首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abnormal protein aggregates have been suggested as a common pathogenesis of many neurodegenerative diseases. Two well-known protein degradation pathways are responsible for protein homeostasis by balancing protein biosynthesis and degradative processes: the ubiquitin–proteasome system (UPS) and autophagy-lysosomal system. UPS serves as the primary route for degradation of short-lived proteins, but large-size protein aggregates cannot be degraded by UPS. Autophagy is a unique cellular process that facilitates degradation of bulky protein aggregates by lysosome. Recent studies have demonstrated that autophagy plays a crucial role in the pathogenesis of neurodegenerative diseases characterized by abnormal protein accumulation, suggesting that regulation of autophagy may be a valuable therapeutic strategy for the treatment of various neurodegenerative diseases. Sirtuin-2 (SIRT2) is a class III histone deacetylase that is expressed abundantly in aging brain tissue. Here, we report that SIRT2 increases protein accumulation in murine cholinergic SN56 cells and human neuroblastoma SH-SY5Y cells under proteasome inhibition. Overexpression of SIRT2 inhibits lysosome-mediated autophagic turnover by interfering with aggresome formation and also makes cells more vulnerable to accumulated protein-mediated cytotoxicity by MG132 and amyloid beta. Moreover, MG132-induced accumulation of ubiquitinated proteins and p62 as well as cytotoxicity are attenuated in siRNA-mediated SIRT2-silencing cells. Taken together, these results suggest that regulation of SIRT2 could be a good therapeutic target for a range of neurodegenerative diseases by regulating autophagic flux.  相似文献   

2.
Parkinson’s disease (PD) is the most common neurodegenerative movement disorder. Mutations in PTEN-induced kinase 1 (PINK1) are a frequent cause of recessive PD. Autophagy, a pathway for clearance of protein aggregates or impaired organelles, is a newly identified mechanism for PD development. However, it is still unclear what molecules regulate autophagy in PINK1-silenced cells. Here we report that autophagosome formation is promoted in the early phase in response to PINK1 gene silencing by lentivirus transfer vectors expressed in mouse striatum. Reduced PP2A activity and increased phosphorylation of PP2A at Y307 (inactive form of PP2A) were observed in PINK1-knockdown dopaminergic cells and striatum tissues. Treatment with C2-ceramide (an agonist of PP2A) reduced autophagy levels in PINK1-silenced MN9D cells, which suggests that PP2A plays an important role in the PINK1-knockdown-induced autophagic pathway. Furthermore, phosphorylation of Bcl-2 at S87 increased in PINK1-silenced cells and was negatively regulated by additional treatment with C2-ceramide, which indicates that Bcl-2 may be downstream of PP2A inactivation in response to PINK1 dysfunction. Immunoprecipitation also revealed dissociation of the Bcl-2/Beclin1 complex in PINK1-silenced cells, which was reversed by additional treatment with C2-ceramide, and correlated with changes in level of autophagy and S87 phosphorylation of Bcl-2. Finally, Western blots for cleaved caspase-9 and flow cytometry results for active caspase-3 revealed that PP2A inactivation is involved in the protective effect of autophagy on PINK1-silenced cells. Our findings show that downregulation of PP2A activity in PINK1-silenced cells promotes the protective effect of autophagy through phosphorylation of Bcl-2 at S87 and blockage of the caspase pathway. These results may have implications for identifying the mechanism of PD.  相似文献   

3.
Statins are widely used to treat hypercholesterolemia, but they are associated with muscle-related adverse events, by as yet, inadequately resolved mechanisms. In this study, we report that statins induced autophagy in cultured human rhabdomyosarcoma A204 cells. Potency differed widely among the statins: cerivastatin induced autophagy at 0.1 μM, simvastatin at 10 μM but none was induced by pravastatin. Addition of mevalonate, but not cholesterol, blocked induction of autophagy by cerivastatin, suggesting that this induction is dependent on modulation of isoprenoid metabolic pathways. The statin-induced autophagy was not observed in other types of cells, such as human hepatoma HepG2 or embryonic kidney HEK293 cells. Muscle-specific abortive induction of autophagy by hydrophobic statins is a possible mechanism for statin-induced muscle-related side effects.  相似文献   

4.
We previously showed that NDP52 (also known as calcoco2) plays a role as an autophagic receptor for phosphorylated tau facilitating its clearance via autophagy. Here, we examined the expression and association of NDP52 with autophagy-regulated gene (ATG) proteins including LC3, as well as phosphorylated tau and amyloid-beta (Aβ) in brains of an AD mouse model. NDP52 was expressed not only in neurons, but also in microglia and astrocytes. NDP52 co-localized with ATGs and phosphorylated tau as expected since it functions as an autophagy receptor for phosphorylated tau in brain. Compared to wild-type mice, the number of autophagic vesicles (AVs) containing NDP52 in both cortex and hippocampal regions was significantly greater in AD model mice. Moreover, the protein levels of NDP52 and phosphorylated tau together with LC3-II were also significantly increased in AD model mice, reflecting autophagy impairment in the AD mouse model. By contrast, a significant change in p62/SQSTM1 level was not observed in this AD mouse model. NDP52 was also associated with intracellular Aβ, but not with the extracellular Aβ of amyloid plaques. We conclude that NDP52 is a key autophagy receptor for phosphorylated tau in brain. Further our data provide clear evidence for autophagy impairment in brains of AD mouse model, and thus strategies that result in enhancement of autophagic flux in AD are likely to be beneficial.  相似文献   

5.
Most neurodegenerative diseases show a disruption of autophagic function and display abnormal accumulation of toxic protein aggregates that promotes cellular stress and death. Therefore, induction of autophagy has been proposed as a reasonable strategy to help neurons clear abnormal protein aggregates and survive. The kinase mammalian target of rapamycin (mTOR) is a major regulator of the autophagic process and is regulated by starvation, growth factors, and cellular stressors. The phosphoinositide 3-kinase (PI3K)/ protein kinase B (Akt) pathway, which promotes cellular survival, is the main modulator upstream of mTOR, and alterations in this pathway are common in neurodegenerative diseases, e.g. Alzheimer’s disease (AD) and Parkinson’s disease (PD). In the present work we revised mammalian target of rapamycin complex 1 (mTORC1) pathway and mTORC2 as a complementary an important element in mTORC1 signaling. In addition, we revised the extracellular signal regulated kinase (ERK) pathway, which has become relevant in the regulation of the autophagic process and cellular survival through mTORC2 signaling. Finally, we summarize novel compounds that promote autophagy and neuronal protection in the last five years.  相似文献   

6.
Accurate methods to measure autophagic activity in vivo in neurons are not available, and most of the studies are based on correlative and static measurements of autophagy markers, leading to conflicting interpretations. Autophagy is an essential homeostatic process involved in the degradation of diverse cellular components including organelles and protein aggregates. Autophagy impairment is emerging as a relevant factor driving neurodegeneration in many diseases. Moreover, strategies to modulate autophagy have been shown to provide protection against neurodegeneration. Here we describe a novel and simple strategy to express an autophagy flux reporter in the nervous system of adult animals by the intraventricular delivery of adeno-associated viruses (AAV) into newborn mice. Using this approach we efficiently expressed a monomeric tandem mCherry-GFP-LC3 construct in neurons of the peripheral and central nervous system, allowing the measurement of autophagy activity in pharmacological and disease settings.  相似文献   

7.
Accumulation and aggregation of misfolded proteins is a hallmark of several diseases collectively known as proteinopathies. Autophagy has a cytoprotective role in diseases associated with protein aggregates. Age-related macular degeneration (AMD) is the most common neurodegenerative eye disease that evokes blindness in elderly. AMD is characterized by degeneration of retinal pigment epithelial (RPE) cells and leads to loss of photoreceptor cells and central vision. The initial phase associates with accumulation of intracellular lipofuscin and extracellular deposits called drusen. Epidemiological studies have suggested an inverse correlation between dietary intake of marine n-3 polyunsaturated fatty acids (PUFAs) and the risk of developing neurodegenerative diseases, including AMD. However, the disease-preventive mechanism(s) mobilized by n-3 PUFAs is not completely understood. In human retinal pigment epithelial cells we find that physiologically relevant doses of the n-3 PUFA docosahexaenoic acid (DHA) induce a transient increase in cellular reactive oxygen species (ROS) levels that activates the oxidative stress response regulator NFE2L2/NRF2 (nuclear factor, erythroid derived 2, like 2). Simultaneously, there is a transient increase in intracellular protein aggregates containing SQSTM1/p62 (sequestosome 1) and an increase in autophagy. Pretreatment with DHA rescues the cells from cell cycle arrest induced by misfolded proteins or oxidative stress. Cells with a downregulated oxidative stress response, or autophagy, respond with reduced cell growth and survival after DHA supplementation. These results suggest that DHA both induces endogenous antioxidants and mobilizes selective autophagy of misfolded proteins. Both mechanisms could be relevant to reduce the risk of developing aggregate-associate diseases such as AMD.  相似文献   

8.
The regulation of autophagy in metazoans is only partly understood, and there is a need to identify the proteins that control this process. The diabetes‐ and obesity‐regulated gene (DOR), a recently reported nuclear cofactor of thyroid hormone receptors, is expressed abundantly in metabolically active tissues such as muscle. Here, we show that DOR shuttles between the nucleus and the cytoplasm, depending on cellular stress conditions, and re‐localizes to autophagosomes on autophagy activation. We demonstrate that DOR interacts physically with autophagic proteins Golgi‐associated ATPase enhancer of 16 kDa (GATE16) and microtubule‐associated protein 1A/1B‐light chain 3. Gain‐of‐function and loss‐of‐function studies indicate that DOR stimulates autophagosome formation and accelerates the degradation of stable proteins. CG11347, the DOR Drosophila homologue, has been predicted to interact with the Drosophila Atg8 homologues, which suggests functional conservation in autophagy. Flies lacking CG11347 show reduced autophagy in the fat body during pupal development. All together, our data indicate that DOR regulates autophagosome formation and protein degradation in mammalian and Drosophila cells.  相似文献   

9.
Jemma L. Webber 《FEBS letters》2010,584(7):1319-1326
Autophagy is a lysosomal degradation pathway that is essential for cellular homeostasis. Identification of more than 30 autophagy related proteins including a multi-spanning membrane protein, Atg9, has increased our understanding of the molecular mechanisms involved in autophagy. Atg9 is required for autophagy in several eukaryotic organisms although its function is unknown. Recently, we identified a novel interacting partner of mAtg9, p38 MAPK interacting protein, p38IP. We summarise recent data on the role of Atg9 trafficking in yeast and mammalian autophagy and discuss the role of p38IP and p38 MAPK in regulation of mAtg9 trafficking and autophagy.  相似文献   

10.
自噬(autophagy)是1个严谨调控的代谢途径. 哺乳动物细胞通过自噬能够降解和循环利用大分子和某些细胞器.自噬作为一种适应的机制,保护有机体对抗各种病理病变,包括感染、癌症、退行性病变、衰老和心脏疾病等.在移除蛋白聚集体、以及受损或过剩细胞器时,自噬发挥着很关键的作用,从而能够维持细胞能量平衡并适应环境压力.当自噬不足或过剩时,自噬也可作为一种促死亡的机制.在不同的情况下,自噬活化的程度通过自噬信号通路网络而精确地调节.死亡相关蛋白激酶(DAPK)是1个刺激调节蛋白激酶,它由几个功能结构域组成.这些结构域能让它参与广泛的信号通路中,包括凋亡、自噬和膜泡.DAPK在调节自噬中发挥着关键的作用.本文综述了在不同的情况下DAPK负调控或是正调控自噬的路径.  相似文献   

11.
Paget’s disease of bone (PDB) is a late-onset disorder characterised by focal areas of increased bone resorption, with osteoclasts that are increased in size, multinuclearity, number and activity. PDB-causing missense and nonsense variants in the gene encoding Sequestosome-1/p62 (SQSTM1) have been identified, all of which cluster in and around the ubiquitin-associated (UBA) domain of the protein. SQSTM1 is ubiquitously expressed and there is, as yet, no clear reason why these mutations only appear to cause an osteoclast-related phenotype.Using co-immunoprecipitation and tandem mass spectrometry, we identified a novel interaction in human osteoclast-like cells between SQSTM1 and Autophagy-Linked FYVE domain-containing protein (ALFY/WDFY3). Endogenous ALFY and SQSTM1 both localised within the nuclei of osteoclasts and their mononuclear precursors. When osteoclasts were starved to induce autophagy, SQSTM1 and ALFY relocated to the cytoplasm where they formed large aggregates, with cytoplasmic relocalisation appearing more rapid in mature osteoclasts than in precursors in the same culture. Overexpression of wild-type SQSTM1 in HEK293 cells also resulted in the formation of cytoplasmic aggregates containing SQSTM1 and endogenous ALFY, as did overexpression of a PDB-causing missense mutant form of SQSTM1, indicating that this mutation does not impair the formation of SQSTM1- and ALFY-containing aggregates.Expression of ALFY in bone cells has not previously been reported, and the process of autophagy has not been studied with respect to osteoclast activity. We have identified a functional interaction between SQSTM1 and ALFY in osteoclasts under conditions of cell stress. The difference in response to starvation between mature osteoclasts and their precursors may begin to explain the cell-specific functional effects of SQSTM1 mutations in PDB.  相似文献   

12.
ABSTRACT

Endoplasmic reticulum (ER) homeostasis is maintained by the removal of misfolded ER proteins via different quality control pathways. Aggregation-prone proteins, including certain disease-linked proteins, are resistant to conventional ER degradation pathways and require other disposal mechanisms. Reticulophagy is a disposal pathway that uses resident autophagy receptors. How these receptors, which are dispersed throughout the ER network, target a specific ER domain for degradation is unknown. We recently showed in budding yeast, that ER stress upregulates the reticulophagy receptor, triggering its association with the COPII cargo adaptor complex, Sfb3/Lst1-Sec23 (SEC24C-SEC23 in mammals), to discrete sites on the ER. These domains are packaged into phagophores for degradation to prevent the accumulation of protein aggregates in the ER. This unconventional role for Sfb3/Lst1 is conserved in mammals and is independent of its role as a cargo adaptor on the secretory pathway. Our findings may have important therapeutic implications in protein-aggregation linked neurodegenerative disorders.  相似文献   

13.
Autophagy is a unique intracellular protein degradation system accompanied by autophagosome formation. Besides its important role through bulk degradation in supplying nutrients, this system has an ability to degrade certain proteins, organelles, and invading bacteria selectively to maintain cellular homeostasis. In yeasts, Atg8p plays key roles in both autophagosome formation and selective autophagy based on its membrane fusion property and interaction with autophagy adaptors/specific substrates. In contrast to the single Atg8p in yeast, mammals have 6 homologs of Atg8p comprising LC3 and GABARAP families. However, it is not clear these two families have different or similar functions. The aim of this study was to determine the separate roles of LC3 and GABARAP families in basal/constitutive and/or selective autophagy. While the combined knockdown of LC3 and GABARAP families caused a defect in long-lived protein degradation through lysosomes, knockdown of each had no effect on the degradation. Meanwhile, knockdown of LC3B but not GABARAPs resulted in significant accumulation of p62/Sqstm1, one of the selective substrate for autophagy. Our results suggest that while mammalian Atg8 homologs are functionally redundant with regard to autophagosome formation, selective autophagy is regulated by specific Atg8 homologs.  相似文献   

14.
The importin α/β transport machinery mediates the nuclear import of cargo proteins that bear a classical nuclear localization sequence (cNLS). These cargo proteins are linked to the major nuclear protein import factor, importin‐β, by the importin‐α adapter, after which cargo/carrier complexes enter the nucleus through nuclear pores. In the nucleus, cargo is released by the action of RanGTP and the nuclear pore protein Nup2, after which the importins are recycled to the cytoplasm for further transport cycles. The nuclear export of importin‐α is mediated by Cse1/CAS. Here, we exploit structures of functionally important complexes to identify residues that are critical for these interactions and provide insight into how cycles of protein import and recycling of importin‐α occur in vivo using a Saccharomyces cerevisiae model. We examine how these molecular interactions impact protein localization, cargo import, function and complex formation. We show that reversing the charge of key residues in importin‐α (Arg44) or Cse1 (Asp220) results in loss of function of the respective proteins and impairs complex formation both in vitro and in vivo. To extend these results, we show that basic residues in the Nup2 N‐terminus are required for both Nup2 interaction with importin‐α and Nup2 function. These results provide a more comprehensive mechanistic model of how Cse1, RanGTP and Nup2 function in concert to mediate cNLS‐cargo release in the nucleus.  相似文献   

15.
Macroautophagy (henceforth referred to simply as autophagy) is a bulk degradation process involved in the clearance of long-lived proteins, protein complexes and organelles. A portion of the cytosol, with its contents to be degraded, is enclosed by double-membrane structures called autophagosomes/autophagic vacuoles, which ultimately fuse with lysosomes where their contents are degraded. In this review, we will describe how induction of autophagy is protective against toxic intracytosolic aggregate-prone proteins that cause a range of neurodegenerative diseases. Autophagy is a key clearance pathway involved in the removal of such proteins, including mutant huntingtin (that causes Huntington’s disease), mutant ataxin-3 (that causes spinocerebellar ataxia type 3), forms of tau that cause tauopathies, and forms of alpha-synuclein that cause familial Parkinson’s disease. Induction of autophagy enhances the clearance of both soluble and aggregated forms of such proteins, and protects against toxicity of a range of these mutations in cell and animal models. Interestingly, the aggregates formed by mutant huntingtin sequester and inactivate the mammalian target of rapamycin (mTOR), a key negative regulator of autophagy. This results in induction of autophagy in cells with these aggregates.  相似文献   

16.
Temporal and spatial patterns of pathological changes such as loss of neurons and presence of pathological protein aggregates are characteristic of neurodegenerative diseases such as Amyotrophic Lateral Sclerosis, Frontotemporal Dementia, Alzheimer's disease and Parkinson's disease. These patterns are consistent with the propagation of protein misfolding and aggregation reminiscent of the prion diseases. There is a surge of evidence that suggests that large protein aggregates of a range of proteins are able to enter cells via macropinocytosis. Our recent work suggests that this process is activated by the binding of aggregates to the neuron cell surface. The current review considers the potential role of cell surface receptors in the triggering of macropinocytosis by protein aggregates and the possibility of utilizing macropinocytosis pathways as a therapeutic target.  相似文献   

17.
《Autophagy》2013,9(6):1036-1053
The autophagy receptor NBR1 (neighbor of BRCA1 gene 1) binds UB/ubiquitin and the autophagosome-conjugated MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) proteins, thereby ensuring ubiquitinated protein degradation. Numerous neurodegenerative and neuromuscular diseases are associated with inappropriate aggregation of ubiquitinated proteins and GSK3 (glycogen synthase kinase 3) activity is involved in several of these proteinopathies. Here we show that NBR1 is a substrate of GSK3. NBR1 phosphorylation by GSK3 at Thr586 prevents the aggregation of ubiquitinated proteins and their selective autophagic degradation. Indeed, NBR1 phosphorylation decreases protein aggregation induced by puromycin or by the DES/desmin N342D mutant found in desminopathy patients and stabilizes ubiquitinated proteins. Importantly, decrease of protein aggregates is due to an inhibition of their formation and not to their autophagic degradation as confirmed by data on Atg7 knockout mice. The relevance of NBR1 phosphorylation in human pathology was investigated. Analysis of muscle biopsies of sporadic inclusion body myositis (sIBM) patients revealed a strong decrease of NBR1 phosphorylation in muscles of sIBM patients that directly correlated with the severity of protein aggregation. We propose that phosphorylation of NBR1 by GSK3 modulates the formation of protein aggregates and that this regulation mechanism is defective in a human muscle proteinopathy.  相似文献   

18.
The autophagy receptor NBR1 (neighbor of BRCA1 gene 1) binds UB/ubiquitin and the autophagosome-conjugated MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) proteins, thereby ensuring ubiquitinated protein degradation. Numerous neurodegenerative and neuromuscular diseases are associated with inappropriate aggregation of ubiquitinated proteins and GSK3 (glycogen synthase kinase 3) activity is involved in several of these proteinopathies. Here we show that NBR1 is a substrate of GSK3. NBR1 phosphorylation by GSK3 at Thr586 prevents the aggregation of ubiquitinated proteins and their selective autophagic degradation. Indeed, NBR1 phosphorylation decreases protein aggregation induced by puromycin or by the DES/desmin N342D mutant found in desminopathy patients and stabilizes ubiquitinated proteins. Importantly, decrease of protein aggregates is due to an inhibition of their formation and not to their autophagic degradation as confirmed by data on Atg7 knockout mice. The relevance of NBR1 phosphorylation in human pathology was investigated. Analysis of muscle biopsies of sporadic inclusion body myositis (sIBM) patients revealed a strong decrease of NBR1 phosphorylation in muscles of sIBM patients that directly correlated with the severity of protein aggregation. We propose that phosphorylation of NBR1 by GSK3 modulates the formation of protein aggregates and that this regulation mechanism is defective in a human muscle proteinopathy.  相似文献   

19.
Aggresomes, inclusion bodies and protein aggregation   总被引:34,自引:0,他引:34  
Intracellular and extracellular accumulation of aggregated protein are linked to many diseases, including ageing-related neurodegeneration and systemic amyloidosis. Cells avoid accumulating potentially toxic aggregates by mechanisms including the suppression of aggregate formation by molecular chaperones and the degradation of misfolded proteins by proteasomes. Once formed, aggregates tend to be refractory to proteolysis and to accumulate in inclusion bodies. This accumulation has been assumed to be a diffusion-limited process, but recent studies suggest that, in animal cells, aggregated proteins are specifically delivered to inclusion bodies by dynein-dependent retrograde transport on microtubules. This microtubule-dependent inclusion body is called an aggresome.  相似文献   

20.
Gangming Zhang  Long Lin  Di Qi 《Autophagy》2017,13(9):1487-1495
The mechanism underlying autophagic degradation of a protein aggregate remains largely unknown. A family of receptor proteins that simultaneously bind to the cargo and the Atg8 family of autophagy proteins (such as the MAP1LC3/LC3 subfamily) has been shown to confer cargo selectivity. The selectivity and efficiency of protein aggregate removal is also modulated by scaffold proteins that interact with receptor proteins and ATG proteins. During C. elegans embryogenesis, autophagic clearance of the cargoes PGL-1 and PGL-3 requires the receptor protein SEPA-1 and the scaffold protein EPG-2. SEPA-1 and EPG-2 also form aggregates that are degraded by autophagy. Here we investigated the effect of composition and organization of PGL granules on their autophagic degradation. We found that depletion of PGL-1 or PGL-3 facilitates the degradation of SEPA-1 and EPG-2. Removal of EPG-2 is also promoted when SEPA-1 is absent. Depletion of PGL-1 or PGL-3 renders the degradation of SEPA-1 independent of EPG-2. We further showed that overexpression of SEPA-1 or EPG-2 as well as SQST-1 or EPG-7 (scaffold protein), which belong to different classes of aggregate, has no evident effect on the degradation of the other type. Our results indicate that the composition and organization of protein aggregates provide another layer of regulation to modulate degradation efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号