首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Wnt signaling plays a crucial role in the control of morphogenesis in several tissues. Herein, we describe the role of Wnt11 during cardiac differentiation of embryonic stem cells. First, we examined the expression profile of Wnt11 during the course of differentiation in embryoid bodies, and then compared its expression in retinoic acid-treated embryoid bodies with that in untreated. In differentiating embryoid bodies, Wnt11 expression rose along with that of Nkx2.5 expression and continued to increase. When the embryoid bodies were treated with retinoic acid, Wnt11 expression decreased in parallel with the decreased expression of cardiac genes. Further, treatment of embryoid bodies with medium containing Wnt11 increased the expression of cardiac marker genes. Based on these results, we propose that Wnt11 plays an important role for cardiac development by embryoid bodies, and may be a key regulator of cardiac muscle cell proliferation and differentiation during heart development.  相似文献   

2.
3.
Mesenchymal stem cells (MSCs) can differentiate into neurons in an appropriate cellular environment. Retinoid signaling pathway is required in neural development. However, the effect and mechanism through retinoid signaling regulates neuronal differentiation of MSCs are still poorly understood. Here, we report that all‐trans‐retinoic acid (ATRA) pre‐induction improved neuronal differentiation of rat MSCs. We found that, when MSCs were exposed to different concentrations of ATRA (0.01–100 μmol/L) for 24 h and then cultured with modified neuronal induction medium (MNM), 1 μmol/L ATRA pre‐induction significantly improved neuronal differentiation efficiency and neural‐cell survival. Compared with MNM alone induced neural‐like cells, ATRA/MNM induced cells expressed higher levels of Nestin, neuron specific enolase (NSE), microtubule‐associated protein‐2 (MAP‐2), but lower levels of CD68, glial fibrillary acidic protein (GFAP), and glial cell line‐derived neurotrophic factor(GDNF), also exhibited higher resting membrane potential and intracellular calcium concentration, supporting that ATRA pre‐induction promotes maturation and function of derived neurons but not neuroglia cells from MSCs. Endogenous retinoid X receptors (RXR) RXRα and RXRγ (and to a lesser extent, RXRβ) were weakly expressed in MSCs. But the expression of RARα and RARγ was readily detectable, whereas RARβ was undetectable. However, at 24 h after ATRA treatment, the expression of RARβ, not RARα or RARγ, increased significantly. We further found the subnuclear redistribution of RARβ in differentiated neurons, suggesting that RARβ may function as a major mediator of retinoid signaling during neuronal differentiation from MSCs. ATRA treatment upregulated the expression of Vimentin and Stra13, while it downregulated the expression of Brachyury in MSCs. Thus, our results demonstrate that pre‐activation of retinoid signaling by ATRA facilitates neuronal differentiation of MSCs.  相似文献   

4.
Signaling from the retinoic acid receptors (RARs) and retinoid X receptors (RXRs) is essential for cardiovascular morphogenesis in vivo. RAR and/or RXR signaling can also enhance the in vitro induction of cardiomyocytes from murine embryonic stem (ES) cells in the presence of serum. The present study examined the effect of RXR agonist that was specifically bound to RXRs on the differentiation of mouse ES cells into cardiomyocytes in vitro in the absence of serum. The number of beating embryoid body-like spheres (EBSs) derived from the ES cells increased significantly following treatment with PA024, an RXR agonist. In contrast, when EBSs were treated with PA452, which was specifically bound to RXR and worked as an antagonist, the number of beating EBSs was decreased in a dose-dependent manner. These results suggest that RXR signaling regulates cardiomyocyte numbers during the differentiation of ES cells in vitro and probably in normal development.  相似文献   

5.
Maintenance of self-renewal and pluripotency in mouse embryonic stem cells (mESCs) is regulated by the balance between several extrinsic signaling pathways. Recently, we demonstrated that heparan sulfate (HS) chains play important roles in the maintenance and differentiation of mESCs by regulating extrinsic signaling. Sulfated HS structures are modified by various sulfotransferases during development. However, the significance of specific HS structures during development remains unclear. Here, we show that 3-O-sulfated HS structures synthesized by HS 3-O-sulfotransferases (3OSTs) and recognized by the antibody HS4C3 increase during differentiation of mESCs. Furthermore, expression of Fas on the cell surface of the differentiated cells also increased. Overexpression of the HS4C3-binding epitope in mESCs induced apoptosis and spontaneous differentiation even in the presence of LIF and serum. These data showed that the HS4C3-binding epitope was required for differentiation of mESCs. Up-regulation of the HS4C3-binding epitope resulted in the recruitment of Fas from the cytoplasm to lipid rafts on the cell surface followed by activation of Fas signaling. Indeed, the HS4C3-binding epitope interacted with a region that included the heparin-binding domain (KLRRRVH) of Fas. Reduced self-renewal capability in cells overexpressing 3OST resulted from the degradation of Nanog by activated caspase-3, which is downstream of Fas signaling, and was rescued by the inhibition of Fas signaling. We also found that knockdown of 3OST and inhibition of Fas signaling reduced the potential for differentiation into the three germ layers during embryoid body formation. This is the first demonstration that activation of Fas signaling is mediated by an increase in the HS4C3-binding epitope and indicates a novel signaling pathway for differentiation in mESCs.  相似文献   

6.
Mouse embryonic stem cells can differentiate in vitro into cells of the nervous system, neurons and glia. This differentiation mimics stages observed in vivo, including the generation of primitive ectoderm and neurectoderm in embryoid body culture. We demonstrate here that embryonic stem cell lines mutant for components of the Hedgehog signaling cascade are deficient at generating neurectoderm-containing embryoid bodies. The embryoid bodies derived from mutant cells are also unable to respond to retinoic acid treatment by producing nestin-positive neural stem cells, a response observed in cultures of heterozygous cells, and contain cores apparently arrested at the primitive ectoderm stage. The mutant cultures are also deficient in their capacity to differentiate into mature neurons and glia. These data are consistent with a role for Hedgehog signaling in generating neurectoderm capable of producing the appropriate neuronal and glial progenitors in ES cell culture.  相似文献   

7.
Many pluripotent embryonal carcinoma (EC) cell lines and all embryonic stem (ES) cell lines have hitherto been maintained in the undifferentiated state only by culture on feeder layers of mitomycin C-treated embryonic fibroblasts. We now demonstrate that medium conditioned by incubation with Buffalo rat liver (BRL) cells prevents the spontaneous differentiation of such cells which occurs when they are plated in the absence of feeders. This effect is not mediated via cell selection but represents a fully reversible inhibitory action ascribed to a differentiation-inhibiting activity (DIA). BRL-conditioned medium can therefore replace feeders in the propagation of homogeneous stem cell populations. Such medium also restricts differentiation in embryoid bodies formed via aggregation of EC cells and partially inhibits retinoic acid-induced differentiation. The PSA4 EC line gives rise only to extraembryonic endoderm-like cells when aggregated or exposed to retinoic acid in BRL-conditioned medium. This suggests that DIA may be lineage-specific. DIA is a dialysable, acid-stable entity of apparent molecular weight 20,000-35,000. Its actions are reproduced neither by insulin-like growth factor-II nor by transforming growth factor-beta. DIA thus appears to be a novel factor exerting a negative control over embryonic stem cell differentiation.  相似文献   

8.
Retinoic acid (RA) is able to induce the differentiation of embryonic stem cells into neuronal lineages. The mechanism of this effect is unknown but it has been evidenced to be dependent on the formation of floating spheroids called embryoid bodies. Results presented here show that the inhibition of phosphoinositide 3-kinase signaling pre-determines mouse embryonic stem cells to RA induced neurogenesis in monolayer culture with no need of embryoid bodies formation.  相似文献   

9.
Human embryonic stem cells (hESC) are characterized by their ability to self-renew and differentiate into all cell types of the body, making them a valuable resource for regenerative medicine. Yet, the molecular mechanisms by which hESC retain their capacity for self-renewal and differentiation remain unclear. The Hedgehog signaling pathway plays a pivotal role in organogenesis and differentiation during development, and is also involved in the proliferation and cell-fate specification of neural stem cells and neural crest stem cells. As there has been no detailed study of the Sonic hedgehog (SHH) signaling pathway in hESC, this study examines the expression and functional role of SHH during hESC self-renewal and differentiation. Here, we show the gene and protein expression of key components of the SHH signaling pathway in hESC and differentiated embryoid bodies. Despite the presence of functioning pathway components, SHH plays a minimal role in maintaining pluripotency and regulating proliferation of undifferentiated hESC. However, during differentiation with retinoic acid, a GLI-responsive luciferase assay and target genes PTCH1 and GLI1 expression reveal that the SHH signaling pathway is highly activated. Besides, addition of exogenous SHH to hESC differentiated as embryoid bodies increases the expression of neuroectodermal markers Nestin, SOX1, MAP2, MSI1, and MSX1, suggesting that SHH signaling is important during hESC differentiation toward the neuroectodermal lineage. Our findings provide a new insight in understanding the SHH signaling in hESC and the further development of hESC differentiation for regenerative medicine.  相似文献   

10.
Embryonic Stem Cells: Spontaneous and Directed Differentiation   总被引:3,自引:0,他引:3  
The specific structural features of embryonic stem cells and embryoid bodies and mechanisms of their differentiation in different cell types are considered. The mouse embryonic stem cells (line R1) formed multilayer colonies which enlarged as a result of fast cell division. Embryoid bodies that derived from embryonic stem cells consisted of an outer layer, an inner layer, and an internal cavity. The structure of cells of the outer and inner layers markedly differed. Spontaneous and directed differentiation of embryoid bodies is determined by some unspecific and specific factors (growth and differentiation factors and extracellular matrix proteins). Retinoic acid, the most commonly used inducer of differentiation of the embryonic stem cells, induces different types of differentiation when applied at different concentrations. The sequence of expression of tissue specific genes and proteins during differentiation of the embryonic stem cells in vitrois similar to that in vivo.  相似文献   

11.
12.
本研究探讨体外诱导鸡胚胎生殖细胞(EGCs)分化为神经干细胞(NSCs)的可能性.EGCs经类胚体(EB)阶段,以维生素A酸(RA)等进行诱导,在NSCs选择性培养基中筛培养扩增7 d,观察形态变化;采用RT-PCR法检测nestin基因表达及免疫细胞化学法检测nestin等NSCs特异性标志物,并对其扩增及分化能力进行观察.结果显示:EGCs经初级诱导,NSCs选择性培养基筛选培养7 d后,形成大量神经球样结构,可扩增传代;绝大部分神经球样结构呈nestin抗原阳性,表达nestin基因,且可分化为神经上皮样及少突胶质细胞.研究结果表明:RA等诱导的EGCs,经选择性培养基筛选培养可获得NSCs,有望为眼部神经变性疾病的治疗提供新的技术参考.  相似文献   

13.
14.
15.
16.
Peroxisome proliferator activated receptor γ, belongs to PPARs, which exerts various metabolic functions including differentiation process. To testify the importance of PPARγ in neural differentiation of mouse embryonic stem cells (mESCs), its expression level was assessed. Data revealed an elevation in expression level of PPARγ when neural precursors (NPs) are formed upon retinoic acid treatment. Thus, involvement of PPARγ in two stages of neural differentiation of mESCs, during and post-NPs formation was examined by application of its agonist and antagonist. Our results indicated that PPARγ inactivation via treatment with GW9662 during NPs formation, reduced expression of neural precursor and neural (neuronal and astrocytes) markers. However, PPARγ inactivation by antagonist treatment post-NPs formation stage only decreased the expression of mature astrocyte marker (Gfap) suggesting that inactivation of PPARγ by antagonist decreased astrocyte differentiation. Here, we have demonstrated the stage dependent role of PPARγ modulation on neural differentiation of mESCs by retinoic acid treatment for the first time.  相似文献   

17.
The serglycin proteoglycan is expressed in most hematopoietic cells and is packaged into secretory vesicles for constitutive or regulated secretion. We have now shown serglycin mRNA expression in undifferentiated murine embryonic stem (ES) cells and in embryoid bodies, and synthesis and secretion in undifferentiated ES cells. Serglycin was localized to ES cell cytoplasm by immunostaining. Serglycin mRNA is expressed in tal-1((-/-)) ES cells and embryoid bodies; tal-1((-/-)) mice cannot produce hematopoietic cells. Thus, ES serglycin expression is probably not associated with hematopoiesis. Serglycin expression was increased by treatment of ES cells with retinoic acid (RA) and dibutyryl cAMP (dbcAMP). The serglycin core protein obtained from control ES culture medium after chondroitinase digestion appears as a doublet. Only the lower Mr band is present in serglycin secreted from RA-treated and the higher Mr band in RA+dbcAMP-treated cells, suggesting that core protein structure is affected by differentiation.  相似文献   

18.
19.
20.
Pluripotent embryonic stem cells (ESCs) are able to differentiate into all cell types in the organism including cortical neurons. To follow the dynamic generation of progenitors of the dorsal forebrain in vitro, we generated ESCs from D6-GFP mice in which GFP marks neocortical progenitors and neurons after embryonic day (E) 10.5. We used several cell culture protocols for differentiation of ESCs into progenitors and neurons of the dorsal forebrain. In cell culture, GFP-positive cells were induced under differentiation conditions in quickly formed embryoid bodies (qEBs) after 10–12 day incubation. Activation of Wnt signaling during ESC differentiation further stimulated generation of D6-GFP-positive cortical cells. In contrast, differentiation protocols using normal embryoid bodies (nEBs) yielded only a few D6-GFP-positive cells. Gene expression analysis revealed that multiple components of the canonical Wnt signaling pathway were expressed during the development of embryoid bodies. As shown by immunohistochemistry and quantitative qRT-PCR, D6-GFP-positive cells from qEBs expressed genes that are characteristic for the dorsal forebrain such as Pax6, Dach1, Tbr1, Tbr2, or Sox5. qEBs culture allowed the formation of a D6-GFP positive pseudo-polarized neuroepithelium with the characteristic presence of N-cadherin at the apical pole resembling the structure of the developing neocortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号