共查询到20条相似文献,搜索用时 0 毫秒
1.
Ozaki N Sakuda S Nagasawa H 《Biochemical and biophysical research communications》2007,357(4):1172-1176
Coccolith, a calcified scale with species-specific fine structure produced by marine unicellular coccolithophorid algae, consists of calcium carbonate (CaCO(3)) crystals and a small amount of organic matrices. A novel polysaccharide named coccolith matrix acidic polysaccharide (CMAP) was isolated from the coccolith of a coccolithophorid alga, Pleurochrysis haptonemofera. The structure of CMAP was determined by chemical analysis and NMR spectroscopy including COSY, TOCSY, HMQC, and HMBC to be a polysaccharide composed of the following unit: -->4) l-iduronic acid (alpha1-->2) meso-tartaric acid (3-->1) glyoxylic acid (1-->. It has four carboxyl groups per a disaccharide unit as observed in another polysaccharide PS-2 characterized previously in Pleurochrysis carterae. CMAP showed a strong inhibitory activity on CaCO(3) precipitation. These results suggest that CMAP serves as a regulator in the calcification of the coccolith. 相似文献
2.
Conditions for the reversible dissociation of flavin mononucleotide (FMN) from the membrane-bound mitochondrial NADH:ubiquinone oxidoreductase (complex I) are described. The catalytic activities of the enzyme, i.e. rotenone-insensitive NADH:hexaammineruthenium III reductase and rotenone-sensitive NADH:quinone reductase decline when bovine heart submitochondrial particles are incubated with NADH in the presence of rotenone or cyanide at alkaline pH. FMN protects and fully restores the NADH-induced inactivation whereas riboflavin and flavin adenine dinucleotide do not. The data show that the reduction of complex I significantly weakens the binding of FMN to protein thus resulting in its dissociation when the concentration of holoenzyme is comparable with K(d ( approximately 10(-8)M at pH 10.0). 相似文献
3.
Conformational Dynamics and Structural Plasticity Play Critical Roles in the Ubiquitin Recognition of a UIM Domain 总被引:1,自引:0,他引:1
Nikolaos G. Sgourakis Mayank M. Patel Angel E. Garcia George I. Makhatadze Scott A. McCallum 《Journal of molecular biology》2010,396(4):1128-1144
Ubiquitin-interacting motifs (UIMs) are an important class of protein domains that interact with ubiquitin or ubiquitin-like proteins. These approximately 20-residue-long domains are found in a variety of ubiquitin receptor proteins and serve as recognition modules towards intracellular targets, which may be individual ubiquitin subunits or polyubiquitin chains attached to a variety of proteins. Previous structural studies of interactions between UIMs and ubiquitin have shown that UIMs adopt an extended structure of a single α-helix, containing a hydrophobic surface with a conserved sequence pattern that interacts with key hydrophobic residues on ubiquitin. In light of this large body of structural studies, details regarding the presence and the roles of structural dynamics and plasticity are surprisingly lacking. In order to better understand the structural basis of ubiquitin-UIM recognition, we have characterized changes in the structure and dynamics of ubiquitin upon binding of a UIM domain from the yeast Vps27 protein. The solution structure of a ubiquitin-UIM fusion protein designed to study these interactions is reported here and found to consist of a well-defined ubiquitin core and a bipartite UIM helix. Moreover, we have studied the plasticity of the docking interface, as well as global changes in ubiquitin due to UIM binding at the picoseconds-to-nanoseconds and microseconds-to-milliseconds protein motions by nuclear magnetic resonance relaxation. Changes in generalized-order parameters of amide groups show a distinct trend towards increased structural rigidity at the UIM-ubiquitin interface relative to values determined in unbound ubiquitin. Analysis of 15N Carr-Purcell-Meiboom-Gill relaxation dispersion measurements suggests the presence of two types of motions: one directly related to the UIM-binding interface and the other induced to distal parts of the protein. This study demonstrates a case where localized interactions among protein domains have global effects on protein motions at timescales ranging from picoseconds to milliseconds. 相似文献
4.
The species-specific properties of LDH isozymes are essentially determined by M (muscle) and H (heart) subunit proteins encoded by the LDHA and LDHB genes, respectively. In the present study, we molecularly characterized the full-length equine lactate dehydrogenase A (eLDHA) and B (eLDHB) cDNAs. The eLDHA cDNA consisted of a 999-bp open reading frame (ORF), while the eLDHB and newly acquired bat LDHB consisted of a 1002-bp ORF, which is 3 bp shorter than the LDHB ORF of other registered mammals. The alignment of amino acid sequences showed that eLDHA acquired positively charged His 88 and 226, and eLDHB lost negatively charged Glu 14, as compared to the highly conserved residues at these positions in the corresponding amino acid sequences of other mammals. These alterations were identified in six equine species by genomic DNA analysis. A comparison of the equine and human 3D structures revealed that the substituted His 88 and 226 of the eLDHA monomer and the deleted Glu 14 of the eLDHB monomer altered the surface charge of equine LDH tetramers and that these three residues were located in important regions affecting the catalytic kinetics. Also, RT-PCR amplification of the three myosin heavy chain isoforms corroborated that the cervical muscle as postural muscle of the thoroughbred horse was composed of more oxidative myofibers than the dynamic muscle. Based on this property, the mRNA expression patterns of eLDHA, eLDHB, and eGAPDH in various tissues were analyzed by using real-time PCR. The expression levels of these three genes in the cervical muscle were not always relatively higher than in the brain or heart. 相似文献
5.
The lipopolysaccharide (LPS) of Hafnia alvei strain PCM 1195 was obtained by the hot phenol/water method. The O-specific polysaccharide was released by mild acidic hydrolysis and isolated by gel filtration. The structure of the O-specific polysaccharide was investigated by 1H, 13C, and 31P NMR spectroscopy, MALDI-TOF MS, and GC-MS, accompanied by monosaccharide and methylation analysis. It was concluded that the O-specific polysaccharide is composed of a hexasaccharide repeating units interlinked with a phosphate group: {→4-α-d-Glcp-(1→3)-α-l-FucpNAc-(1→3)-[α-d-Glcp-(1→4)]-α-d-GlcpNAc-(1→3)-α-l-FucpNAc-(1→4)-α-d-Glcp-(1→P}n. 相似文献
6.
Analysis of the O-chain subunit of the lipopolysaccharide (LPS, endotoxin) isolated from Bordetella trematum, a recently identified human pathogen, was undertaken. The polysaccharide (PS) moiety was shown to contain only two O-chain subunits, which differed in the anomeric bond of their first sugar. A trisaccharide fragment resulting from the cleavage of a FucNAc glycosidic bond was isolated after treatment of the PS with anhydrous HF. Nitrous deamination of the LPS led to the release of the following heptasaccharide corresponding to two trisaccharide subunits linked to an anhydromannitol residue. beta-ManNAc3NAmA-(1-4)-beta-ManNAc3NAmA-(1-3)-alpha-FucNAc-(1-4)-beta-ManNAc3NAmA-(1-4)-beta-ManNAc3NAmA-(1-3)-beta-FucNAc-(1-6)-2,5-anhManol. 相似文献
7.
8.
Ju HQ Xiang YF Xin BJ Pei Y Lu JX Wang QL Xia M Qian CW Ren Z Wang SY Wang YF Xing GW 《Bioorganic & medicinal chemistry letters》2011,21(6):1675-1677
In this study, a novel Hsp90 inhibitor BJ-B11, was synthesized and evaluated for in vitro antiviral activity against several viruses. Possible anti-HSV-1 mechanisms were also investigated. BJ-B11 displayed no antiviral activity against coxsackievirus B3 (CVB3), human respiratory syncytial virus (RSV) and influenza virus (H1N1), but exhibited potent anti-HSV-1 and HSV-2 activity with EC50 values of 0.42 ± 0.18 μM and 0.60 ± 0.21 μM, respectively. Additionally, the inhibitory effects of BJ-B11 against HSV-1 were likely to be introduced at early stage of infection. Our results indicate that BJ-B11 with alternative mechanisms of action is potent as an anti-HSV clinical trial candidate. 相似文献
9.
Schmidt H Hoffmann S Tran T Stoldt M Stangler T Wiesehan K Willbold D 《Journal of molecular biology》2007,365(5):1517-1532
We studied the interaction of hematopoietic cell kinase SH3 domain (HckSH3) with an artificial 12-residue proline-rich peptide PD1 (HSKYPLPPLPSL) identified as high affinity ligand (K(D)=0.2 muM). PD1 shows an unusual ligand sequence for SH3 binding in type I orientation because it lacks the typical basic anchor residue at position P(-3), but instead has a tyrosine residue at this position. A basic lysine residue, however, is present at position P(-4). The solution structure of the HckSH3:PD1 complex, which is the first HckSH3 complex structure available, clearly reveals that the P(-3) tyrosine residue of PD1 does not take the position of the typical anchor residue but rather forms additional van der Waals interactions with the HckSH3 RT loop. Instead, lysine at position P(-4) of PD1 substitutes the function of the P(-3) anchor residue. This finding expands the well known ligand consensus sequence +xxPpxP by +xxxPpxP. Thus, software tools like iSPOT fail to identify PD1 as a high-affinity HckSH3 ligand so far. In addition, a short antiparallel beta-sheet in the RT loop of HckSH3 is observed upon PD1 binding. The structure of the HckSH3:PD1 complex reveals novel features of SH3 ligand binding and yields new insights into the structural basics of SH3-ligand interactions. Consequences for computational prediction tools adressing SH3-ligand interactions as well as the biological relevance of our findings are discussed. 相似文献
10.
Ascochlorin is an isoprenoid antibiotic that is produced by the phytopathogenic fungus Ascochyta viciae. Similar to ascofuranone, which specifically inhibits trypanosome alternative oxidase by acting at the ubiquinol binding domain, ascochlorin is also structurally related to ubiquinol. When added to the mitochondrial preparations isolated from rat liver, or the yeast Pichia (Hansenula) anomala, ascochlorin inhibited the electron transport via CoQ in a fashion comparable to antimycin A and stigmatellin, indicating that this antibiotic acted on the cytochrome bc1 complex. In contrast to ascochlorin, ascofuranone had much less inhibition on the same activities. On the one hand, like the Qi site inhibitors antimycin A and funiculosin, ascochlorin induced in H. anomala the expression of nuclear-encoded alternative oxidase gene much more strongly than the Qo site inhibitors tested. On the other hand, it suppressed the reduction of cytochrome b and the generation of superoxide anion in the presence of antimycin A3 in a fashion similar to the Qo site inhibitor myxothiazol. These results suggested that ascochlorin might act at both the Qi and the Qo sites of the fungal cytochrome bc1 complex. Indeed, the altered electron paramagnetic resonance (EPR) lineshape of the Rieske iron-sulfur protein, and the light-induced, time-resolved cytochrome b and c reduction kinetics of Rhodobacter capsulatus cytochrome bc1 complex in the presence of ascochlorin demonstrated that this inhibitor can bind to both the Qo and Qi sites of the bacterial enzyme. Additional experiments using purified bovine cytochrome bc1 complex showed that ascochlorin inhibits reduction of cytochrome b by ubiquinone through both Qi and Qo sites. Moreover, crystal structure of chicken cytochrome bc1 complex treated with excess ascochlorin revealed clear electron densities that could be attributed to ascochlorin bound at both the Qi and Qo sites. Overall findings clearly show that ascochlorin is an unusual cytochrome bc1 inhibitor that acts at both of the active sites of this enzyme. 相似文献
11.
Plasmodium lactate dehydrogenase (pLDH), owing to unique structural and kinetic properties, is a well known target for antimalarial compounds. To explore a new approach for high level soluble expression of Plasmodium falciparum lactate dehydrogenase (PfLDH) in E. coli, PfLDH encoding sequence was cloned into pQE-30 Xa vector. When transformed E. coli SG13009 cells were induced at 37 °C with 0.5 mM isopropyl β-d-thiogalactoside (IPTG) concentration, the protein was found to be exclusively associated with inclusion bodies. By reducing cell growth temperature to 15 °C and IPTG concentration to 0.25 mM, it was possible to get approximately 82% of expressed protein in soluble form. Recombinant PfLDH (rPfLDH) was purified to homogeneity yielding 18 mg of protein/litre culture. rPfLDH was found to be biologically active with specific activity of 453.8 μmol/min/mg. The enzyme exhibited characteristic reduced substrate inhibition and enhanced kcat [(3.2 ± 0.02) × 104] with 3-acetylpyridine adenine dinucleotide (APAD+). The procedure described in this study may provide a reliable and simple method for production of large quantities of soluble and biologically active PfLDH. 相似文献
12.
Lin-Hui Zhang Yong-Liang Jia Xi-Xi Lin Hong-Quan Zhang Xin-Wei Dong Jun-Ming Zhao Jian Shen Hui-Juan Shen Fen-fen Li Xiao-Feng Yan Wei Li Yu-Qing Zhao Qiang-Min Xie 《Biochimica et Biophysica Acta (BBA)/General Subjects》2013
Background
Ginseng is a traditional Chinese herb that has been used for thousands of years. In the present study, effects and mechanisms of AD-1 were evaluated for its development as a novel anti-lung cancer drug.Methods
The cytotoxic activity was evaluated by MTT assay. Flow cytometry was employed to detect cell cycle, apoptosis and ROS. Western blot and immunohistochemistry were used to analyze signaling pathways. Lung cancer xenograft models were established by subcutaneous implantation of A549 or H292 cells into nude mice.Results
AD-1 concentration-dependently reduces lung cancer cell viability without affecting normal human lung epithelial cell viability. In A549 and H292 lung cancer cells, AD-1 induces G0/G1 cell cycle arrest, apoptosis and ROS production. The apoptosis can be attenuated by a ROS scavenger — N-acetylcysteine (NAC). In addition, AD-1 up-regulates the expression of p38 and ERK phosphorylation. Addition of a p38 inhibitor SB203580, suppresses the AD-1-induced decrease in cell viability. Furthermore, genetic silencing of p38 attenuates the expression of p38 and decreases the AD-1-induced apoptosis. Treatment with NAC reduces AD-1-induced p38 phosphorylation, which indicates that ROS generation is involved in the AD-1-induced p38 activation. In mice, oral administration of AD-1 (10–40 mg/kg) dose-dependently inhibited the growth of xenograft tumors without affecting body weight and decreases the expression of VEGF, MMP-9 and CD34 in tumor tissue. TUNEL staining confirms that the tumors from AD-1 treated mice exhibit a markedly higher apoptotic index.Conclusions and general significance
These data support development of AD-1 as a potential agent for lung cancer therapy. 相似文献13.
We describe a re-investigation of the structure of the lipopolysaccharide (LPS) from Helicobacter pylori genomic strain 26695 and its corresponding HP0826::Kan mutant lacking the O-chain component based on the in-depth NMR analysis of the oligosaccharide products obtained through the use of various degradation procedures performed on the purified LPS from both strains, as well as CE–MS data. New structural evidence indicates the presence of the linear arrangement of glucan and heptan portions of the LPS attached through -6-α-ddHep-3-α-l-Fuc-3-β-GlcNAc- fragment to the inner core dd-heptose residue. This structure differs from previously reported structures of the H. pylori 26695 LPS in several aspects. 相似文献
14.
p-Aminophenyl pyruvic acid and D-p-amino-phenyllactic acid were immobilized on a new synthetic acrylic carrier bearing acylating N-succinimidyl ester groups. The derivatives obtained were used successfully to purify lactate dehydrogenase (LDH) by affinity chromatography, the elution being carried out by means of NADH or preferably L-phenyllactic acid. Moreover, the specific activity of the LDH contained in a human blood serum was increased 270 times, using L-p-aminophenyllactic acid immobilized on a mixed polyacrylic agarose carrier. 相似文献
15.
The O-chain polysaccharide (O-PS) of Aeromonas salmonicida was studied by a combination of compositional, methylation, CE-ESMS and one- and two-dimensional NMR analyses. It was found to be a branched polymer of trisaccharide-repeating units composed of L-rhamnose (Rha), D-glucose (Glc), 2-acetamido-2-deoxy-D-mannose (ManNAc) and O-acetyl group (OAc) and having the following structure: CE-ESMS analysis of A. salmonicida cells from strains A449, 80204 and 80204-1 grown under different conditions confirmed that the O-PS structure was conserved. ELISA-based serological study with native LPS-specific antisera performed on the native O-PS and its O-deacetylated and periodate-oxidized derivatives confirmed the importance of the O-PS backbone structure as an immunodominant determinant. 相似文献
16.
Circular dichroism (CD) and NMR spectroscopy were used to study the conformational properties of two synthetic peptides, D82-R101 and D82-I109, encompassing the caveolin scaffolding domain (D82-R101), in the presence of dodecylphosphocholine (DPC) micelles. Our data show that a stable helical conformation of the caveolin scaffolding domain in a membrane mimicking system is only obtained for the peptide including the L102-I109 hydrophobic stretch, a part of the caveolin intra-membrane domain. Through chemical shift variations, an ensemble of six residues of the D82-L109 peptide, mainly located in the V(94)TKYWFYR(101) motif were found to detect the presence of phosphatidylserine solubilized in DPC micelles. Our results constitute a first step for elucidating at a residue level the conformational properties of the central region of the caveolin-1 protein. 相似文献
17.
Defined mutants of the galactose biosynthetic (Leloir) pathway were employed to investigate lipopolysaccharide (LPS) oligosaccharide expression in Haemophilus influenzae type b strain Eagan. The structures of the low-molecular-mass LPS glycoforms from strains with mutations in the genes that encode galactose epimerase (galE) and galactose kinase (galK) were determined by NMR spectroscopy on O- and N-deacylated and dephosphorylated LPS-backbone, and O-deacylated oligosaccharide samples in conjunction with electrospray mass spectrometric, glycose and methylation analyses. The structural profile of LPS glycoforms from the galK mutant was found to be identical to that of the galactose and glucose-containing Hex5 glycoform previously identified in the parent strain [Masoud, H.; Moxon, E. R.; Martin, A.; Krajcarski, D.; Richards, J. C. Biochemistry1997, 36, 2091-2103]. LPS from the H. influenzae strain bearing mutations in both galK and galE (galE/galK double mutant) was devoid of galactose. In the double mutant, Hex3 and Hex4 glycoforms containing di- and tri-glucan side chains from the central heptose of the triheptosyl inner-core unit were identified as the major glycoforms. The triglucoside chain extension, β-d-Glcp-(1→4)-β-d-Glcp-(1→4)-α-d-Glcp, identified in the Hex4 glycoform has not been previously reported as a structural element of H. influenzae LPS. In the parent strain, it is the galactose-containing trisaccharide, β-d-Galp-(1→4)-β-d-Glcp-(1→4)-α-d-Glcp, and further extended analogues thereof, that substitute the central heptose. When grown in galactose deficient media, the galE single mutant was found to expresses the same population of LPS glycoforms as the double mutant. 相似文献
18.
The lipid A components of Aeromonas salmonicida subsp. salmonicida from strains A449, 80204-1 and an in vivo rough isolate were isolated by mild acid hydrolysis of the lipopolysaccharide. Structural studies carried out by a combination of fatty acid, electrospray ionization-mass spectrometry and nuclear magnetic resonance analyses confirmed that the structure of lipid A was conserved among different isolates of A. salmonicida subsp. salmonicida. All analyzed strains contained three major lipid A molecules differing in acylation patterns corresponding to tetra-, penta- and hexaacylated lipid A species and comprising 4'-monophosphorylated beta-2-amino-2-deoxy-d-glucopyranose-(1-->6)-2-amino-2-deoxy-d-glucopyranose disaccharide, where the reducing end 2-amino-2-deoxy-d-glucose was present primarily in the alpha-pyranose form. Electrospray ionization-tandem mass spectrometry fragment pattern analysis, including investigation of the inner-ring fragmentation, allowed the localization of fatty acyl residues on the disaccharide backbone of lipid A. The tetraacylated lipid A structure containing 3-(dodecanoyloxy)tetradecanoic acid at N-2',3-hydroxytetradecanoic acid at N-2 and 3-hydroxytetradecanoic acid at O-3, respectively, was found. The pentaacyl lipid A molecule had a similar fatty acid distribution pattern and, additionally, carried 3-hydroxytetradecanoic acid at O-3'. In the hexaacylated lipid A structure, 3-hydroxytetradecanoic acid at O-3' was esterified with a secondary 9-hexadecenoic acid. Interestingly, lipid A of the in vivo rough isolate contained predominantly tetra- and pentaacylated lipid A species suggesting that the presence of the hexaacyl lipid A was associated with the smooth-form lipopolysaccharide. 相似文献
19.
Guo W Azhar MA Xu Y Wright M Kamal A Miller AD 《Bioorganic & medicinal chemistry letters》2011,21(23):7175-7179
We report the development of a synthetic, biotin-conjugated diadenosine tetraphosphate (Ap(4)A)-'molecular hook' attached to magnetic beads enabling the isolation of Ap(4)A-binding proteins from bacterial cells or mammalian tissue lysates. Characterisation and identification of isolated binding proteins is performed sequentially by mass spectrometry. The observation of positive controls suggests that these newly observed proteins are putative Ap(4)A-binding partners, and we have expectations that others can be found with further technical improvements in our methods. 相似文献
20.
The recently identified benzoate oxidation (box) pathway in Burkholderia xenovorans LB400 (LB400 hereinafter) assimilates benzoate through a unique mechanism where each intermediate is processed as a coenzyme A (CoA) thioester. A key step in this process is the conversion of 3,4-dehydroadipyl-CoA semialdehyde into its corresponding CoA acid by a novel aldehyde dehydrogenase (ALDH) (EC 1.2.1.x). The goal of this study is to characterize the biochemical and structural properties of the chromosomally encoded form of this new class of ALDHs from LB400 (ALDHC) in order to better understand its role in benzoate degradation. To this end, we carried out kinetic studies with six structurally diverse aldehydes and nicotinamide adenine dinucleotide (phosphate) (NAD + and NADP +). Our data definitively show that ALDHC is more active in the presence of NADP + and selective for linear medium-chain to long-chain aldehydes. To elucidate the structural basis for these biochemical observations, we solved the 1.6-Å crystal structure of ALDHC in complex with NADPH bound in the cofactor-binding pocket and an ordered fragment of a polyethylene glycol molecule bound in the substrate tunnel. These data show that cofactor selectivity is governed by a complex network of hydrogen bonds between the oxygen atoms of the 2′-phosphoryl moiety of NADP + and a threonine/lysine pair on ALDHC. The catalytic preference of ALDHC for linear longer-chain substrates is mediated by a deep narrow configuration of the substrate tunnel. Comparative analysis reveals that reorientation of an extended loop (Asn478-Pro490) in ALDHC induces the constricted structure of the substrate tunnel, with the side chain of Asn478 imposing steric restrictions on branched-chain and aromatic aldehydes. Furthermore, a key glycine (Gly104) positioned at the mouth of the tunnel allows for maximum tunnel depth required to bind medium-chain to long-chain aldehydes. This study provides the first integrated biochemical and structural characterization of a box-pathway-encoded ALDH from any organism and offers insight into the catalytic role of ALDHC in benzoate degradation. 相似文献