首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Death associated protein kinase (DAPK) is a positive regulator in tumor necrosis factor α (TNFα)‐induced apoptotic pathway, and DAPK expression is lost in cancer cells. In the vasculature, misdirected apoptosis in endothelial cells leads to pathological conditions such as inflammation and physiological shear stress is protective against apoptosis. Using bovine aortic endothelial cells, we found that DAPK expression increased, while the auto‐inhibitory phosphorylation of serine 308 decreased with shear stress at 12 dynes/cm2 for 6 h. Quantitative RT‐PCR revealed a corresponding increase in DAPK mRNA [P < 0.01]. We found that after 18‐h TNFα induction, shearing cells for another 6 h significantly reduced apoptosis based on TUNEL staining [P < 0.05], although cell necrosis was not affected. Under the same conditions, we observed significantly decreased overall DAPK, as well as phospho‐serine 308 DAPK [P < 0.05] compared to TNFα treatment alone. Caspase‐3 and ‐7 activities downstream of DAPK were also attenuated. Shearing cells alone resulted in enhanced apoptosis, likely due to increased DAPK activity. Our findings were further supported by DAPK siRNA, which yielded contrary results. We present conclusive evidence for the first time that shear stress of up to 6 h up‐regulates DAPK expression and activation. However, in the presence of apoptotic stimuli such as TNFα, shear stress caused decrease in DAPK activity. In fact, long‐term shear stress of 24 h significantly reduced overall DAPK expression. Our findings strongly support a novel role for DAPK in mediating effects of shear stress in suppressing cytokine‐activated apoptosis. J. Cell. Physiol. 227: 2398–2411, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

2.
Epithelial-mesenchymal transition (EMT) is an important mechanism in carcinogenesis. To determine the mechanisms that are involved in the regulation of EMT, it is crucial to develop new biomarkers and therapeutic targets towards cancers. In this study, when TGFβ1 and TNFα were used to induce EMT in human lung carcinoma A549 cells, we found an increase in an epithelial cell tight junction marker, Claudin 1. We further identified that it was the TNFα and not the TGFβ1 that induced the fibroblast-like morphology changes. TNFα also caused the increase in Claudin-1 gene expression and protein levels in Triton X-100 soluble cytoplasm fraction. Down-regulation of Claudin-1, using small interfering RNA (siRNA), inhibited 75% of TNFα-induced gene expression changes. Claudin-1 siRNA effectively blocked TNFα-induced molecular functional networks related to inflammation and cell movement. Claudin-1 siRNA was able to significantly reduce TNF-enhanced cell migration and fibroblast-like morphology. Furthermore, over expression of Claudin 1 with a Claudin 1-pcDNA3.1/V5-His vector enhanced cell migration. In conclusion, these observations indicate that Claudin 1 acts as a critical signal mediator in TNFα-induced gene expression and cell migration in human lung cancer cells. Further analyses of these cellular processes may be helpful in developing novel therapeutic strategies.  相似文献   

3.

Background

Endothelial cells (ECs) are continuously exposed to hemodynamic forces imparted by blood flow. While it is known that endothelial behavior can be influenced by cytokine activation or fluid shear, the combined effects of these two independent agonists have yet to be fully elucidated.

Methodology

We investigated EC response to long-term inflammatory cues under physiologically relevant shear conditions via E-selectin expression where monolayers of human umbilical vein ECs were simultaneously exposed to laminar fluid shear and interleukin-1ß (shear-cytokine activation) in a parallel plate flow chamber.

Results and Conclusion

Naïve ECs exposed to shear-cytokine activation display significantly higher E-selectin expression for up to 24 hr relative to ECs activated in static (static-cytokine). Peak E-selectin expression occurred after 8–12 hr of continuous shear-cytokine activation contrary to the commonly observed 4–6 hr peak expression in ECs exposed to static-cytokine activation. Cells with some history of high shear conditioning exhibited either high or muted E-selectin expression depending on the durations of the shear pre-conditioning and the ensuing shear-cytokine activation. Overall, the presented data suggest that a high laminar shear enhances acute EC response to interleukin-1ß in naïve or shear-conditioned ECs as may be found in the pathological setting of ischemia/reperfusion injury while conferring rapid E-selectin downregulation to protect against chronic inflammation.  相似文献   

4.
《Phytomedicine》2015,22(4):431-437
Tumor necrosis factor alpha (TNF-α) promotes the expression of adhesion molecules and induces endothelial dysfunction, a process that can lead to atherosclerosis. Green tea consumption can inhibit endothelial dysfunction and attenuate the development of arteriosclerosis. The purpose of this study was to examine whether epigallocatechin-3-gallate (EGCG) prevents TNF-α-dependent endothelial dysfunction. Here, we compared the regulatory effects of the green tea components EGCG and l-theanine against TNF-α-induced stimulation of adhesion molecule expression and apoptosis induction, which is associated with autophagy. Monocytic cell adhesion to human endothelial cells was measured using a fluorescently-labeled cell line, U-937. Caspase 3/7 activity was examined with a fluorescent probe and fluorescence microscopy. In addition, we analyzed the expression of several genes by RT-PCR. TNF-α-modulation of LC3 and VCAM1 protein levels were investigated by Western blot (WB). TNF-α induced adhesion of U937 cells to endothelial cells, and gene expression associated with adhesion molecules and apoptosis. On the other hand, EGCG and l-theanine inhibited TNF-α-induced adhesion of U937 cells to endothelial cells and inhibited increases in ICAM1, CCL2 and VCAM1 expression. Furthermore, EGCG and l-theanine inhibited TNF-α-induced apoptosis-related gene expression (e.g., CASP9), and caspase activity while inhibiting TNFα-induced VCAM1, LC3A and LC3B protein expression. Meanwhile, treatment of endothelial cells with autophagy inhibitor 3-methyladenine (3-MA) blocked EGCG-induced expression of CASP9. Together, these results indicate that EGCG can modulate TNF-α-induced monocytic cell adhesion, apoptosis and autophagy. We thus conclude that EGCG might be beneficial for inhibiting TNF-α-mediated human endothelial disorders by affecting LC3 expression-related processes.  相似文献   

5.
6.
This study was conducted to test the hypothesis that n-3 polyunsaturated fatty acids are able to down-regulate expression of adhesion molecules and nuclear factor-κB (NF-κB) activation in vascular endothelial cells, in addition to reducing atherosclerotic lesions in vivo. We report here that docosahexaenoic acid (DHA) reduces atherosclerotic lesions in the aortic arteries of apolipoprotein E knockout (apoE-/-) mice. Consistent with the observation in animal study, DHA inhibited THP-1 cell adhesion to tumor necrosis factor α (TNF-α)-activated human aortic endothelial cells (HAECs). Expression of vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) on the cell surface of HAECs was determined by cell-surface enzyme-linked immunosorbent assay. DHA and eicosapentaenoic acid decreased VCAM-1 expression in a dose-dependent manner in TNF-α treated HAECs, while cis-linoleic acid and arachidonic acid did not have any significant effect on either VCAM-1 or ICAM-1 expression. Moreover, DHA significantly reduced VCAM-1 protein expression in the cell lysates of TNF-α-treated HAECs, as determined by Western blot analysis. In line with NF-κB signaling pathway, DHA suppressed the TNF-α-activated IκBα phosphorylation and degradation as well as IκB kinase-β phosphorylation. Subsequently, translocation of the NF-κB (p50/p65) and AP-1 (c-Fos/c-Jun) subunits was down-regulated by DHA in the nucleus of HAECs. These results suggest that DHA negatively regulates TNF-α-induced VCAM-1 expression through attenuation of NF-κB signaling pathway and AP-1 activation. This study provides evidence that DHA may contribute to the prevention of atherosclerosis and inflammatory diseases in vivo.  相似文献   

7.
In this study, the anti-oxidative activities of 70% ethanol extract from Curcuma aromatica Salisb. (CAS) and curcumin (CUR) were studied. The CAS extracts and CUR were both found to have a potent scavenging activity against the reactive species tested, as well as an inhibitory effect on LDL oxidation. Cultured human umbilical vein endothelial cells (HUVECs) were stimulated with tumour necrosis factor α (TNFα), expression of intracellular reactive oxygen species (ROS), nitric oxide (NO), endothelial nitric oxide synthase (eNOS), lectin-like oxidised LDL receptor-1 (LOX-1), adhesion molecules, inhibitory kappa Bα (IκBα) and nuclear factor kappa B (NFκB) were measured. In HUVECs stimulated with TNFα, CUR significantly suppressed expression of the intracellular ROS, LOX-1 and adhesion molecules, degradation of IκBα and translocation of NFκB, while inducing production of NO by phosphorylation of eNOS (p <0.05). In conclusion, CAS and CUR may modulate lipoprotein composition and attenuate oxidative stress by elevated antioxidant processes.  相似文献   

8.
Tristetraprolin (TTP), a substrate of p38 mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MK2), is an RNA-binding protein that binds to AU-rich elements (AREs) in the 3'-untranslated region (3'-UTR) of its target mRNAs and accelerates mRNA degradation. A previous study by our group showed that MK2 regulates tumor necrosis factor-α (TNF-α)-induced expression of intercellular adhesion molecule-1 (ICAM-1) and interleukin-8 (IL-8) in human lung microvascular endothelial cells; however, the downstream protein of MK2 remains unknown. Interestingly, both ICAM-1 and IL-8 have AREs in the 3'-UTR of their mRNAs. In the present study, we performed experiments to determine whether MK2 regulates TNF-α-induced expression of ICAM-1 and IL-8 via TTP in human pulmonary microvascular endothelial cells (HPMECs). The study revealed that MK2 silencing significantly reduced the half-lives of ICAM-1 and IL-8 mRNAs in TNF-α-stimulated HPMECs. TTP phosphorylation levels were decreased in MK2-silenced cells. TTP silencing led to mRNA stabilization of ICAM-1 and IL-8 and upregulation of protein production following TNF-α stimulation. These results, together with our previous study and others, suggest that MK2, in HPMECs, regulates TNF-α-induced expression of ICAM-1 and IL-8 via TTP at the mRNA decay level.  相似文献   

9.
The GRB2 associated binder 1 (GAB1) is an essential docking/adaptor protein for transmitting intracellular signals of the MET tyrosine kinase receptor activated by hepatocyte growth factor/scatter factor (HGF/SF). We found that in response to hours of HGF/SF treatment, the GAB1 protein level is degraded by a mechanism involving MET activity and the proteasomal machinery. We also showed that GAB1 is both multi- and poly-ubiquitinated in a CBL-dependent manner. A long term exposure to HGF/SF caused a more sustained down-regulation of GAB1 than of MET, associated with a loss of reactivation of the ERK MAP kinases to subsequent acute ligand treatment. These data demonstrate that GAB1 is ubiquitinated by CBL and degraded by the proteasome, and plays a role in negative-feedback regulation of HGF/SF–MET signaling.  相似文献   

10.
Hippophae rhamnoides has been extensively used in oriental traditional medicines for treatment of asthma, skin diseases, gastric ulcers, and lung disorders. In this study, we isolated casuarinin from the leaves of H.rhamnoides and examined the effect of casuarinin on the TNF-α-induced ICAM-1 expression in a human keratinocytes cell line HaCaT. Pretreatment with casuarinin inhibited TNF-α-induced protein and mRNA expression of ICAM-1 and subsequent monocyte adhesiveness in HaCaT cells. Casuarinin significantly inhibited TNF-α-induced NF-κB activation. In addition, casuarinin inhibited activation of ERK and p38 MAPK in a dose-dependent manner. Furthermore, pretreatment with casuarinin decreased TNF-α-induced pro-inflammatory mediators, such as IL-1β, IL-6, IL-8, and MCP-1. These results demonstrated that casuarinin exerts its anti-inflammatory activity by suppressing TNF-α-induced expression of ICAM-1 and pro-inflammatory cytokines/chemokines via blockage of activation of NF-κB and ERK/p38 MAPK and can be used as a therapeutic agent against inflammatory skin diseases.  相似文献   

11.
12.
13.
14.
Increased serum level of tumor necrosis factor α (TNFα) causes endothelial dysfunction and leads to serious vascular pathologies. TNFα signaling is known to involve reactive oxygen species (ROS). Using mitochondria-targeted antioxidant SkQR1, we studied the role of mitochondrial ROS in TNFα-induced apoptosis of human endothelial cell line EAhy926. We found that 0.2 nM SkQR1 prevents TNFα-induced apoptosis. SkQR1 has no influence on TNFα-dependent proteolytic activation of caspase-8 and Bid, but it inhibits cytochrome c release from mitochondria and cleavage of caspase-3 and its substrate PARP. SkQ analogs lacking the antioxidant moieties do not prevent TNFα-induced apoptosis. The antiapoptotic action of SkQR1 may be related to other observations made in these experiments, namely SkQR1-induced increase in Bcl-2 and corresponding decrease in Bax as well as p53. These results indicate that mitochondrial ROS production is involved in TNFα-initiated endothelial cell death, and they suggest the potential of mitochondria-targeted antioxidants as vasoprotectors.  相似文献   

15.
16.
Periodontitis is a chronic inflammatory disease characterized by a host inflammatory response against bacteria that leads to destruction of the supporting structures of the teeth. Bacterial components of pathogens in the periodontal pocket are recognized by toll-like receptors (TLRs) that trigger an inflammatory response. In this study, we investigated the effects of the pro-inflammatory cytokine tumor necrosis factor α (TNFα) on TLR2 expression in human gingival fibroblasts. In addition, we examined the signaling pathways involved in the regulation of TNFα-induced TLR2 expression. Our results showed that TNFα increased TLR2 mRNA and protein expression. Microarray analysis and the inhibition of specific signaling pathways demonstrated that c-Jun N-terminal kinases (JNK) and nuclear factor kappa B (NF-κB) were involved in the regulation of TNFα-induced TLR2 expression in gingival fibroblasts. Furthermore, the prostaglandin E(2) (PGE(2)) regulatory enzyme cytosolic phospholipase A(2) (cPLA(2)) and the anti-inflammatory prostaglandin 15-deoxy-Δ(12,14)-prostaglandin J(2) (15d-PGJ(2)), were found to regulate TLR2 mRNA expression stimulated by TNFα. Our findings suggest that these pathways and mediators, through the regulation of TLR2 expression in gingival fibroblasts, may be involved in the pathogenesis of periodontitis. The study provides new insights into the molecular mechanisms underlying the regulation of TLR2, implicated in the chronic inflammatory disease periodontitis.  相似文献   

17.
18.
Resistin is a cytokine and fractalkine (Fk) a cell adhesion molecule and chemokine that contribute to human vascular inflammation by mechanisms not clearly defined. We questioned whether resistin induces Fk expression in human endothelial cells (HEC), compared the effect with that of the pro-inflammatory cytokine, TNF-α, and evaluated the consequences of co-stimulating HEC with both activators on Fk induction and on the signalling molecules involved. We found that resistin up-regulated Fk expression at comparable level to that of TNF-α by a mechanism involving P38 and JNK MAPK and NF-κB. Co-stimulation of cells with resistin and TNF-α did not increase Fk expression induced by every single inducer. Moreover resistin reduced the expression induced by TNF-α in HEC. The new data uncover Fk as a novel molecular link between resistin and inflammation and show that resistin and TNF-α have no additive effect in Fk up-regulation or on the signalling molecules implicated.  相似文献   

19.
20.
Viscolin, a major active component in a chloroform extract of Viscum coloratum, has antioxidative and anti-inflammatory properties. We focused on its effects on the expression of vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-α (TNF-α)-treated human umbilical vein endothelial cells (HUVECs). The TNF-α-induced expression of VCAM-1 was significantly reduced by respectively 38 ± 7 or 34 ± 16% when HUVECs were pretreated with 10 or 30 μM viscolin, as shown by Western blotting, and was also significantly reduced by pretreatment with the antioxidants N-acetylcysteine, diphenylene iodonium chloride, and apocynin. Viscolin also reduced TNF-α-induced VCAM-1 mRNA expression and promoter activity, decreased reactive oxygen species (ROS) production, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, and significantly reduced the binding of monocytes to TNF-α-stimulated HUVECs. The attenuation of TNF-α-induced VCAM-1 expression and cell adhesion was partly mediated by a decrease in JNK phosphorylation. Furthermore, viscolin reduced VCAM-1 expression in the aorta of TNF-α-treated mice in vivo. Taken together, these data show that viscolin inhibits TNF-α-induced JNK phosphorylation, nuclear translocation of NF-κB p65, and ROS generation and thereby suppresses VCAM-1 expression, resulting in reduced adhesion of leukocytes. These results also suggest that viscolin may prevent the development of atherosclerosis and inflammatory responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号