首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
14-3-3蛋白是高度保守并在真核生物中普遍存在的一类调节蛋白。不同的14-3-3蛋白同工型具有不同的细胞特异性, 并通过识别特异的磷酸化序列与靶蛋白相互作用, 被称为蛋白质与蛋白质相互作用的桥梁蛋白。在植物生长发育过程中, 14-3-3蛋白通过与其它蛋白的相互作用参与多种植物激素信号转导、各种代谢调控、物质运输和光信号应答等调控过程。该文主要对近年来有关14-3-3蛋白在植物生长发育中的调控作用, 特别是14-3-3蛋白参与调控植物激素信号转导等方面的研究进展进行综述。  相似文献   

3.
4.
Sucrose-6-phosphate synthase (SPS) is a target for 14-3-3 protein binding in plants. Because several isoforms of the 14-3-3 protein are expressed in plants, I investigated which isoforms have the ability to bind SPS. Two 14-3-3 isoforms (T14-3d and a novel isoform designated T14-3 g) were found to interact with SPS from tobacco (Nicotiana tabacum L.) in a two-hybrid screen. To further address the question of isoform specificity of 14-3-3s, four additional isoforms were tested for their ability to interact with SPS in the yeast two-hybrid system. The results clearly revealed large differences in affinity between individual 14-3-3 isoforms toward SPS. Deletion analysis suggested that these differences were mediated by the variable C-terminus of 14-3-3s. Site-directed mutagenesis of candidate 14-3-3 binding sites on SPS demonstrated that interaction could be independent of a phosphorylated serine residue within conserved binding motifs in the yeast system. These findings suggest that the large number of 14-3-3 isoforms present in plants reflects functional specificity.  相似文献   

5.
6.
利用p53 C端118个氨基酸的mRNA二级结构和Chou-Fasman蛋白质二级结构预测原则,预测p53蛋白质C端289~325为卷曲肽段,368~393段包括两段螺旋结构: α1 368~373, α2 381~388.其中三段已知的蛋白质二级结构与此mRNA二级结构单元间有准确的对应关系.与四种以多重序列联配为基础的蛋白质二级结构预测方法(准确率均为73.20%左右)相对照,预测结果基本一致.结合单体聚合区31个氨基酸晶体结构,在SGI INDIGO2工作站上构建了p53 C端108个残基的三维结构.进一步揭示了p53 C端诸多生物功能区之间的空间构象关系.  相似文献   

7.
Cyclin Y is a highly conserved cyclin among eumetazoans, yet its function and regulation are poorly understood. To search for Cyclin Y-interacting proteins, we screened a yeast two-hybrid library using human Cyclin Y (CCNY) as a bait and identified the following interactors: CDK14 and four members of the 14-3-3 family (ε,β,η,τ). The interaction between CCNY and 14-3-3 proteins was confirmed both in vitro and in vivo. The results showed that Ser-100 and Ser-326 residues in CCNY were crucial for 14-3-3 binding. Interestingly, binding of CCNY to 14-3-3 significantly enhanced the association between CCNY and CDK14. Our findings may add a new layer of regulation of CCNY binding to its kinase partner.  相似文献   

8.
The phosphoserine-binding 14-3-3 proteins have been implicated in playing a role in mitogenic and apoptotic signaling pathways. Binding of 14-3-3 proteins to phosphoserine residues in the C-terminus of the insulin-like growth factor-1 receptor (IGF-1R) has been described to occur in a variety of cell systems, but the kinase responsible for this serine phosphorylation has not been identified yet. Here we present evidence that the isolated dimeric insulin-like growth factor-1 receptor kinase domain (IGFKD) contains a dual specific (i.e. tyrosine/serine) kinase activity that mediates autophosphorylation of C-terminal serine residues in the enzyme. From the total phosphate incorporation of approximately 4 mol per mol kinase subunit, 1 mol accounts for serine phosphate. However, tyrosine autophosphorylation proceeds more rapidly than autophosphorylation of serine residues (t(1/2) approximately 1 min vs. t(1/2) approximately 5 min). Moreover, dot-blot and far-Western analyses reveal that serine autophosphorylation of IGFKD is sufficient to promote binding of 14-3-3 proteins in vitro. The proof that dual kinase activity of IGFKD is necessary and sufficient for 14-3-3 binding was obtained with an inactive kinase mutant that was phosphorylated on serine residues in a stoichiometric reaction with the catalytically active enzyme. Thus, the IGF-1R itself might be responsible for the serine autophosphorylation which leads to recognition of 14-3-3 proteins in vivo.  相似文献   

9.
Baohui Jia  Yuying Wu  Yi Zhou 《朊病毒》2014,8(2):173-177
Protein misfolding and aggregation underlie the pathogenesis of many neurodegenerative diseases. In addition to chaperone-mediated refolding and proteasomal degradation, the aggresome-macroautophagy pathway has emerged as another defense mechanism for sequestration and clearance of toxic protein aggregates in cells. Previously, the 14-3-3 proteins were shown to be indispensable for the formation of aggresomes induced by mutant huntingtin proteins. In a recent study, we have determined that 14-3-3 functions as a molecular adaptor to recruit chaperone-associated misfolded proteins to dynein motors for transport to aggresomes. This molecular complex involves a dimeric binding of 14-3-3 to both the dynein-intermediate chain (DIC) and an Hsp70 co-chaperone Bcl-2-associated athanogene 3 (BAG3). As 14-3-3 has been implicated in various neurodegenerative diseases, our findings may provide mechanistic insights into its role in managing misfolded protein stress during the process of neurodegeneration.  相似文献   

10.
About thirty years after the initial identification of 14-3-3 proteins in mammalian brain, they are now thought to be ubiquitous among eukaryotes. We identified five cDNAs encoding 14-3-3 proteins of Nicotiana tabacum L. using a polymerase chain reaction (PCR)-based screening strategy. A phylogenetic analysis was carried out with 14-3-3 amino-acid sequences from twelve plant species. The results showed that 14-3-3 proteins of plants can be divided into at least five different subgroups. Four of these subgroups resulted from early gene duplication events that happened prior to the speciation of most of the plant species considered. Interestingly, 14-3-3 epsilon isoforms from mammals and insects form one subgroup together with epsilon-like isoforms from plants. The 14-3-3 genes known from monocots descend from the same ancestor, forming the fifth subgroup. Received: 30 June 1997 / Accepted: 29 August 1997  相似文献   

11.
12.
13.
The Raf-1 protein kinase is a major activator of the ERK MAPK pathway, which links signaling by a variety of cell surface receptors to the regulation of cell proliferation, survival, differentiation and migration. Signaling by Raf-1 is regulated by a complex and poorly understood interplay between phosphorylation events and protein–protein interactions. One important mode of Raf-1 regulation involves the phosphorylation-dependent binding of 14-3-3 proteins. Here, we have examined the mechanism whereby the C-terminal 14-3-3 binding site of Raf-1, S621, controls the activation of MEK-ERK signaling. We show that phosphorylation of S621 turns over rapidly and is enriched in the activated pool of endogenous Raf-1. The phosphorylation on this site can be mediated by Raf-1 itself but also by other kinase(s). Mutations that prevent the binding of 14-3-3 proteins to S621 render Raf-1 inactive by specifically disrupting its capacity to bind to ATP, and not by gross conformational alteration as indicated by intact MEK binding. Phosphorylation of S621 correlates with the inhibition of Raf-1 catalytic activity in vitro, but 14-3-3 proteins can completely reverse this inhibition. Our findings suggest that 14-3-3 proteins function as critical cofactors in Raf-1 activation, which induce and maintain the protein in a state that is competent for both ATP binding and MEK phosphorylation.  相似文献   

14.
Persistent activation of protein kinase C (PKC) is required for the expression of synaptic plasticity in the brain. There are several mechanisms proposed that can lead to the prolonged activation of PKC. These include long lasting production of lipid activators (diacylglycerol and fatty acid) through mitogen-activated protein (MAP) kinase pathway, and a modification of PKC by reactive oxygen species. In nerve growth factor (NGF)-differentiated PC12 cells, we found that constitutive and autonomous Ca2+-independent PKC activity is associated with 14-3-3 zeta. Because PKC and 14-3-3 zeta are both involved in synaptic plasticity and learning and memory, we examined whether PKC interacts with 14-3-3 zeta in the brain and whether the PKC/14-3-3 zeta complex has autonomous activity. Here we show that three subclasses of PKC, Ca2+-dependent classical PKC, Ca2+-independent novel PKC, and Ca2+-independent and diacylglycerol-insensitive atypical PKC, all interact with 14-3-3 zeta in the rodent brain. The pool size of 14-3-3 zeta bound form of PKC is small (1-4% of each PKC isoform), but they show constitutive and autonomous activity. Our study indicates that the binding of PKC with 14-3-3 zeta is at least in part independent of phosphorylation of PKC and that the C1 domain of PKC is involved in the binding. As both molecules are enriched in synaptic locus, the constitutive PKC activity and its interaction with 14-3-3 zeta could be a mechanism for the persistent PKC activation in the brain.  相似文献   

15.
Human heart cDNA sequencing yielded a cDNA clone that is similar in DNA and amino acid sequences to that of mouse 14-3-3 ϵ isoform. The 6xHis-tagged H1433ϵ recombinant protein was expressed in Escherichia coli and its size was approximately 30 kDa. From Northern blot results with human multiple tissues, human skeletal muscle was found to have the highest level of h1433ϵ mRNA expression, whereas Northern blots of human cancer cell lines detected the highest mRNA level of h1433ϵ in colorectal adenocarcinoma SW480. The protein expression level of h1433ϵ and Raf-1 is found to be regulated coordinately during rat heart development, and their protein expression was highest from 14.5 to 16.5 days postcoitum. J. Cell. Biochem. 68:195–199, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
ik3-2 is a close relative to ik3-1/Cables, an associator with cdk3 and cdk5. ik3-1/Cables has been identified to be a candidate tumor suppressor for colon and head/neck cancers. In agreement, it has been pointed out that ik3-1/Cables is a regulator for both p53- and p73-induced apoptosis [J. Biol. Chem. 277 (2002) 2951] although ectopic expression of ik3-1/Cables does not induce apoptosis. Here we show that adenovirus-mediated overexpression of ik3-2 results in apoptosis of p53-intact U2OS cells. ik3-2 binds to p53 in vivo and ectopic coexpression of ik3-2 enhances apoptosis induced by adenovirus-mediated expression of p53. Furthermore, ectopic expression of ik3-2 results in apoptosis of primary p53/Mdm2- and p53/ARF-null mouse embryo fibroblasts, indicating that ik3-2-induced apoptosis is partially p53-independent. Both the highly conserved C-terminal cyclin box-homologous domain (ik3-2-C) and the N-terminal region consisting of 70 amino acids (ik3-2-N) are responsible for ik3-2-mediated enhancement of p53-induced apoptosis. In contrast, ik3-2-induced p53-independent apoptosis is mediated through ik3-2-N. We thus identified ik3-2 as a proapoptotic factor involved in both p53-mediated and p53-independent apoptotic pathways.  相似文献   

17.
Regulation of the cytosolic isozyme of glutamine synthetase (GS(1); EC 6.3.1.2) was studied in leaves of Brassica napus L. Expression and immunodetection studies showed that GS(1) was the only active GS isozyme in senescing leaves. By use of [gamma-(32)P]ATP followed by immunodetection, it was shown that GS(1) is a phospho-protein. GS(1) is regulated post-translationally by reversible phosphorylation catalysed by protein kinases and microcystin-sensitive serine/threonine protein phosphatases. Dephosphorylated GS(1) is much more susceptible to degradation than the phosphorylated form. The phosphorylation status of GS(1) changes during light/dark transitions and depends in vitro on the ATP/AMP ratio. Phosphorylated GS(1) interacts with 14-3-3 proteins as verified by two different methods: a His-tag 14-3-3 protein column affinity method combined with immunodetection, and a far-Western method with overlay of 14-3-3-GFP. The degree of interaction with 14-3-3-proteins could be modified in vitro by decreasing or increasing the phosphorylation status of GS(1). Thus, the results demonstrate that 14-3-3 protein is an activator molecule of cytosolic GS and provide the first evidence of a protein involved in the activation of plant cytosolic GS. The role of post-translational regulation of cytosolic GS and interactions between phosphorylated cytosolic GS and 14-3-3 proteins in senescing leaves is discussed in relation to nitrogen remobilization.  相似文献   

18.
Tyrosine hydroxylase (TH) has been reported to require binding of 14-3-3 proteins for optimal activation by phosphorylation. We examined the effects of phosphorylation at Ser19, Ser31 and Ser40 of bovine TH and human TH isoforms on their binding to the 14-3-3 proteins BMH1/BMH2, as well as 14-3-3 zeta and a mixture of sheep brain 14-3-3 proteins. Phosphorylation of Ser31 did not result in 14-3-3 binding, however, phosphorylation of TH on Ser40 increased its affinity towards the yeast 14-3-3 isoforms BMH1/BMH2 and sheep brain 14-3-3, but not for 14-3-3 zeta. On phosphorylation of both Ser19 and Ser40, binding to the 14-3-3 zeta isoform also occurred, and the binding affinity to BMH1 and sheep brain 14-3-3 increased. Both phosphoserine-specific antibodies directed against the 10 amino acids surrounding Ser19 or Ser40 of TH, and the phosphorylated peptides themselves, inhibited the association between phosphorylated TH and 14-3-3 proteins. This was also found when heparin was added, or after proteolytic removal of the N-terminal 37 amino acids of Ser40-phosphorylated TH. Binding of BMH1 to phosphorylated TH decreased the rate of dephosphorylation by protein phosphatase 2A, but no significant change in enzymatic activity was observed in the presence of BMH1. These findings further support a role for 14-3-3 proteins in the regulation of catecholamine biosynthesis and demonstrate isoform specificity for both TH and 14-3-3 proteins.  相似文献   

19.
14-3-3蛋白是一种在真核生物细胞中普遍存在且高度保守的蛋白。该蛋白在大多数物种中由一个基因家族编码,并以同源或异源二聚体的形式存在。不同的14-3-3蛋白同工型具有不同的细胞特异性,可通过识别特异的磷酸化或非磷酸化序列与靶蛋白相互作用。14-3-3蛋白在植物生长和发育的各个方面都起重要作用。本文主要围绕植物14-3-3蛋白的种类、结构、磷酸化或非磷酸化识别序列及其响应干旱、冷冻、盐碱、营养和机械胁迫等的分子机制研究进展进行综述。  相似文献   

20.
Endopeptidase 24.15 (ep24.15: EC3.4.24.15), a secreted protein involved in peptide metabolism, is unusual in that it does not contain a signal peptide sequence. In this work, we describe the physical interaction between ep24.15 and 14-3-3 epsilon, one isoform of a family of ubiquitous phosphoserine/threonine-scaffold proteins that organizes cell signaling and is involved in exocytosis. The interaction between ep24.15 and 14-3-3 epsilon increased following phosphorylation of ep24.15 at Ser(644) by protein kinase A (PKA). The co-localization of ep24.15 and 14-3-3 epsilon was increased by exposure of HEK293 cells (human embryonic kidney cells) to forskolin (10 microm). Overexpression of 14-3-3 epsilon in HEK293 cells almost doubled the secretion of ep24.15 stimulated by A23187 (7.5 microm) from 10%[1.4 +/- 0.24 AFU/(min 10(6) cells)] to 19%[2.54 +/- 0.24 AFU/(min 10(6) cells)] (p < 0.001) of the total intracellular enzyme activity. Treatment with forskolin had a synergistic effect on the A23187-stimulated secretion of ep24.15 that was totally blocked by the PKA inhibitor KT5720. The ep24.15 point mutation S644A reduced the co-localization of ep24.15 and 14-3-3 in stably transfected HEK293 cells. Indeed, secretion of the ep24.15 S644A mutant from these cells was only slightly stimulated by A23187 and insensitive to forskolin, in contrast to that of the wild type enzyme. Together, these data suggest that prior interaction with 14-3-3 is an important step in the unconventional stimulated secretion of ep24.15.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号