首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
Management and control of cryptosporidiosis in human requires knowledge of Cryptosporidium species contributing to human disease. Markers that are able to provide information below the species level have become important tools for source tracking. Using the hypervariable surface antigen, glycoprotein 60 (GP60), C. hominis (n = 37) and C. parvum (n = 32) isolates from cryptosporidiosis cases in New South Wales, Australia, were characterised. Extensive variation was observed within this locus and the isolates could be divided into 8 families and 24 different subtypes. The subtypes identified have global distributions and indicate that anthroponotic and zoonotic transmission routes contribute to sporadic human cryptosporidiosis in NSW.  相似文献   

2.

Background

Cryptosporidiosis is an important cause for chronic diarrhea and death in HIV/AIDS patients. Among common Cryptosporidium species in humans, C. parvum is responsible for most zoonotic infections in industrialized nations. Nevertheless, the clinical significance of C. parvum and role of zoonotic transmission in cryptosporidiosis epidemiology in developing countries remain unclear.

Methodology/Principal Findings

In this cross-sectional study, 520 HIV/AIDS patients were examined for Cryptosporidium presence in stool samples using genotyping and subtyping techniques. Altogether, 140 (26.9%) patients were positive for Cryptosporidium spp. by PCR-RFLP analysis of the small subunit rRNA gene, belonging to C. parvum (92 patients), C. hominis (25 patients), C. viatorum (10 patients), C. felis (5 patients), C. meleagridis (3 patients), C. canis (2 patients), C. xiaoi (2 patients), and mixture of C. parvum and C. hominis (1 patient). Sequence analyses of the 60 kDa glycoprotein gene revealed a high genetic diversity within the 82 C. parvum and 19 C. hominis specimens subtyped, including C. parvum zoonotic subtype families IIa (71) and IId (5) and anthroponotic subtype families IIc (2), IIb (1), IIe (1) and If-like (2), and C. hominis subtype families Id (13), Ie (5), and Ib (1). Overall, Cryptosporidium infection was associated with the occurrence of diarrhea and vomiting. Diarrhea was attributable mostly to C. parvum subtype family IIa and C. hominis, whereas vomiting was largely attributable to C. hominis and rare Cryptosporidium species. Calf contact was identified as a significant risk factor for infection with Cryptosporidium spp., especially C. parvum subtype family IIa.

Conclusions/Significance

Results of the study indicate that C. parvum is a major cause of cryptosporidiosis in HIV-positive patients and zoonotic transmission is important in cryptosporidiosis epidemiology in Ethiopia. In addition, they confirm that different Cryptosporidium species and subtypes are linked to different clinical manifestations.  相似文献   

3.
Molecular typing at the 18S rRNA and Gp60 loci was conducted on Cryptosporidium-positive stool samples from cases collected during 2007 Western Australian and South Australian outbreaks of cryptosporidiosis. Analysis of 48 Western Australian samples identified that all isolates were C. hominis and were from five different Gp60C. hominis subtype families. The IbA10G2 subtype was most common across all age groups (37/48). In South Australia, analysis of 24 outbreak samples, identified 21 C. hominis isolates, two C. parvum isolates and one sample with both C. hominis and C. parvum. All C. hominis isolates were identified as the IbA10G2 subtype.  相似文献   

4.
The identification and characterisation of Cryptosporidiumgenotypes and subtypes are fundamental to the study of cryptosporidiosis epidemiology, aiding in prevention and control strategies. The objective was to determine the genetic diversity ofCryptosporidium in samples obtained from hospitals of Rio de Janeiro, Brazil, and Buenos Aires, Argentina. Samples were analysed by microscopy and TaqMan polymerase chain reaction (PCR) assays forCryptosporidium detection, genotyped by nested-PCR-restriction fragment length polymorphism (RFLP) analysis of the 18S rRNA gene and subtyped by DNA sequencing of the gp60 gene. Among the 89 samples from Rio de Janeiro, Cryptosporidium spp were detected in 26 by microscopy/TaqMan PCR. In samples from Buenos Aires,Cryptosporidium was diagnosed in 15 patients of the 132 studied. The TaqMan PCR and the nested-PCR-RFLP detected Cryptosporidium parvum, Cryptosporidium hominis, and co-infections of both species. In Brazilian samples, the subtypes IbA10G2 and IIcA5G3 were observed. The subtypes found in Argentinean samples were IbA10G2, IaA10G1R4, IaA11G1R4, and IeA11G3T3, and mixed subtypes of Ia and IIa families were detected in the co-infections. C. hominis was the species more frequently detected, and subtype family Ib was reported in both countries. Subtype diversity was higher in Buenos Aires than in Rio de Janeiro and two new subtypes were described for the first time.  相似文献   

5.
DNA sequence analysis of the 60 kDa glycoprotein (gp60) gene has been used extensively in subtyping Cryptosporidium hominis in humans and Cryptosporidium parvum in humans and ruminants. In this study, nucleotide sequences of the gp60 gene were obtained from seven Cryptosporidium species and genotypes related to the two species. Altogether, seven subtype families were detected, including four new subtype families. These data should be useful in studies of the transmission and zoonotic potential of cryptosporidiosis in mice and small wild mammals.  相似文献   

6.

Background

Cryptosporidium hominis is a dominant species for human cryptosporidiosis. Within the species, IbA10G2 is the most virulent subtype responsible for all C. hominis–associated outbreaks in Europe and Australia, and is a dominant outbreak subtype in the United States. In recent yearsIaA28R4 is becoming a major new subtype in the United States. In this study, we sequenced the genomes of two field specimens from each of the two subtypes and conducted a comparative genomic analysis of the obtained sequences with those from the only fully sequenced Cryptosporidium parvum genome.

Results

Altogether, 8.59-9.05 Mb of Cryptosporidium sequences in 45–767 assembled contigs were obtained from the four specimens, representing 94.36-99.47% coverage of the expected genome. These genomes had complete synteny in gene organization and 96.86-97.0% and 99.72-99.83% nucleotide sequence similarities to the published genomes of C. parvum and C. hominis, respectively. Several major insertions and deletions were seen between C. hominis and C. parvum genomes, involving mostly members of multicopy gene families near telomeres. The four C. hominis genomes were highly similar to each other and divergent from the reference IaA25R3 genome in some highly polymorphic regions. Major sequence differences among the four specimens sequenced in this study were in the 5′ and 3′ ends of chromosome 6 and the gp60 region, largely the result of genetic recombination.

Conclusions

The sequence similarity among specimens of the two dominant outbreak subtypes and genetic recombination in chromosome 6, especially around the putative virulence determinant gp60 region, suggest that genetic recombination plays a potential role in the emergence of hyper-transmissible C. hominis subtypes. The high sequence conservation between C. parvum and C. hominis genomes and significant differences in copy numbers of MEDLE family secreted proteins and insulinase-like proteases indicate that telomeric gene duplications could potentially contribute to host expansion in C. parvum.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1517-1) contains supplementary material, which is available to authorized users.  相似文献   

7.
Little is known about the epidemiology of Cryptosporidium in Jordan and no genotyping studies have been conducted on Cryptosporidium isolates from humans or animals from Jordan. Genotyping of 44 Cryptosporidium isolates from Jordanian children at the 18S rRNA locus and a unique diagnostic locus identified four Cryptosporidium species; C. parvum (22), C. hominis (20), C. meleagridis (1) and C. canis (1). Sub-genotype analysis of 29 isolates at the 60-kDa glycoprotein (GP60) locus identified three C. parvum, two C. hominis subtype families and one C. meleagridis subtype. Several rare and novel subtypes were identified indicating unique endemicity and transmission of Cryptosporidium in Jordan.  相似文献   

8.
Non-human primates (NHPs) are commonly infected with Cryptosporidium spp. and Giardia duodenalis. However, molecular characterisation of these pathogens from NHPs remains scarce. In this study, 2,660 specimens from 26 NHP species in China were examined and characterised by PCR amplification of 18S rRNA, 70 kDa heat shock protein (hsp70) and 60 kDa glycoprotein (gp60) gene loci for Cryptosporidium; and 1,386 of the specimens by ssrRNA, triosephosphate isomerase (tpi) and glutamate dehydrogenase (gdh) gene loci for Giardia. Cryptosporidium was detected in 0.7% (19/2660) specimens of four NHP species including rhesus macaques (0.7%), cynomolgus monkeys (1.0%), slow lorises (10.0%) and Francois’ leaf monkeys (6.7%), belonging to Cryptosporidium hominis (14/19) and Cryptosporidium muris (5/19). Two C. hominis gp60 subtypes, IbA12G3 and IiA17 were observed. Based on the tpi locus, G. duodenalis was identified in 2.2% (30/1,386) of specimens including 2.1% in rhesus macaques, 33.3% in Japanese macaques, 16.7% in Assam macaques, 0.7% in white-headed langurs, 1.6% in cynomolgus monkeys and 16.7% in olive baboons. Sequence analysis of the three targets indicated that all of the Giardia-positive specimens belonged to the zoonotic assemblage B. Highest sequence polymorphism was observed at the tpi locus, including 11 subtypes: three known and eight new ones. Phylogenetic analysis of the subtypes showed that most of them were close to the so-called subtype BIV. Intragenotypic variations at the gdh locus revealed six types of sequences (three known and three new), all of which belonged to so-called subtype BIV. Three specimens had co-infection with C. hominis (IbA12G3) and G. duodenalis (BIV). The presence of zoonotic genotypes and subtypes of Cryptosporidium spp. and G. duodenalis in NHPs suggests that these animals can potentially contribute to the transmission of human cryptosporidiosis and giardiasis.  相似文献   

9.
Cryptosporidiosis is a parasitic disease caused by Cryptosporidium spp. In immunocompetent individuals, it usually causes an acute and self-limited diarrhea; in infants, infection with Cryptosporidium spp. can cause malnutrition and growth retardation, and declined cognitive ability. In this study, we described for the first time the distribution of C. parvum and C. hominis subtypes in 12 children in Mexico by sequence characterization of the 60-kDa glycoprotein (GP60) gene of Cryptosporidium. Altogether, 7 subtypes belonging to 4 subtype families of C. hominis (Ia, Ib, Id and Ie) and 1 subtype family of C. parvum (IIa) were detected, including IaA14R3, IaA15R3, IbA10G2, IdA17, IeA11G3T3, IIaA15G2R1 and IIaA16G1R1. The frequency of the subtype families and subtypes in the samples analyzed in this study differed from what was observed in other countries.  相似文献   

10.
A total of 289 pig faecal samples were collected from pre-weaned and post-weaned piglets and sows from 1 indoor and 3 outdoor piggeries located in the south-west region of Western Australia and screened at the 18S rRNA locus for the presence of Cryptosporidium. An overall prevalence of 22.1% (64/289) was identified. Cryptosporidium was more prevalent in post-weaned animals (p < 0.05); 32.7% (51/156) versus 10.6% (13/123) for pre-weaned animals. Sequence analysis identified Cryptosporidium suis in all pre-weaned isolates genotyped (7/13). In post-weaned pigs that were genotyped (n = 38), the non-zoonotic Cryptosporidium species, pig genotype II was identified in 32 samples and C. suis in 6 samples. The zoonotic species Cryptosporidium parvum was not detected, suggesting that domestic pigs do not pose a significant public health risk. Pig genotype II was significantly (p < 0.05) associated with ‘normal’ stools, indicating an asymptomatic nature in the porcine host.  相似文献   

11.
Cryptosporidium and Giardia infections are common causes of diarrhea worldwide. To better understand the transmission of human cryptosporidiosis and giardiasis in Henan, China, 10 Cryptosporidium-positive specimens and 18 Giardia-positive specimens were characterized at the species/genotype and subtype levels. Cryptosporidium specimens were analyzed by DNA sequencing of the small subunit rRNA and 60 kDa glycoprotein genes. Among those genotyped, nine belonged to C. hominis and one C. felis, with the former belonging to three subtype families: Ia, Ib, and Id. The three Ib subtypes identified, IbA16G2, IbA19G2, and IbA20G2, were very different from the two common Ib subtypes (IbA9G3 and IbA10G2) found in other areas of the world. The distribution of Giardia duodenalis genotypes and subtypes was assessed by sequence analysis of the triosephosphate isomerase (tpi) gene. The assemblages A (eight belonging to A-I and four A-II) and B (belonging to six new subtypes) were found in 12 and six specimens, respectively. More systematic studies are needed to understand the transmission of Cryptosporidium and G. duodenalis in humans in China.  相似文献   

12.
Molecular epidemiology of cryptosporidiosis: An update   总被引:1,自引:0,他引:1  
Molecular tools have been developed to detect and differentiate Cryptosporidium at the species/genotype and subtype levels. These tools have been increasingly used in characterizing the transmission of Cryptosporidium spp. in humans and animals. Results of these molecular epidemiologic studies have led to better appreciation of the public health importance of Cryptosporidium species/genotypes in various animals and improved understanding of infection sources in humans. Geographic, seasonal and socioeconomic differences in the distribution of Cryptosporidium spp. in humans have been identified, and have been attributed to differences in infection sources and transmission routes. The transmission of C. parvum in humans is mostly anthroponotic in developing countries, with zoonotic infections play an important role in developed countries. Species of Cryptosporidium and subtype families of C. hominis have been shown to induce different clinical manifestations and have different potential to cause outbreaks. The wide use of a new generation of genotyping and subtyping tools in well designed epidemiologic studies should lead to a more in-depth understanding of the epidemiology of cryptosporidiosis in humans and animals.  相似文献   

13.

Introduction

Globally Cryptosporidium and Giardia species are the most common non-bacterial causes of diarrhoea in children and HIV infected individuals, yet data on their role in paediatric diarrhoea in Kenya remains scant. This study investigated the occurrence of Cryptosporidium species, genotypes and subtypes in children, both hospitalized and living in an informal settlement in Nairobi.

Methods

This was a prospective cross-sectional study in which faecal specimen positive for Cryptosporidium spp. by microscopy from HIV infected and uninfected children aged five years and below presenting with diarrhoea at selected outpatient clinics in Mukuru informal settlements, or admitted to the paediatric ward at the Mbagathi District Hospital were characterized. The analysis was done by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) of the 18srRNA gene for species identification and PCR-sequencing of the 60 kDa glycoprotein (GP60) gene for subtyping.

Results

C. hominis was the most common species of Cryptosporidium identified in125/151(82.8%) of the children. Other species identified were C. parvum 18/151(11.9%), while C. felis and C. meleagridis were identified in 4 and 2 children, respectively. Wide genetic variation was observed within C. hominis, with identification of 5 subtype families; Ia, Ib, Id, Ie and If and 21 subtypes. Only subtype family IIc was identified within C. parvum. There was no association between species and HIV status or patient type.

Conclusion

C. hominis is the most common species associated with diarrhoea in the study population. There was high genetic variability in the C. hominis isolates with 22 different subtypes identified, whereas genetic diversity was low within C. parvum with only one subtype family IIc identified.  相似文献   

14.
To understand the situation of water contamination with Cryptosporidium spp. and Giardia spp. in the northern region of Portugal, we have established a long-term program aimed at pinpointing the sources of surface water and environmental contamination, working with the water-supply industry. Here, we describe the results obtained with raw water samples collected in rivers of the 5 hydrographical basins. A total of 283 samples were analyzed using the Method 1623 EPA, USA. Genetic characterization was performed by PCR and sequencing of genes 18S rRNA of Cryptosporidium spp. and β-giardin of Giardia spp. Infectious stages of the protozoa were detected in 72.8% (206 of 283) of the water samples, with 15.2% (43 of 283) positive for Giardia duodenalis cysts, 9.5% (27 of 283) positive for Cryptosporidium spp. oocysts, and 48.1% (136 of 283) samples positive for both parasites. The most common zoonotic species found were G. duodenalis assemblages A-I, A-II, B, and E genotypes, and Cryptosporidium parvum, Cryptosporidium andersoni, Cryptosporidium hominis, and Cryptosporidium muris. These results suggest that cryptosporidiosis and giardiasis are important public health issues in northern Portugal. To the authors'' knowledge, this is the first report evaluating the concentration of environmental stages of Cryptosporidium and Giardia in raw water samples in the northern region of Portugal.  相似文献   

15.
The Cryptosporidium spp. UV disinfection studies conducted to date have used Cryptosporidium parvum oocysts. However, Cryptosporidium hominis predominates in human cryptosporidiosis infections, so there is a critical need to assess the efficacy of UV disinfection of C. hominis. This study utilized cell culture-based methods to demonstrate that C. hominis oocysts displayed similar levels of infectivity and had the same sensitivity to UV light as C. parvum. Therefore, the water industry can be confident about extrapolating C. parvum UV disinfection data to C. hominis oocysts.  相似文献   

16.
17.
Effective management of human cryptosporidiosis requires efficient methods for detection and identification of the species of Cryptosporidium isolates. Identification of isolates to the species level is not routine for diagnostic assessment of cryptosporidiosis, which leads to uncertainty about the epidemiology of the Cryptosporidium species that cause human disease. We developed a rapid and reliable method for species identification of Cryptosporidium oocysts from human fecal samples using terminal restriction fragment polymorphism (T-RFLP) analysis of the 18S rRNA gene. This method generated diagnostic fragments unique to the species of interest. A panel of previously identified isolates of species was blind tested to validate the method, which determined the correct species identity in every case. The T-RFLP profiles obtained for samples spiked with known amounts of Cryptosporidium hominis and Cryptosporidium parvum oocysts generated the two expected diagnostic peaks. The detection limit for an individual species was 1% of the total DNA. This is the first application of T-RFLP to protozoa, and the method which we developed is a rapid, repeatable, and cost-effective method for species identification.  相似文献   

18.

Background

Whole genome sequencing (WGS) of Cryptosporidium spp. has previously relied on propagation of the parasite in animals to generate enough oocysts from which to extract DNA of sufficient quantity and purity for analysis. We have developed and validated a method for preparation of genomic Cryptosporidium DNA suitable for WGS directly from human stool samples and used it to generate 10 high-quality whole Cryptosporidium genome assemblies. Our method uses a combination of salt flotation, immunomagnetic separation (IMS), and surface sterilisation of oocysts prior to DNA extraction, with subsequent use of the transposome-based Nextera XT kit to generate libraries for sequencing on Illumina platforms. IMS was found to be superior to caesium chloride density centrifugation for purification of oocysts from small volume stool samples and for reducing levels of contaminant DNA.

Results

The IMS-based method was used initially to sequence whole genomes of Cryptosporidium hominis gp60 subtype IbA10G2 and Cryptosporidium parvum gp60 subtype IIaA19G1R2 from small amounts of stool left over from diagnostic testing of clinical cases of cryptosporidiosis. The C. parvum isolate was sequenced to a mean depth of 51.8X with reads covering 100 % of the bases of the C. parvum Iowa II reference genome (Bioproject PRJNA 15586), while the C. hominis isolate was sequenced to a mean depth of 34.7X with reads covering 98 % of the bases of the C. hominis TU502 v1 reference genome (Bioproject PRJNA 15585).The method was then applied to a further 17 stools, successfully generating another eight new whole genome sequences, of which two were C. hominis (gp60 subtypes IbA10G2 and IaA14R3) and six C. parvum (gp60 subtypes IIaA15G2R1 from three samples, and one each of IIaA17G1R1, IIaA18G2R1, and IIdA22G1), demonstrating the utility of this method to sequence Cryptosporidium genomes directly from clinical samples. This development is especially important as it reduces the requirement to propagate Cryptosporidium oocysts in animal models prior to genome sequencing.

Conclusion

This represents the first report of high-quality whole genome sequencing of Cryptosporidium isolates prepared directly from human stool samples.  相似文献   

19.
Iqbal A  Lim YA  Surin J  Sim BL 《PloS one》2012,7(2):e31139

Background

Currently, there is a lack of vital information in the genetic makeup of Cryptosporidium especially in developing countries. The present study aimed at determining the genotypes and subgenotypes of Cryptosporidium in hospitalized Malaysian human immunodeficiency virus (HIV) positive patients.

Methodology/Principal Findings

In this study, 346 faecal samples collected from Malaysian HIV positive patients were genetically analysed via PCR targeting the 60 kDa glycoprotein (gp60) gene. Eighteen (5.2% of 346) isolates were determined as Cryptosporidium positive with 72.2% (of 18) identified as Cryptosporidium parvum whilst 27.7% as Cryptosporidium hominis. Further gp60 analysis revealed C. parvum belonging to subgenotypes IIaA13G1R1 (2 isolates), IIaA13G2R1 (2 isolates), IIaA14G2R1 (3 isolates), IIaA15G2R1 (5 isolates) and IIdA15G1R1 (1 isolate). C. hominis was represented by subgenotypes IaA14R1 (2 isolates), IaA18R1 (1 isolate) and IbA10G2R2 (2 isolates).

Conclusions/Significance

These findings highlighted the presence of high diversity of Cryptosporidium subgenotypes among Malaysian HIV infected individuals. The predominance of the C. parvum subgenotypes signified the possibility of zoonotic as well as anthroponotic transmissions of cryptosporidiosis in HIV infected individuals.  相似文献   

20.
Glycoproteins expressed by Cryptosporidium parvum are immunogenic in infected individuals but the nature of the epitopes recognised in C. parvum glycoproteins is poorly understood. Since a known immunodominant antigen of Cryptosporidium, the 17 kDa glycoprotein, has previously been shown to bind to lectins that recognise the Tn antigen (GalNAcα1-Ser/Thr-R), a large number of glycopeptides with different Tn valency and presentation were prepared. In addition, glycopeptides were synthesised based on a 40 kDa cryptosporidial antigen, a polymorphic surface glycoprotein with varying numbers of serine residues, to determine the reactivity with sera from C. parvum-infected humans. These glycopeptides and non-glycosylated peptides were used to generate a glycopeptide microarray to allow screening of sera from C. parvum-infected individuals for the presence of IgM and IgG antibodies. IgG but not IgM in sera from C. parvum-infected individuals bound to multivalent Tn antigen epitopes presented on glycopeptides, suggesting that glycoproteins from C. parvum that contain the Tn antigen induce immune responses upon infection. In addition, molecular differences in glycosylated peptides (e.g. substituting Ser for Thr) as well as the site of glycosylation had a pronounced effect on reactivity. Lastly, pooled sera from individuals infected with either Toxoplasma or Plasmodium were also tested against the modified Cryptosporidium peptides and some sera showed specific binding to glycopeptide epitopes. These studies reveal that specific anti-glycopeptide antibodies that recognise the Tn antigen may be useful diagnostically and in defining the roles of parasite glycoconjugates in infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号