首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ribosomal stalk complex in Escherichia coli consists of L10 and four copies of L7/L12, and is largely responsible for binding and recruiting translation factors. Structural characterisation of this stalk complex is difficult, primarily due to its dynamics. Here, we apply mass spectrometry to follow post-translational modifications and their effect on structural changes of the stalk proteins on intact ribosomes. Our results show that increased acetylation of L12 occurs during the stationary phase on ribosomes harvested from cells grown under optimal conditions. For cells grown in minimal medium, L12 acetylation and processing is altered, resulting in deficient removal of N-terminal methionine in ∼ 50% of the L12 population, while processed L12 is almost 100% acetylated. Our results show also that N-acetylation of L12 correlates with an increased stability of the stalk complex in the gas phase. To investigate further the basis of this increased stability, we applied a solution phase hydrogen deuterium exchange protocol to compare the rate of deuterium incorporation in the proteins L9, L10, L11 and L12 as well as the acetylated form of L12 (L7), in situ on the ribosome. Results show that deuterium incorporation is consistently slower for L7 relative to L12 and for L10 when L7 is predominant. Our results imply a tightening of the interaction between L7 and L10 relative to that between L12 and L10. Since acetylation is predominant when cells are grown in minimal medium, we propose that these modifications form part of the cell's strategy to increase stability of the stalk complex under conditions of stress. More generally, our results demonstrate that it is possible to discern the influence of a 42 Da post-translational modification by mass spectrometry and to record subtle changes in hydrogen/deuterium exchange within the context of an intact 2.5 MDa particle.  相似文献   

2.
The type A glycan modification found in human pathogen Clostridioides difficile consists of a monosaccharide (GlcNAc) that is linked to an N-methylated threonine through a phosphodiester bond. This structure has previously been described on the flagellar protein flagellin C of several C. difficile strains and is important for bacterial motility. The study of post-translational modifications often relies on some type of enrichment strategy; however, a procedure for enrichment of this modification has not yet been demonstrated. In this study, we show that an approach that is commonly used in phosphoproteomics, Fe3+-immobilized metal affinity chromatography, also enriches for peptides with this unique post-translational modification. Using LC–MS/MS analyses of immobilized metal affinity chromatography–captured tryptic peptides, we observed not only type A-modified C. difficile flagellin peptides but also a variety of truncated/modified type A structures on these peptides. Using an elaborate set of mass spectrometry analyses, we demonstrate that one of these modifications consists of a type A structure containing a phosphonate (2-aminoethylphosphonate), a modification that is rarely observed and has hitherto not been described in C. difficile. In conclusion, we show that a common enrichment strategy results in reliable identification of peptides carrying a type A glycan modification, and that the results obtained can be used to advance models about its biosynthesis.  相似文献   

3.
A highly hydrophilic, glutamate-rich protein was identified in the aqueous phenol extract from the cytosolic fraction of brine shrimp (Artemia franciscana) diapausing cysts and termed Artemia phenol soluble protein (PSP). Mass spectrometric analysis revealed the presence of many protein peaks around m/z 11,000, separated by 129 atomic mass units; this value corresponds to that of glutamate, which is strongly suggestive of heterogeneous polyglutamylation. Polyglutamylation has long been known as the functionally important post-translational modification of tubulins, which carry poly(l-glutamic acid) chains of heterogeneous length branching off from the main chain at the γ-carboxy groups of a few specific glutamate residues. In Artemia PSP, however, Edman degradation of enzymatic peptides revealed that at least 13, and presumably 16, glutamate residues were modified by the attachment of a single l-glutamate, representing a hitherto undescribed type of post-translational modification: namely, multiple γ-glutamylation or the addition of a large number of glutamate residues along the polypeptide chain. Although biological significance of PSP and its modification is yet to be established, suppression of in vitro thermal aggregation of lactate dehydrogenase by glutamylated PSP was observed.  相似文献   

4.
The Methanosarcina thermophila MC1 protein is a small basic protein that is able to bend DNA sharply. When this protein is submitted to oxidative stress through gamma irradiation, it loses its original DNA interaction properties. The protein can still bind DNA but its ability to bend DNA is decreased dramatically. Here, we used different approaches to determine the oxidations that are responsible for this inactivation. Through a combination of proteolysis and mass spectrometry we have identified the three residues that are oxidized preferentially. We show by site directed mutagenesis that two of these residues, Trp74 and Met75, are involved in the DNA binding. Their substitution by alanine leads to a strong reduction in the protein capacity to bend DNA, and a total loss of its ability to recognize bent DNA. Taken together, these results show that oxidation of both these residues is responsible for the protein inactivation. Furthermore, the results confirm the strong relationship between DNA bending and recognition of DNA sequences by the MC1 protein.  相似文献   

5.
6.
Chlorite dismutase (Cld) is a key enzyme of perchlorate and chlorate respiration. This heme-based protein reduces the toxic compound chlorite into the innocuous chloride anion in a very efficient way while producing molecular oxygen. A sequence comparison between Cld homologues shows a highly conserved family. The crystal structure of Azospira oryzae strain GR-1 Cld is reported to 2.1 Å resolution. The structure reveals a hexameric organization of the Cld, while each monomer exhibits a ferredoxin-like fold. The six subunits are organized in a ring structure with a maximal diameter of 9 nm and an inner diameter of 2 nm. The heme active-site pocket is solvent accessible both from the inside and the outside of the ring. Moreover, a second anion binding site that could accommodate the assumed reaction intermediate ClO‾ for further transformation has been identified near the active site.The environment of the heme cofactor was investigated with electron paramagnetic resonance spectroscopy. Apart from the high-spin ferric signal of the five-coordinate resting-state enzyme, two low-spin signals were found corresponding to six-coordinate species. The current crystal structure confirms and complements a recently proposed catalytic mechanism that proceeds via a ferryl species and a ClO‾ anion. Our structural data exclude cooperativity between the iron centers.  相似文献   

7.
Protein-reversible ADP-ribosylation is emerging as an important post-translational modification used to control enzymatic and protein activity in different biological systems. This modification regulates nitrogenase activity in several nitrogen-fixing bacterial species. ADP-ribosylation is catalyzed by ADP-ribosyltransferases and is reversed by ADP-ribosylhydrolases. The structure of the ADP-ribosylhydrolase that acts on Azospirillum brasilense nitrogenase (dinitrogenase reductase-activating glycohydrolase, DraG) has been solved at a resolution of 2.5 Å. This bacterial member of the ADP-ribosylhydrolase family acts specifically towards a mono-ADP-ribosylated substrate. The protein shows an all-α-helix structure with two magnesium ions located in the active site. Comparison of the DraG structure with orthologues deposited in the Protein Data Bank from Archaea and mammals indicates that the ADP-ribosylhydrolase fold is conserved in all domains of life. Modeling of the binding of the substrate ADP-ribosyl moiety to DraG is in excellent agreement with biochemical data.  相似文献   

8.
Despite the great economical interest of locusts in agriculture, knowledge on their chemoreception systems is still poor. Phenylacetonitrile is recognised as a pheromone of the desert locust Schistocerca gregaria, triggering gregarization, promoting aggregation and inhibiting courtship. However, in the other major locust species, Locusta migratoria, pheromones have not been reported. We have identified the two isomers of naphthylpropionitrile from the male reproductive organs of L. migratoria. Chemical synthesis has confirmed the identity of the two compounds. Both isomers show significant affinity to CSP91, a protein reported in the testis, but not to three other proteins of the same family (CSP180, CSP540 and CSP884) expressed in female accessory glands. The striking similarity of these compounds with phenylacetonitrile and the unusual nature of such chemicals strongly suggest that naphthylpropionitrile could be pheromones for L. migratoria, while their site of expression and binding activity indicate a role in communication between sexes.  相似文献   

9.
3-Hydroxyproline (3-Hyp), which is unique to collagen, is a fairly rare post-translational modification. Recent studies have suggested a function of prolyl 3-hydroxylation in fibril assembly and its relationships with certain disorders, including recessive osteogenesis imperfecta and high myopia. However, no direct evidence for the physiological and pathological roles of 3-Hyp has been presented. In this study, we first estimated the overall alterations in prolyl hydroxylation in collagens purified from skin, bone, and tail tendon of 0.5–18-month-old rats by LC-MS analysis with stable isotope-labeled collagen, which was recently developed as an internal standard for highly accurate collagen analyses. 3-Hyp was found to significantly increase in tendon collagen until 3 months after birth and then remain constant, whereas increased prolyl 3-hydroxylation was not observed in skin and bone collagen. Site-specific analysis further revealed that 3-Hyp was increased in tendon type I collagen in a specific sequence region, including a previously known modification site at Pro707 and newly identified sites at Pro716 and Pro719, at the early ages. The site-specific alterations in prolyl 3-hydroxylation with aging were also observed in bovine Achilles tendon. We postulate that significant increases in 3-Hyp at the consecutive modification sites are correlated with tissue development in tendon. The present findings suggest that prolyl 3-hydroxylation incrementally regulates collagen fibril diameter in tendon.  相似文献   

10.
11.
Deamidation is a nonenzymatic post-translational modification of asparagine to aspartic acid or glutamine to glutamic acid, converting an uncharged amino acid to a negatively charged residue. It is plausible that deamidation of asparagine and glutamine residues would result in disruption of a proteins'' hydrogen bonding network and thus lead to protein unfolding. To test this hypothesis Calmodulin and B2M were deamidated and analyzed using tandem mass spectrometry on a Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS). The gas phase hydrogen bonding networks of deamidated and nondeamidated protein isoforms were probed by varying the infra-red multi-photon dissociation laser power in a linear fashion and plotting the resulting electron capture dissociation fragment intensities as a melting curve at each amino acid residue. Analysis of the unfolding maps highlighted increased fragmentation at lower laser powers localized around heavily deamidated regions of the proteins. In addition fragment intensities were decreased across the rest of the proteins which we propose is because of the formation of salt-bridges strengthening the intramolecular interactions of the central regions. These results were supported by a computational flexibility analysis of the mutant and unmodified proteins, which would suggest that deamidation can affect the global structure of a protein via modification of the hydrogen bonding network near the deamidation site and that top down FTICR-MS is an appropriate technique for studying protein folding.  相似文献   

12.
Eubacterial leucyl/phenylalanyl tRNA protein transferase (L/F transferase) catalyzes the transfer of a leucine or a phenylalanine from an aminoacyl-tRNA to the N-terminus of a protein substrate. This N-terminal addition of an amino acid is analogous to that of peptide synthesis by ribosomes. A previously proposed catalytic mechanism for Escherichia coli L/F transferase identified the conserved aspartate 186 (D186) and glutamine 188 (Q188) as key catalytic residues. We have reassessed the role of D186 and Q188 by investigating the enzymatic reactions and kinetics of enzymes possessing mutations to these active-site residues. Additionally three other amino acids proposed to be involved in aminoacyl-tRNA substrate binding are investigated for comparison. By quantitatively measuring product formation using a quantitative matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based assay, our results clearly demonstrate that, despite significant reduction in enzymatic activity as a result of different point mutations introduced into the active site of L/F transferase, the formation of product is still observed upon extended incubations. Our kinetic data and existing X-ray crystal structures result in a proposal that the critical roles of D186 and Q188, like the other amino acids in the active site, are for substrate binding and orientation and do not directly participate in the chemistry of peptide bond formation. Overall, we propose that L/F transferase does not directly participate in the chemistry of peptide bond formation but catalyzes the reaction by binding and orientating the substrates for reaction in an analogous mechanism that has been described for ribosomes.  相似文献   

13.
14.
Diverse death phenotypes of cancer cells can be induced by Photofrin-mediated photodynamic therapy (PDT), which has a decisive role in eliciting a tumor-specific immunity for long-term tumor control. However, the mechanism(s) underlying this diversity remain elusive. Caspase-3 is a critical factor in determining cell death phenotypes in many physiological settings. Here, we report that Photofrin-PDT can modify and inactivate procaspase-3 in cancer cells. In cells exposed to an external apoptotic trigger, high-dose Photofrin-PDT pretreatment blocked the proteolytic activation of procaspase-3 by its upstream caspase. We generated and purified recombinant procaspase-3-D3A (a mutant without autolysis/autoactivation activity) to explore the underlying mechanism(s). Photofrin could bind directly to procaspase-3-D3A, and Photofrin-PDT-triggered inactivation and modification of procaspase-3-D3A was seen in vitro. Mass spectrometry-based quantitative analysis for post-translational modifications using both 16O/18O- and 14N/15N-labeling strategies revealed that Photofrin-PDT triggered a significant oxidation of procaspase-3-D3A (mainly on Met-27, -39 and -44) in a Photofrin dose-dependent manner, whereas the active site Cys-163 remained largely unmodified. Site-directed mutagenesis experiments further showed that Met-44 has an important role in procaspase-3 activation. Collectively, our results reveal that Met oxidation is a novel mechanism for the Photofrin-PDT-mediated inactivation of procaspase-3, potentially explaining at least some of the complicated cell death phenotypes triggered by PDT.  相似文献   

15.
The Escherichia coli peptide binding protein OppA is an essential component of the oligopeptide transporter Opp. Based on studies on its orthologue from Salmonella typhimurium, it has been proposed that OppA binds peptides between two and five amino acids long, with no apparent sequence selectivity. Here, we studied peptide binding to E. coli OppA directly and show that the protein has an unexpected preference for basic peptides. OppA was expressed in the periplasm, where it bound to available peptides. The protein was purified in complex with tightly bound peptides. The crystal structure (up to 2.0 Å) of OppA liganded with the peptides indicated that the protein has a preference for peptides containing a lysine. Mass spectrometry analysis of the bound peptides showed that peptides between two and five amino acids long bind to the protein and indeed hinted at a preference for positively charged peptides. The preference of OppA for peptides with basic residues, in particular lysines, was corroborated by binding studies with peptides of defined sequence using isothermal titration calorimetry and intrinsic protein fluorescence titration. The protein bound tripeptides and tetrapeptides containing positively charged residues with high affinity, whereas related peptides without lysines/arginines were bound with low affinity. A structure of OppA in an open conformation in the absence of ligands was also determined to 2.0 Å, revealing that the initial binding site displays a negative surface charge, consistent with the observed preference for positively charged peptides. Taken together, E. coli OppA appears to have a preference for basic peptides.  相似文献   

16.
The core histones are the primary protein component of chromatin, which is responsible for the packaging of eukaryotic DNA. The NH(2)-terminal tail domains of the core histones are the sites of numerous post-translational modifications that have been shown to play an important role in the regulation of chromatin structure. In this study, we discuss the recent application of modern analytical techniques to the study of histone modifications. Through the use of mass spectrometry, a large number of new sites of histone modification have been identified, many of which reside outside of the NH(2)-terminal tail domains. In addition, techniques have been developed that allow mass spectrometry to be effective for the quantitation of histone post-translational modifications. Hence, the use of mass spectrometry promises to dramatically alter our view of histone post-translational modifications.  相似文献   

17.
18.
The homodimeric Ocr (overcome classical restriction) protein of bacteriophage T7 is a molecular mimic of double-stranded DNA and a highly effective competitive inhibitor of the bacterial type I restriction/modification system. The surface of Ocr is replete with acidic residues that mimic the phosphate backbone of DNA. In addition, Ocr also mimics the overall dimensions of a bent 24-bp DNA molecule. In this study, we attempted to delineate these two mechanisms of DNA mimicry by chemically modifying the negative charges on the Ocr surface. Our analysis reveals that removal of about 46% of the carboxylate groups per Ocr monomer results in an ∼ 50-fold reduction in binding affinity for a methyltransferase from a model type I restriction/modification system. The reduced affinity between Ocr with this degree of modification and the methyltransferase is comparable with the affinity of DNA for the methyltransferase. Additional modification to remove ∼ 86% of the carboxylate groups further reduces its binding affinity, although the modified Ocr still binds to the methyltransferase via a mechanism attributable to the shape mimicry of a bent DNA molecule. Our results show that the electrostatic mimicry of Ocr increases the binding affinity for its target enzyme by up to ∼ 800-fold.  相似文献   

19.
Transglutaminases are calcium-dependent enzymes that catalyze a post-translational modification of proteins through the formation of epsilon -(gamma-glutamyl)lysine bonds. Although specific roles for transglutaminases have been described, recent findings have provided evidence that dysregulation of transglutaminases may contribute to many pathological processes including celiac disease and neurodegenerative diseases. A crucial step in the elucidation of biological and pathological roles of transglutaminases requires the identification of protein substrates. A strategy based on a functional proteomic analysis was set up using two well-characterized biotinylated transglutaminase substrates as affinity probes: 5-(biotinamido)pentylamine and the synthetic biotinylated peptide TVQQEL, the amino- and acyl-donor probes, respectively. A pool of known tissue type transglutaminase protein substrates was selected in order to test the procedure. Results obtained in this paper indicate that the whole strategy can be successfully applied in order to identify transglutaminases protein substrates as well as the amino acid site sensitive toward enzyme activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号