首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
The effect of muscarine on voltage-gated calcium channels was investigated in outside-out patches from rat hippocampal neurons in culture. By clamping the excised patches at –60 mV holding potential, single and multiple Ca channel currents were recorded, and these displayed features similar to the high-voltage-activated Ca current, with unitary conductance of 6.4 pS in 50 mM external Ca2+. These channels turned out to be insensitive both to Bay K 8644 and to -conotoxin. In excised patches muscarine caused a marked reduction in the probability of opening of this class of Ca channels without significant changes in the unitary current amplitude. Interestingly, the degree of current inhibition was reduced by depolarization, thus suggesting a voltage-dependent inhibitory action of the agonist. We conclude that in hippocampal neurons one of the possible ways of HVA Ca channel modulation by muscarine occurs through activation of a substratum localized within the plasma membrane of the cell, independent of the involvement of diffusible intracellular messengers. Correspondence to: M. Toselli  相似文献   

3.
Li B  Suemaru K  Cui R  Araki H 《Life sciences》2007,80(16):1539-1543
Electroconvulsive therapy is considered an effective treatment for severe depression. However, the mechanisms for its long-lasting antidepressant efficacy are poorly understood. In the present study, we investigated changes of the immobility time in the forced swim test and brain-derived neurotrophic factor (BDNF) protein after withdrawal from 14-day repeated electroconvulsive stimuli (ECS, 50 mA, 0.2 s) in rats. Immobility time in the forced swim test was markedly decreased 6 h after withdrawal following 14-day ECS treatment. Thereafter, prolongation of the withdrawal period gradually diminished the decreasing effect of immobility time, but significant effects persisted for up to 3 days after the withdrawal. Locomotor activity in the open-field test increased 6 h after withdrawal from the ECS treatment, and the enhanced effect persisted for at least 7 days. The BDNF protein level in the hippocampus was markedly increased 6 h after the withdrawal, and remained high for at least 7 days. These findings provide further evidence that repeated ECS has long-lasting effect on increase in BDNF and locomotor activity and decrease in immobility time in the forced swim test.  相似文献   

4.
5.
Expression of brain-derived neurotrophic factor (BDNF) mRNA is increased in the dorsal root ganglion (DRG) in response to peripheral inflammation. Nerve growth factor (NGF) from inflammatory tissue is thought to induce expression of BDNF. Recently, it was reported that the BDNF gene has eight non-coding exons that are transcribed independently into several splice variants. Expression of these splice variants in DRG neurons stimulated with NGF has not been studied. We examined changes in expression of BDNF splice variants in a rat model of peripheral inflammation and in cultured DRG neurons exposed to NGF. Total BDNF mRNA was increased by inflammation in vivo and by NGF in vitro. Among all splice variants, exon 1-9 showed the greatest increase in expression in both experiments. Our results indicate that exon 1-9 contributes to changes in total BDNF levels and may play an important role in the acute response of DRG to NGF.  相似文献   

6.
睫状神经营养因子对NO引起海马神经元毒性反应的影响   总被引:2,自引:0,他引:2  
Chen XQ  Chen ZY  Lu CL  He C  Wang CH  Bao X 《生理学报》1999,51(5):501-507
本研究采用原代培养大鼠海马神经元,观察睫状神经营养因子(ciliary neurotrophic factor,CNTF)对NO引起细胞毒性反应的影响。NO供体硝普钠与S-亚硝基-乙酰青霉胺,NOS底物L-Arg及钙载体ionomycin,均可引起海马神经元存活率下降,LDH漏出增加;提前24h给予不同浓度CNTF,均能提高神经元的存活率,减少LDH漏出,其作用呈剂量依赖性。  相似文献   

7.
Mouse oocytes acquire the ability to replicate DNA during meiotic maturation, presumably to ensure that DNA replication does not occur precociously between MI and MII and only after fertilization. Acquisition of DNA replication competence requires protein synthesis, but the identity of the proteins required for DNA replication is poorly described. In Xenopus, the only component missing for DNA replication competence is CDC6, which is synthesized from a dormant maternal mRNA recruited during oocyte maturation, and a similar situation also occurs during mouse oocyte maturation. We report that ORC6L is another component required for acquisition of DNA replication competence that is absent in mouse oocytes. The dormant maternal Orc6l mRNA is recruited during maturation via a CPE present in its 3′ UTR. RNAi-mediated ablation of maternal Orc6l mRNA prevents the maturation-associated increase in ORC6L protein and inhibits DNA replication in 1-cell embryos. These results suggest that mammalian oocytes have more complex mechanisms to establish DNA replication competence when compared to their Xenopus counterparts.  相似文献   

8.
目的研究丙二醛(MDA)对原代培养的海马神经元胞质中钙离子稳态的破坏作用及可能的信号机制。方法以Fur2/AM为荧光指示剂,采用荧光分光光度法定量测定原代培养海马神经元胞质游离钙浓度变化。结果随着MDA浓度的升高和作用时间的延长,导致胞质中游离钙水平显著升高,破坏其钙稳态。MDA所导致的海马神经元胞质游离钙水平升高包括两个过程:100μmol/L的MDA可使胞质[Ca2+]i水平在0—10min内的早期渐进升高过程,经历中间大约5min的平台期后,接下来15—30min的晚期显著升高。以细胞膜电压依赖的Ca2+通道抑制剂nimodipine抑制外钙内流后,可显著抑制晚期胞质[Ca2+]i水平的升高,以PLC的抑制剂U73122作用后,则可抑制早期胞质[Ca2+]i水平的升高。结论100μmol/L的MDA作用下,海马神经元胞质中早期钙离子水平的升高和晚期钙离子水平的升高可能分别由不同的信号机制所介导。  相似文献   

9.
目的:探索完全弗氏佐剂(Complete Freund’s Adjuvant,CFA)致炎性疼痛后大鼠海马内脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)表达的变化及其作用。方法:雄性SD大鼠随机分为溶媒对照组和实验组,实验组大鼠左侧足底皮下注射CFA和生理盐水混合溶剂100μL,建立炎性疼痛模型,注射后大鼠分别存活1天、4天、7天、14天(n=20只/组)。在建模前和建模后不同时间点采用Von Frey纤维检测大鼠50%机械缩足阈值(paw withdrawal threshold,PWT)的变化。采用强迫游泳实验和糖水偏好实验检测大鼠抑郁样行为,采用RT-PCR检测不同时间点大鼠海马中BDNF m RNA的水平,采用ELISA和免疫组织化学法检测BDNF的表达变化。结果:足底注射CFA后1天50%PWT下降,持续至14天仍低于基础值。在强迫游泳实验中,注射CFA7天后的大鼠不动时间百分比增加,一直持续到CFA注射后14天。糖水偏好实验中注射CFA后7天组、14天组大鼠表现出对糖水偏好的降低,提示注射CFA后7天大鼠出现抑郁样行为并持续到第14天。在足底注射CFA第7天后BDNF m RNA和BDNF的水平达到高峰,第14天表达下调并基本恢复正常水平。结论:结果提示,足底注射CFA能诱导大鼠产生炎性痛,CFA注射7天后出现抑郁样行为,此时海马内BDNF m RNA和BDNF蛋白水平均上调,可能与足底注射CFA后出现的抑郁样行为的发生密切相关。  相似文献   

10.
11.
Although pulsed electromagnetic field (PEMF) exposure has been reported to promote neuronal differentiation, the mechanism is still unclear. Here, we aimed to examine the effects of PEMF exposure on brain-derived neurotrophic factor (Bdnf) mRNA expression and the correlation between the intracellular free calcium concentration ([Ca2+]i) and Bdnf mRNA expression in cultured dorsal root ganglion neurons (DRGNs). Exposure to 50 Hz and 1 mT PEMF for 2 h increased the level of [Ca2+]i and Bdnf mRNA expression, which was found to be mediated by increased [Ca2+]i from Ca2+ influx through L-type voltage-gated calcium channels (VGCCs). However, calcium mobilization was not involved in the increased [Ca2+]i and BDNF expression, indicating that calcium influx was one of the key factors responding to PEMF exposure. Moreover, PD098059, an extracellular signal-regulated kinase (Erk) inhibitor, strongly inhibited PEMF-dependant Erk1/2 activation and BDNF expression, indicating that Erk activation is required for PEMF-induced upregulation of BDNF expression. These findings indicated that PEMF exposure increased BDNF expression in DRGNs by activating Ca2+- and Erk-dependent signaling pathways.  相似文献   

12.
We demonstrate that brief (30-min) exposure of cultured embryonic rat septal neurons to neurotrophins (NTs) increases choline acetyltransferase (ChAT) activity by 20-50% for all tested NTs (nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4, each at 100 ng/ml). The increase in ChAT activity was first detected 12 h after NT exposure, persisted at least 48 h, and was not mediated by increased neuronal survival or action-potential activity. Under some conditions, the response to brief NT exposure was as great as that produced by continuous exposure. NT stimulation of ChAT activity was inhibited by inhibitors of p75- and Trk kinase-mediated signaling, by removal of extracellular Ca2+ during the period of NT exposure, and by buffering intracellular Ca2+ with BAPTA. Application of nerve growth factor and brain-derived neurotrophic factor transiently increased [Ca2+] within a subpopulation of neurons. NT stimulation of ChAT activity was not affected significantly by cyclic AMP agonists or antagonists. These findings suggest that brief exposure to NTs can have a long-lasting effect on cholinergic transmission, and that this effect requires Ca2+, but not cyclic AMP.  相似文献   

13.
There is an emerging body of data suggesting that mood disorders are associated with decreased brain-derived neurotrophic factor (BDNF). The present study aims to investigate the effects of the mood stabilizers lithium (Li) and valproate (VPT) in an animal model of bipolar disorder. In the first experiment (acute treatment), rats were administered D-amphetamine (AMPH) or saline for 14 days, and then between day 8 and 14, rats were treated with either Li, VPT or saline. In the second experiment (maintenance treatment), rats were pretreated with Li, VPT or saline, and then between day 8 and 14, rats were administered AMPH or saline. In both experiments, locomotor activity was measured using the open-field test and BDNF levels were measured in rat hippocampus by sandwich-ELISA. Li and VPT reversed AMPH-induced behavioral effects in the open-field test in both experiments. In the first experiment, Li increased BDNF levels in rat hippocampus. In the second experiment, AMPH decreased BDNF levels and Li and VPT increased BDNF levels in rat hippocampus. Our results suggest that the present model fulfills adequate face, construct and predictive validity as an animal model of mania.  相似文献   

14.
神经营养因子(NTFs)是近几年神经科学研究的热点,研究显示它在神经系统中发挥独特的作用,尤其是神经生长因子(NGF)、脑源性神经营养因子(BDNF)在脑内功能及其表达调控方面具有重要作用。围绝经期妇女随着雌激素水平的降低会产生认知功能的减退,有研究发现去卵巢动物(OVX)雌激素水平降低可以导致某些NGF、BDNF的丢失。通过启动内源性NGF和BDNF的表达而实现对神经元的保护可能为雌激素替代治疗(ERT)脑保护作用的一种机制。本文就近几年的研究进展做一简要综述。  相似文献   

15.
The neuroprotective effect and molecular mechanisms underlying preconditioning with N-methyl-D-aspartate (NMDA) in cultured hippocampal neurons have not been described. Pre-incubation with subtoxic concentrations of the endogenous neurotransmitter glutamate protects vulnerable neurons against NMDA receptor-mediated excitotoxicity. As a result of physiological preconditioning, NMDA significantly antagonizes the neurotoxicity resulting from subsequent exposure to an excitotoxic concentration of glutamate. The protective effect of glutamate or NMDA is time- and concentration-dependent, suggesting that sufficient agonist and time are required to establish an intracellular neuroprotective state. In these cells, the TrkB ligand, brain-derived neurotrophic factor (BDNF) attenuates glutamate toxicity. Therefore, we tested the hypothesis that NMDA protects neurons via a BDNF-dependent mechanism. Exposure of hippocampal cultures to a neuroprotective concentration of NMDA (50 microM) evoked the release of BDNF within 2 min without attendant changes in BDNF protein or gene expression. The accumulated increase of BDNF in the medium is followed by an increase in the phosphorylation (activation) of TrkB receptors and a later increase in exon 4-specific BDNF mRNA. The neuroprotective effect of NMDA was attenuated by pre-incubation with a BDNF-blocking antibody and TrkB-IgG, a fusion protein known to inhibit the activity of extracellular BDNF, suggesting that BDNF plays a major role in NMDA-mediated survival. These results demonstrate that low level stimulation of NMDA receptors protect neurons against glutamate excitotoxicity via a BDNF autocrine loop in hippocampal neurons and suggest that activation of neurotrophin signaling pathways plays a key role in the neuroprotection of NMDA.  相似文献   

16.
NMDA receptors play dual and opposing roles in neuronal survival by mediating the activity-dependent neurotrophic signaling and excitotoxic cell death via synaptic and extrasynaptic receptors, respectively. In this study, we demonstrate that the aryl hydrocarbon receptor (AhR), also known as the dioxin receptor, is involved in the expression and the opposing activities of NMDA receptors. In primary cultured cortical neurons, we found that NMDA excitotoxicity is significantly enhanced by an AhR agonist 2,3,7,8-tetrachlorodibenzo- p -dioxin, and AhR knockdown with small interfering RNA significantly reduces NMDA excitotoxicity. AhR knockdown also significantly reduces NMDA-increases intracellular calcium concentration, NMDA receptor expression and surface presentation, and moderately decreases the NMDA receptor-mediated spontaneous as well as miniature excitatory post-synaptic currents. However, AhR knockdown significantly enhances the bath NMDA application– but not synaptic NMDA receptor-induced brain-derived neurotrophic factor (BDNF) gene expression, and activating AhR reduces the bath NMDA-induced BDNF expression. Furthermore, AhR knockdown reveals the calcium dependency of NMDA-induced BDNF expression and the binding activity of cAMP-responsive element binding protein (CREB) and its calcium-dependent coactivator CREB binding protein (CBP) to the BDNF promoter upon NMDA treatment. Together, our results suggest that AhR opposingly regulates NMDA receptor-mediated excitotoxicity and neurotrophism possibly by differentially regulating the expression of synaptic and extrasynaptic NMDA receptors.  相似文献   

17.
Primary hippocampal neurons from newborn rats treated with glutamate showed clear excitotoxicity. This excitotoxicity could be reversed by treatment of the cells with cytokines of the interleukin-6 family. Stimulation of gp130 on hippocampal neurons resulted in tyrosine phosphorylation of STAT3 and activation of p42 and p44 MAP kinases. Receptors for the interleukin-6 type cytokines are active in membrane bound and soluble form. To address the question whether the neurotrophic effect of interleukin-6 type cytokines requires soluble cytokine receptors we used fusion proteins of interleukin-6 coupled to the soluble interleukin-6 receptor and ciliary neurotrophic factor coupled to the soluble ciliary neurotrophic factor receptor. Ciliary neurotrophic factor was as active as the cytokine-receptor fusion protein, indicating that hippocampal neurons express ciliary neurotrophic factor receptor on the cell surface. In contrast, interleukin-6 was only active at very high concentrations whereas the fusion protein of interleukin-6 coupled to the soluble interleukin-6 receptor (Hyper-IL-6) exhibited high neurotrophic activity at the same concentrations as ciliary neurotrophic factor. These data indicate that interleukin-6 receptor expression is very low on hippocampal neurons and that gp130 stimulation can be used to rescue hippocampal neurons from excitotoxicity.  相似文献   

18.
Despite the well established anti-cancer effect of farnesyltransferase inhibitor FTI-277, the neurotoxic effects of the agent are not yet clearly defined at the molecular and cellular levels. Here, we report the neurotoxic effects of FTI-277 and the involvement of reactive oxygen species (ROS) in FTI-induced neurotoxicity. Although there is no significant effect of FTI-277 for 2 days, long-term treatment of FTI-277 for 4 days induced dramatic reduction in outgrowth, maturation and branching of neuritis and considerable cytoxicity in a dose- and time-dependent manner in primary cultured rat embryo hippocampal neurons. Interestingly, FTI-277 for 4 days dramatically decreased expression of synapsin I, a crucial molecule involved in the neuronal growth and plasticity, and increased a cytotoxic G-protein RhoB of which ectopic expression induced the neurotoxicity in hippocampal neurons. Moreover, treatment with FTI-277 dramatically increased intracellular levels of ROS, which was sustained for 4 days; while blockage of ROS rescued FTI-277-induced neurotoxicity as well as both decrease of synapsin I and increase of RhoB. Taken together, these results provide the molecular insights for the mechanisms which might be of use aiming for avoiding neurotoxic side effects by FTI agent for a drug development for a clinical use.  相似文献   

19.
20.
Inhibitory glycine receptors are most abundant in spinal cord and brainstem, and glycinergic synapses have a well-established role in the regulation of locomotor behavior. Little is known about the function of glycine receptors in cortex and hippocampus, where GABA plays a dominant role in synaptic inhibition. Therefore, we have investigated tissue and cellular expression of glycine receptor alpha-subunits. Western blot and immunohistochemical analyses reveal the presence of glycine receptors in hippocampal tissue. Immunocytochemical experiments in hippocampal cultures show prominent cellular expression of glycine receptors in pyramidal neurons and GAD-positive interneurons similar to the calcium-binding protein VILIP-1 with widespread hippocampal distribution. On the subcellular level we found co-staining of GlyR and the presynaptic marker synapsin I. Furthermore, co-staining with GAD at synaptic terminals indicated partial co-localization of GABA- and glycine receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号