a key role in iron homeostasis. The NMR structure of the synthetic peptides reveal a distorted beta-sheet containing 4 disulphide bridges, with an unusual vicinal disulphide bridge which has been suggested to be functionally significant. In this study, we report the presence of co-purified iron with the urine-purified 20 and 25 residue hepcidins. Since the published structure does not allow metal binding, the interaction of hepcidin with metals was investigated for other possible structural conformations by threading its primary sequence onto existing 3D folds. Several alignments were obtained and the best scores were used to build a 3D model of hepcidin containing one atom of iron. The new 3D structure, that contains only reduced Cys residues, is completely different from the solved structure of the synthetic peptide. Although the model presented here shows only one metal bound to the peptide, the binding of several metal atoms cannot be excluded from such a short flexible peptide. The co-purification of iron with both peptides, together with our 3D model, suggest a conformational polymorphism for hepcidin, reminiscent of the iron regulatory proteins IRPs.  相似文献   

15.
16.
17.
氧和铁这两种元素对生命活动十分重要. 低氧诱导因子(hypoxia-inducible factors, HIFs)作为转录因子,参与一系列靶基因的表达调控以适应低氧. 铁参与 DNA合成、氧气运输、代谢反应等多种细胞活动,过量游离铁会通过Haber-Weiss或 Fenton反应产生毒性自由基. 细胞通过与铁吸收、存储和利用有关的多种铁代谢相 关蛋白之间的协同作用来维持铁稳态. 与铁稳态相关的一些基因是HIFs的靶基因或 者间接受低氧调控,包括转铁蛋白、转铁蛋白受体、二价金属转运体1、铁调素、膜 铁转运蛋白、血浆铜蓝蛋白、铁蛋白等,而胞内铁浓度的改变能影响HIFs的表达. 本文就低氧与铁代谢相关蛋白的关系,尤其是低氧对铁代谢相关蛋白的调节作一综 述.  相似文献   

18.
The intestinal absorption of the essential trace element iron and its mobilization from storage sites in the body are controlled by systemic signals that reflect tissue iron requirements. Recent advances have indicated that the liver-derived peptide hepcidin plays a central role in this process by repressing iron release from intestinal enterocytes, macrophages and other body cells. When iron requirements are increased, hepcidin levels decline and more iron enters the plasma. It has been proposed that the level of circulating diferric transferrin, which reflects tissue iron levels, acts as a signal to alter hepcidin expression. In the liver, the proteins HFE, transferrin receptor 2 and hemojuvelin may be involved in mediating this signal as disruption of each of these molecules decreases hepcidin expression. Patients carrying mutations in these molecules or in hepcidin itself develop systemic iron loading (or hemochromatosis) due to their inability to down regulate iron absorption. Hepcidin is also responsible for the decreased plasma iron or hypoferremia that accompanies inflammation and various chronic diseases as its expression is stimulated by pro-inflammatory cytokines such as interleukin 6. The mechanisms underlying the regulation of hepcidin expression and how it acts on cells to control iron release are key areas of ongoing research.  相似文献   

19.
The BMP/SMAD4 pathway has major effects on liver hepcidin levels. Bone morphogenetic protein-binding endothelial cell precursor-derived regulator (Bmper), a known regulator of BMP signaling, was found to be overexpressed at the mRNA and protein levels in liver of genetically hypotransferrinemic mice (Trf(hpx/hpx)). Soluble BMPER peptide inhibited BMP2- and BMP6-dependent hepcidin promoter activity in both HepG2 and HuH7 cells. These effects correlated with reduced cellular levels of pSMAD1/5/8. Addition of BMPER peptide to primary human hepatocytes abolished the BMP2-dependent increase in hepcidin mRNA, whereas injection of Bmper peptide into mice resulted in reduced liver hepcidin and increased serum iron levels. Thus Bmper may play an important role in suppressing hepcidin production in hypotransferrinemic mice.  相似文献   

20.
BackgroundPerturbations in iron homeostasis have been reported to be associated with irreversible liver injury in chronic liver disease (CLD). However, it is not clear whether liver dysfunction per se underlies such dysregulation or whether other factors also contribute to it. This study attempted to examine the issues involved.MethodsPatients diagnosed to have chronic liver disease (n = 63), who underwent a medically-indicated upper gastrointestinal endoscopy, were the subjects of this study. Patients with dyspepsia, who underwent such a procedure, and were found to have no endoscopic abnormalities, were used as control subjects (n = 49). Duodenal mucosal samples were obtained to study mRNA and protein levels of duodenal proteins involved in iron absorption. A blood sample was also obtained for estimation of hematological, iron-related, inflammatory and liver function-related parameters.ResultsPatients with CLD had impaired liver function, anemia of inflammation and lower serum levels of hepcidin than control subjects. Gene (mRNA) expression levels of duodenal ferroportin and duodenal cytochrome b (proteins involved in iron absorption) were decreased, while that of divalent metal transporter–1 (DMT-1) was unchanged. Protein expression of DMT-1 was, however, decreased while that of ferroportin was unchanged. In the CLD group, serum hepcidin was predicted independently by serum ferritin and hemoglobin, but not by C-reactive protein (a marker of inflammation). CLD patients with serum ferritin greater than 300 μg/dL had significantly greater liver dysfunction (as indicated by significantly higher serum concentrations of bilirubin, AST and ALT, and MELD scores), higher serum concentrations of CRP and hepcidin, and higher ferroportin protein expression, than those with serum ferritin ≤ 300 μg/dL.ConclusionsIn patients with CLD, anemia of inflammation and low serum hepcidin levels were found to paradoxically co-exist. Expression of duodenal proteins involved in iron absorption were either decreased or unaltered in these patients. The hepcidin response to higher body iron levels and/or inflammation appeared to be functional in these patients, despite the presence of liver disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号