首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trigger factor (TF) is the first chaperone encountered by nascent chains in bacteria, which consists of two modules: peptidyl-prolyl-cis/trans-isomerase (PPIase) domain and a crevice built by both N- and C-terminal domains. While the crevice is suggested to provide a protective space over the peptide exit site of ribosome for nascent polypeptides to fold, it remains unclear whether PPIase domain is directly involved in assisting protein folding. Here, we introduced structural change into different regions of TF, and investigated their influence on the chaperone function of TF in assisting the folding of various substrate proteins, including oligomeric glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and monomeric carbonic anhydrase II (CA II) and lysozyme. Results showed that structural disturbances by site-specific mutations in the PPIase active site or by deletion of the PPIase domain from TF affected the chaperone activity of TF toward CA II and GAPDH but had no effect on TF-assisted lysozyme refolding, suggesting PPIase domain is involved in assisting the folding of substrates larger than lysozyme. Mutants with the structural disturbances in the crevice totally lost the chaperone activity toward all the substrates we used in this investigation. These results provide further evidence to confirm that the crevice is the major chaperone site of TF, and the hydrophobic pocket in PPIase domain acts as an auxiliary site to assist the folding of substrate proteins bound to the crevice in a substrate-dependent manner, which is beneficial for TF to provide appropriate assistance for protein folding by changing protective space and binding affinity.  相似文献   

2.
The role of ribosome-binding molecular chaperones in protein folding is not yet well understood. Trigger factor (TF) is the first chaperone to interact with nascent polypeptides as they emerge from the bacterial ribosome. It binds to the ribosome as a monomer but forms dimers in free solution. Based on recent crystal structures, TF has an elongated shape, with the peptidyl-prolyl-cis/trans-isomerase (PPIase) domain and the N-terminal ribosome binding domain positioned at opposite ends of the molecule and the C-terminal domain, which forms two arms, positioned in between. By using site specifically labeled TF proteins, we have demonstrated that all three domains of TF interact with nascent chains during translation. Interactions with the PPIase domain were length-dependent but independent of PPIase activity. Interestingly, with free TF, these same sites were found to be involved in forming the dimer interface, suggesting that dimerization partially occludes TF-nascent chain binding sites. Our data indicate the existence of two regions on TF along which nascent chains can interact, the NC-domains as the main site and the PPIase domain as an auxiliary site.  相似文献   

3.
4.
Ribosome-associated chaperone Trigger Factor (TF) initiates folding of newly synthesized proteins in bacteria. Here, we pinpoint by site-specific crosslinking the sequence of molecular interactions of Escherichia coli TF and nascent chains during translation. Furthermore, we provide the first full-length structure of TF associated with ribosome-nascent chain complexes by using cryo-electron microscopy. In its active state, TF arches over the ribosomal exit tunnel accepting nascent chains in a protective void. The growing nascent chain initially follows a predefined path through the entire interior of TF in an unfolded conformation, and even after folding into a domain it remains accommodated inside the protective cavity of ribosome-bound TF. The adaptability to accept nascent chains of different length and folding states may explain how TF is able to assist co-translational folding of all kinds of nascent polypeptides during ongoing synthesis. Moreover, we suggest a model of how TF's chaperoning function can be coordinated with the co-translational processing and membrane targeting of nascent polypeptides by other ribosome-associated factors.  相似文献   

5.
Trigger factor and DnaK protect nascent protein chains from misfolding and aggregation in the E. coli cytosol, but how these chaperones affect the mechanism of de novo protein folding is not yet understood. Upon expression under chaperone-depleted conditions, multidomain proteins such as bacterial beta-galactosidase (beta-gal) and eukaryotic luciferase fold by a rapid but inefficient default pathway, tightly coupled to translation. Trigger factor and DnaK improve the folding yield of these proteins but markedly delay the folding process both in vivo and in vitro. This effect requires the dynamic recruitment of additional trigger factor molecules to translating ribosomes. While beta-galactosidase uses this chaperone mechanism effectively, luciferase folding in E. coli remains inefficient. The efficient cotranslational domain folding of luciferase observed in the eukaryotic system is not compatible with the bacterial chaperone system. These findings suggest important differences in the coupling of translation and folding between bacterial and eukaryotic cells.  相似文献   

6.
Trigger factor (TF) is the first molecular chaperone that interacts with nascent chains emerging from bacterial ribosomes. TF is a modular protein, consisting of an N-terminal ribosome binding domain, a PPIase domain, and a C-terminal domain, all of which participate in polypeptide binding. To directly monitor the interactions of TF with nascent polypeptide chains, TF variants were site-specifically labeled with an environmentally sensitive NBD fluorophore. We found a marked increase in TF-NBD fluorescence during translation of firefly luciferase (Luc) chains, which expose substantial regions of hydrophobicity, but not with nascent chains lacking extensive hydrophobic segments. TF remained associated with Luc nascent chains for 111 ± 7 s, much longer than it remained bound to the ribosomes (t½ ∼ 10–14 s). Thus, multiple TF molecules can bind per nascent chain during translation. The Escherichia coli cytosolic proteome was classified into predicted weak and strong interactors for TF, based on the occurrence of continuous hydrophobic segments in the primary sequence. The residence time of TF on the nascent chain generally correlated with the presence of hydrophobic regions and the capacity of nascent chains to bury hydrophobicity. Interestingly, TF bound the signal sequence of a secretory protein, pOmpA, but not the hydrophobic signal anchor sequence of the inner membrane protein FtsQ. On the other hand, proteins lacking linear hydrophobic segments also recruited TF, suggesting that TF can recognize hydrophobic surface features discontinuous in sequence. Moreover, TF retained significant affinity for the folded domain of the positively charged, ribosomal protein S7, indicative of an alternative mode of TF action. Thus, unlike other chaperones, TF appears to employ multiple mechanisms to interact with a wide range of substrate proteins.  相似文献   

7.
Ribosome-associated chaperones as key players in proteostasis   总被引:1,自引:0,他引:1  
De novo protein folding is delicate and error-prone and requires the guidance of molecular chaperones. Besides cytosolic and organelle-specific chaperones, cells have evolved ribosome-associated chaperones that support early folding events and prevent misfolding and aggregation. This class of chaperones includes the bacterial trigger factor (TF), the archaeal and eukaryotic nascent polypeptide-associated complex (NAC) and specialized eukaryotic heat shock protein (Hsp) 70/40 chaperones. This review focuses on the cellular activities of ribosome-associated chaperones and highlights new findings indicating additional functions beyond de novo folding. These activities include the assembly of oligomeric complexes, such as ribosomes, modulation of translation and targeting of proteins.  相似文献   

8.
Trigger factor (TF) is the first chaperone to interact with nascent chains and facilitate their folding in bacteria. Escherichia coli TF is 432 residues in length and contains three domains with distinct structural and functional properties. The N-terminal domain of TF is important for ribosome binding, and the M-domain carries the PPIase activity. However, the function of the C-terminal domain remains unclear, and the residues or regions directly involved in substrate binding have not yet been identified. Here, a hydrophobic probe, bis-ANS, was used to characterize potential substrate-binding regions. Results showed that bis-ANS binds TF with a 1:1 stoichiometry and a K(d) of 16 microM, and it can be covalently incorporated into TF by UV-light irradiation. A single bis-ANS-labeled peptide was obtained by tryptic digestion and identified by MALDI-TOF mass spectrometry as Asn391-Lys392. In silico docking analysis identified a single potential binding site for bis-ANS on the TF molecule, which is adjacent to this dipeptide and lies in the pocket formed by the C-terminal arms. The bis-ANS-labeled TF completely lost the ability to assist GAPDH or lysozyme refolding and showed increased protection toward cleavage by alpha-chymotrypsin, suggesting blocking of hydrophobic residues. The C-terminal truncation mutant TF389 also showed no chaperone activity and could not bind bis-ANS. These results suggest that bis-ANS binding may mimic binding of a substrate peptide and that the C-terminal region of TF plays an important role in hydrophobic binding and chaperone function.  相似文献   

9.
Trigger factor (TF) is the first molecular chaperone interacting cotranslationally with virtually all nascent polypeptides synthesized by the ribosome in bacteria. Thermal adaptation of chaperone function was investigated in TFs from the Antarctic psychrophile Pseudoalteromonas haloplanktis, the mesophile Escherichia coli and the hyperthermophile Thermotoga maritima. This series covers nearly all temperatures encountered by bacteria. Although structurally homologous, these TFs display strikingly distinct properties that are related to the bacterial environmental temperature. The hyperthermophilic TF strongly binds model proteins during their folding and protects them from heat‐induced misfolding and aggregation. It decreases the folding rate and counteracts the fast folding rate imposed by high temperature. It also functions as a carrier of partially folded proteins for delivery to downstream chaperones ensuring final maturation. By contrast, the psychrophilic TF displays weak chaperone activities, showing that these functions are less important in cold conditions because protein folding, misfolding and aggregation are slowed down at low temperature. It efficiently catalyses prolyl isomerization at low temperature as a result of its increased cellular concentration rather than from an improved activity. Some chaperone properties of the mesophilic TF possibly reflect its function as a cold shock protein in E. coli.  相似文献   

10.
Newly synthesized proteins must form their native structures in the crowded environment of the cell, while avoiding non-native conformations that can lead to aggregation. Yet, remarkably little is known about the progressive folding of polypeptide chains during chain synthesis by the ribosome or of the influence of this folding environment on productive folding in vivo. P22 tailspike is a homotrimeric protein that is prone to aggregation via misfolding of its central β-helix domain in vitro. We have produced stalled ribosome:tailspike nascent chain complexes of four fixed lengths in vivo, in order to assess cotranslational folding of newly synthesized tailspike chains as a function of chain length. Partially synthesized, ribosome-bound nascent tailspike chains populate stable conformations with some native-state structural features even prior to the appearance of the entire β-helix domain, regardless of the presence of the chaperone trigger factor, yet these conformations are distinct from the conformations of released, refolded tailspike truncations. These results suggest that organization of the aggregation-prone β-helix domain occurs cotranslationally, prior to chain release, to a conformation that is distinct from the accessible energy minimum conformation for the truncated free chain in solution.  相似文献   

11.
Ribosome-bound trigger factor (TF) is the first chaperone encountered by a nascent polypeptide chain in bacteria. TF has been proposed to form a cradle-shaped shield for nascent chains up to approximately 130 residues to fold in a protected environment upon exit from the ribosome. We report that nascent chains of luciferase up to 280 residues in length are relatively protected by TF against digestion by proteinase K. In contrast, nascent chains of the constitutively unstructured protein alpha-synuclein were not protected, although they were in close proximity to TF by crosslinking. Thus, TF is not a general shield for nascent chains. Protease protection appears to depend on a hydrophobic interaction of TF with nascent polypeptides.  相似文献   

12.
Trigger factor (TF) plays a key role as a molecular chaperone with a peptidyl-prolyl cis–trans isomerase (PPIase) activity by which cells promote folding of newly synthesized proteins coming out of ribosomes. Since psychrophilic bacteria grow at a quite low temperature, between 4 and 15°C, TF from such bacteria was investigated and compared with that of mesophilic bacteria E. coli in order to offer an explanation of cold-adaptation at a molecular level. Using a combination of gradient PCRs with homologous primers and LA PCR in vitro cloning technology, the tig gene was fully identified from Psychromonas arctica, whose genome sequence is not yet available. The resulting amino acid sequence of the TF was compared with other homologous TFs using sequence alignments to search for common domains. In addition, we have developed a protein expression system, by which TF proteins from P. arctica (PaTF) were produced by IPTG induction upon cloning the tig gene on expression vectors, such as pAED4. We have further examined the role of expressed psychrophilic PaTF on survival against cold treatment at 4°C. Finally, we have attempted the in vitro biochemical characterization of TF proteins with His-tags expressed in a pET system, such as the PPIase activity of PaTF protein. Our results demonstrate that the expressed PaTF proteins helped cells survive against cold environments in vivo and the purified PaTF in vitro display the functional PPIase activity in a concentration dependent manner.  相似文献   

13.
Lin KF  Sun CS  Huang YC  Chan SI  Koubek J  Wu TH  Huang JJ 《Biophysical journal》2012,102(12):2818-2827
In recent years, various folding zones within the ribosome tunnel have been identified and explored through x-ray, cryo-electron microscopy (cryo-EM), and molecular biology studies. Here, we generated ribosome-bound nascent polypeptide complexes (RNCs) with different polyalanine (poly-A) inserts or signal peptides from membrane/secretory proteins to explore the influence of nascent chain compaction in the Escherichia coli ribosome tunnel on chaperone recruitment. By employing time-resolved fluorescence resonance energy transfer and immunoblotting, we were able to show that the poly-A inserts embedded in the passage tunnel can form a compacted structure (presumably helix) and reduce the recruitment of Trigger Factor (TF) when the helical motif is located in the region near the tunnel exit. Similar experiments on nascent chains containing signal sequences that may form compacted structural motifs within the ribosome tunnel and lure the signal recognition particle (SRP) to the ribosome, provided additional evidence that short, compacted nascent chains interfere with TF binding. These findings shed light on the possible controlling mechanism of nascent chains within the tunnel that leads to chaperone recruitment, as well as the function of L23, the ribosomal protein that serves as docking sites for both TF and SRP, in cotranslational protein targeting.  相似文献   

14.
Newly synthesized proteins leave the ribosome through a narrow tunnel in the large subunit. During ongoing synthesis, nascent protein chains are particularly sensitive to aggregation and degradation because they emerge from the ribosome in an unfolded state. In bacteria, the first protein to interact with nascent chains and facilitate their folding is the ribosome-associated chaperone trigger factor. Recently, crystal structures of trigger factor and of its ribosome-binding domain in complex with the large ribosomal subunit revealed that the chaperone adopts an extended 'dragon-shaped' fold with a large hydrophobic cradle, which arches over the exit of the ribosomal tunnel and shields newly synthesized proteins. These structural results, together with recent biochemical data on trigger factor and its interplay with other chaperones and factors that interact with the nascent chain, provide a comprehensive view of the role of trigger factor during co-translational protein folding.  相似文献   

15.
Peptidyl-prolyl cis/trans isomerases (PPIases) catalyze the isomerization of prolyl peptide bonds. Distinct families of this class of enzymes are involved in protein folding in vitro, whereas their significance in free living organisms is not known. Previously, we inspected the smallest known genome of a self-replicating organism and found that Mycoplasma genitalium is devoid of all known PPIases except the trigger factor. Despite the extensive sequence information becoming available, most genes remain hypothetical and enzyme activities in many species have not been assigned to an open reading frame. Therefore, we studied the PPIase activity in crude extracts of M. genitalium. We showed that this is solely attributed to a single enzyme activity, the trigger factor. Characterization of this enzyme revealed that its PPIase activity resides in a central 12-kDa domain. Only the complete trigger factor is able to cis/trans isomerize extended peptide substrates, while the PPIase domain alone can not. The N- and the C-terminal domains of the trigger factor seem to function in binding of proteins as substrates, as demonstrated by protein refolding experiments, in which the complete trigger factor catalyzed protein refolding towards a model protein 500-fold more efficiently than the isolated central PPIase domain. Protein modeling studies suggest that the PPIase domain can fold in a similar way as the PPIase domain of FK506 binding proteins (FKBPs), one class of PPIases, despite only very limited sequence homology. Differences at the active site explain why this enzyme is not inhibited by FK506 in contrast with FKBPs. Trigger factor expressed in Escherichia coli confirms its additional chaperone functions, as shown by its association with chaperones GroEL and GroES after induction of misfolding. In contrast, the isolated PPIase-domain lacks any association with chaperones from E. coli. In summary, trigger factor of M. genitalium is the single folding isomerase of this organism, which harbors an enzymatically active PPIase domain with structural homology to FKBPs. Its additional domains confer its ability to be an efficient catalyst of protein folding. The protein folding machinery is conserved and shows a dual function as a chaperone and a prolyl isomerase.  相似文献   

16.
Trigger factor (TF) is a ribosome-bound protein that combines catalysis of peptidyl-prolyl isomerization and chaperone-like activities in Escherichia coli. TF was shown to cooperate with the DnaK (Hsp70) chaperone machinery in the folding of newly synthesized proteins, and the double deletion of the corresponding genes (tig and dnaK) exhibited synthetic lethality. We used a detailed genetic approach to characterize various aspects of this functional cooperation in vivo. Surprisingly, we showed that under specific growth conditions, one can delete both dnaK and tig, indicating that bacterial survival can be maintained in the absence of these two major cytosolic chaperones. The strain lacking both DnaK and TF exhibits a very narrow temperature range of growth and a high level of aggregated proteins when compared to either of the single mutants. We found that, in the absence of DnaK, both the N-terminal ribosome-binding domain and the C-terminal domain of unknown function are essential for TF chaperone activity. In contrast, the central PPIase domain is dispensable. Taken together, our data indicate that under certain conditions, folding of newly synthesized proteins in E. coli is not totally dependent on an interaction with either TF and/or DnaK, and suggest that additional chaperones may be involved in this essential process.  相似文献   

17.
Dynamics of trigger factor interaction with translating ribosomes   总被引:1,自引:0,他引:1  
In all organisms ribosome-associated chaperones assist early steps of protein folding. To elucidate the mechanism of their action, we determined the kinetics of individual steps of the ribosome binding/release cycle of bacterial trigger factor (TF), using fluorescently labeled chaperone and ribosome-nascent chain complexes. Both the association and dissociation rates of TF-ribosome complexes are modulated by nascent chains, whereby their length, sequence, and folding status are influencing parameters. However, the effect of the folding status is modest, indicating that TF can bind small globular domains and accommodate them within its substrate binding cavity. In general, the presence of a nascent chain causes an up to 9-fold increase in the rate of TF association, which provides a kinetic explanation for the observed ability of TF to efficiently compete with other cytosolic chaperones for binding to nascent chains. Furthermore, a subset of longer nascent polypeptides promotes the stabilization of TF-ribosome complexes, which increases the half-life of these complexes from 15 to 50 s. Nascent chains thus regulate their folding environment generated by ribosome-associated chaperones.  相似文献   

18.
Myosin II folding is mediated by a molecular chaperonin.   总被引:2,自引:0,他引:2  
  相似文献   

19.
Zhang A  Cantor EJ  Barshevsky T  Chong S 《Gene》2005,350(1):25-31
Green fluorescent protein (GFP) has been used to report protein folding by correlating solubility with fluorescence. In a GFP fusion protein, an upstream aggregation-prone domain can disrupt de novo folding of the GFP domain in Escherichia coli, resulting in a loss of fluorescence. Previously, we showed that prevention of misfolding of the upstream aggregation-prone domain by a coupled folding and binding interaction during protein synthesis restored both GFP fluorescence and solubility. Since molecular chaperones often fold nascent polypeptides through a bind-and-release interaction, the question remains whether the chaperone interaction with the upstream aggregation-prone domain enhances GFP fluorescence. Here, we demonstrate that a significant increase in GFP fluorescence occurred only when appropriate chaperones that recognized the aggregation-prone protein and helped its folding were co-expressed. A possible correlation between GFP fluorescence and the productive folding by chaperones is proposed. This study may provide a general strategy for identifying chaperones specific for difficult-to-fold proteins.  相似文献   

20.
Johnson AE 《FEBS letters》2005,579(4):916-920
During protein biosynthesis, a nascent protein is exposed to multiple environments and proteins both inside and outside the ribosome that influence nascent chain folding and trafficking. Fluorescence resonance energy transfer between two dyes incorporated into a single nascent chain using aminoacyl-tRNA analogs can directly and selectively monitor changes in nascent chain conformation. This approach recently revealed the existence and functional ramifications of ribosome-mediated folding of nascent membrane proteins inside the ribosome and can be extended to characterize the effects of chaperones and other proteins and ligands on nascent protein folding, interactions, assembly, and avoidance of misfolding and degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号