首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
Little is known about the epidemiology of Cryptosporidium in Jordan and no genotyping studies have been conducted on Cryptosporidium isolates from humans or animals from Jordan. Genotyping of 44 Cryptosporidium isolates from Jordanian children at the 18S rRNA locus and a unique diagnostic locus identified four Cryptosporidium species; C. parvum (22), C. hominis (20), C. meleagridis (1) and C. canis (1). Sub-genotype analysis of 29 isolates at the 60-kDa glycoprotein (GP60) locus identified three C. parvum, two C. hominis subtype families and one C. meleagridis subtype. Several rare and novel subtypes were identified indicating unique endemicity and transmission of Cryptosporidium in Jordan.  相似文献   

2.
Recent progress in understanding the unique biochemistry of the two closely related human enteric pathogens Cryptosporidium parvum and Cryptosporidium hominis has been stimulated by the elucidation of the complete genome sequences for both pathogens. Much of the work that has occurred since that time has been focused on understanding the metabolic pathways encoded by the genome in hopes of providing increased understanding of the parasite biology, and in the identification of novel targets for pharmacological interventions. However, despite identifying the genes encoding enzymes that participate in many of the major metabolic pathways, only a hand full of proteins have actually been the subjects of detailed scrutiny. Thus, much of the biochemistry of these parasites remains a true mystery.  相似文献   

3.
The majority of biological data on Cryptosporidium has been collected from humans and domestic animal hosts which creates a bias in knowledge on the biodiversity and evolution of this parasite genus. Further to understanding Cryptosporidium biology are studies encompassing broad hosts that represent diverse taxa sampled across wide geographic ranges. Marsupials represent a group of wildlife hosts from which limited information on Cryptosporidium is available. As marsupial hosts are an ancient mammalian lineage they represent an important group for studying parasite evolution. This review summarises information of the biology, epidemiology and evolution of Cryptosporidium in marsupial hosts, and discusses the importance of further understanding interactions in this parasite-host system.  相似文献   

4.
Cryptosporidium species and Giardia intestinalis are the most common enteric protozoan pathogens affecting humans worldwide. In recent years, nitazoxanide has been licensed in the United States for the treatment of cryptosporidiosis in non-immunodeficient children and adults, becoming the first drug approved for treating this disease. There is a need for a highly effective treatment for cryptosporidiosis in immunodeficient patients, but the quest for such a drug has proven to be elusive. While not effective against Cryptosporidium, nitroimidazoles such as metronidazole or tinidazole are effective treatments for giardiasis and can be administered as a single dose. Albendazole and nitazoxanide are effective against giardiasis but require multiple doses. Nitazoxanide is the first new drug developed for treating giardiasis in more than 20 years. New potentially promising drug targets in Cryptosporidium and Giardia have been identified, but there appears to be little activity toward clinical development of new drugs.  相似文献   

5.
Whilst considerable information is available for avian cryptosporidiosis, scant information is available for Cryptosporidium infections in fish and amphibians. The present review details recent studies in avian cryptosporidiosis and our current knowledge of piscine and amphibian infections.  相似文献   

6.
Cryptosporidium species are common parasites of wild placental mammals. Recent parasitological studies combined with molecular genotyping techniques have been providing valuable new insight into the host specificity and potential transmission of various Cryptosporidium species/genotypes among animals and between these animals and humans. Although Cryptosporidium in wild animals may possess a potential public health problem due to oocyst contamination in the environment, studies at various regions of the world have indicated a strong host-adaptation by these parasites and a limited potential of cross-species transmission of cryptosporidiosis among placental mammals, suggesting that these animals are probably not a major reservoir for human infection. However, Cryptosporidium species/genotypes in placental animals have been reported occasionally in humans. Therefore, public health significance of some Cryptosporidium species in wild placental mammals, such as the cervine genotype, should not be overlooked and should be further studied.  相似文献   

7.
Cryptosporidium hominis, which has an anthroponotic transmission cycle and Cryptosporidium parvum, which is zoonotic, are the primary species of Cryptosporidium that infect humans. The present study identified the species/genotypes and subgenotypes of Cryptosporidium in 7 human and 15 cattle cases of sporadic cryptosporidiosis in rural western NSW during the period from November 2005 to January 2006. The species/genotype of isolates was determined by PCR sequence analysis of the 18S rRNA and C. parvum and C. hominis isolates were subgenotyped by sequence analysis of the GP60 gene. Fourteen of 15 cattle-derived isolates were identified as C. parvum and 1 as a C. bovis/C. parvum mixture. Of the human isolates, 4 were C. parvum and 3 were C. hominis. Two different subgenotypes were identified with the human C. hominis isolates and six different subgenotypes were identified within the C. parvum species from humans and cattle. All four of the C. parvum subtypes found in humans were also found in the cattle, indicating that zoonotic transmission may be an important contributor to sporadic human cases cryptosporidiosis in rural NSW.  相似文献   

8.
Cryptosporidium is a gastrointestinal parasite that is recognised as a significant cause of non-viral diarrhea in both developing and industrialised countries. In the present study, a longitudinal analysis of 248 faecal specimens from Australian humans with gastrointestinal symptoms from 2005 to 2008 was conducted. Sequence analysis of the 18S rRNA gene locus and the 60 kDa glycoprotein (gp60) gene locus revealed that 195 (78.6%) of the cases were due to infection with Cryptosporidium hominis, 49 (19.8%) with Cryptosporidium parvum and four (1.6%) with Cryptosporidium meleagridis. A total of eight gp60 subtype families were identified; five C. hominis subtype families (Ib, Id, Ie, If and Ig), and two C. parvum subtype families (IIa and IId). The Id subtype family was the most common C. hominis subtype family identified in 45.7% of isolates, followed by the Ig subtype family (30.3%) and the Ib subtype family (20%). The most common C. parvum subtype was IIaA18G3R1, identified in 65.3% of isolates. The more rare zoonotic IId A15G1 subtype was identified in one isolate. Statistical analysis showed that the Id subtype was associated with abdominal pain (p < 0.05) and that in sporadic cryptosporidiosis, children aged 5 and below were 1.91 times and 1.88 times more likely to be infected with subtype Id (RR 1.91; 95% CI, 1.7-2.89; p < 0.05) and Ig (RR 1.88; 95% CI, 1.10-3.24; p < 0.05) compared to children aged 5 and above. A subset of isolates were also analysed at the variable CP47 and MSC6-7 gene loci. Findings from this study suggest that anthroponotic transmission of Cryptosporidium plays a major role in the epidemiology of cryptosporidiosis in Western Australian humans.  相似文献   

9.
Surveillance for Cryptosporidium in the United States indicates that the reported incidence of infection has increased dramatically since 2004. The reasons for this increase are unclear but might be caused by an actual increase in incidence, improved surveillance, improved awareness about cryptosporidiosis, and/or increases in testing practices resulting from the licensing of the first-ever treatment for cryptosporidiosis. While regional differences remain, the incidence of cryptosporidiosis appears to be increasing across the United States. Onset of illness is most common during the summer, particularly among younger children.Cryptosporidiosis case reporting also influences outbreak detection and reporting; the recent rise in cases coincides with an increase in the number of reported cryptosporidiosis outbreaks, particularly in treated recreational water venues. Risk factors include ingesting contaminated recreational or drinking water, exposure to infected animals, having close contacts with cryptosporidiosis, travel to disease-endemic areas, and ingestion of contaminated food. Advances in molecular characterization of clinical specimens have improved our understanding of the changing epidemiology and risk factors.Prevention and control of cryptosporidiosis requires continued efforts to interrupt the transmission of Cryptosporidium through water, food, and contact with infected persons or animals. Of particular importance is continued improvement and monitoring of drinking water treatment and advances in the design, operation, and management of recreational water venues coupled with behavioral changes among the swimming public.  相似文献   

10.
Non-human primates (NHPs) are commonly infected with Cryptosporidium spp. and Giardia duodenalis. However, molecular characterisation of these pathogens from NHPs remains scarce. In this study, 2,660 specimens from 26 NHP species in China were examined and characterised by PCR amplification of 18S rRNA, 70 kDa heat shock protein (hsp70) and 60 kDa glycoprotein (gp60) gene loci for Cryptosporidium; and 1,386 of the specimens by ssrRNA, triosephosphate isomerase (tpi) and glutamate dehydrogenase (gdh) gene loci for Giardia. Cryptosporidium was detected in 0.7% (19/2660) specimens of four NHP species including rhesus macaques (0.7%), cynomolgus monkeys (1.0%), slow lorises (10.0%) and Francois’ leaf monkeys (6.7%), belonging to Cryptosporidium hominis (14/19) and Cryptosporidium muris (5/19). Two C. hominis gp60 subtypes, IbA12G3 and IiA17 were observed. Based on the tpi locus, G. duodenalis was identified in 2.2% (30/1,386) of specimens including 2.1% in rhesus macaques, 33.3% in Japanese macaques, 16.7% in Assam macaques, 0.7% in white-headed langurs, 1.6% in cynomolgus monkeys and 16.7% in olive baboons. Sequence analysis of the three targets indicated that all of the Giardia-positive specimens belonged to the zoonotic assemblage B. Highest sequence polymorphism was observed at the tpi locus, including 11 subtypes: three known and eight new ones. Phylogenetic analysis of the subtypes showed that most of them were close to the so-called subtype BIV. Intragenotypic variations at the gdh locus revealed six types of sequences (three known and three new), all of which belonged to so-called subtype BIV. Three specimens had co-infection with C. hominis (IbA12G3) and G. duodenalis (BIV). The presence of zoonotic genotypes and subtypes of Cryptosporidium spp. and G. duodenalis in NHPs suggests that these animals can potentially contribute to the transmission of human cryptosporidiosis and giardiasis.  相似文献   

11.
Management and control of cryptosporidiosis in human requires knowledge of Cryptosporidium species contributing to human disease. Markers that are able to provide information below the species level have become important tools for source tracking. Using the hypervariable surface antigen, glycoprotein 60 (GP60), C. hominis (n = 37) and C. parvum (n = 32) isolates from cryptosporidiosis cases in New South Wales, Australia, were characterised. Extensive variation was observed within this locus and the isolates could be divided into 8 families and 24 different subtypes. The subtypes identified have global distributions and indicate that anthroponotic and zoonotic transmission routes contribute to sporadic human cryptosporidiosis in NSW.  相似文献   

12.
In order to examine the prevalence of Cryptosporidium infection in wild rodents and insectivores of South Korea and to assess their potential role as a source of human cryptosporidiosis, a total of 199 wild rodents and insectivore specimens were collected from 10 regions of South Korea and screened for Cryptosporidium infection over a period of 2 years (2012-2013). A nested-PCR amplification of Cryptosporidium oocyst wall protein (COWP) gene fragment revealed an overall prevalence of 34.2% (68/199). The sequence analysis of 18S rRNA gene locus of Cryptosporidium was performed from the fecal and cecum samples that tested positive by COWP amplification PCR. As a result, we identified 4 species/genotypes; chipmunk genotype I, cervine genotype I, C. muris, and a new genotype which is closely related to the bear genotype. The new genotype isolated from 12 Apodemus agrarius and 2 Apodemus chejuensis was not previously identified as known species or genotype, and therefore, it is supposed to be a novel genotype. In addition, the host spectrum of Cryptosporidium was extended to A. agrarius and Crosidura lasiura, which had not been reported before. In this study, we found that the Korean wild rodents and insectivores were infected with various Cryptosporidium spp. with large intra-genotypic variationa, indicating that they may function as potential reservoirs transmitting zoonotic Cryptosporidium to livestock and humans.  相似文献   

13.
Studies on Cryptosporidium species have been hampered by the limited amount of parasitic stages available for research. One of the major objectives of many laboratories is to develop a reproducible culture model for this important parasite. Recent research has resulted in long-term culturing of Cryptosporidium in cell culture using pH modification, sub-culturing and gamma irradiation. Further advances in the in vitro culturing of Cryptosporidium revealed that this parasite can complete its life cycle in culture medium overcoming the problem of using the host cells, as host cell overgrowth and aging resulted in the termination of the Cryptosporidium life cycle prior to its completion. Improved methods for visualizing life cycle stages in cell-free culture have also been developed. This review will discuss factors that can influence the success of Cryptosporidium culture in vitro and propose new ideas for the future optimization of the cell-free culture system.  相似文献   

14.
Amphibians, reptiles, birds and mammals serve as hosts for 19 species of Cryptosporidium. All 19 species have been confirmed by morphological, biological, and molecular data. Fish serve as hosts for three additional species, all of which lack supporting molecular data. In addition to the named species, gene sequence data from more than 40 isolates from various vertebrate hosts are reported in the scientific literature or are listed in GenBank. These isolates lack taxonomic status and are referred to as genotypes based on the host of origin. Undoubtedly, some will eventually be recognized as species. For them to receive taxonomic status sufficient morphological, biological, and molecular data are required and names must comply with the rules of the International Code for Zoological Nomenclature (ICZN). Because the ICZN rules may be interpreted differently by persons proposing names, original names might be improperly assigned, original literature might be overlooked, or new scientific methods might be applicable to determining taxonomic status, the names of species and higher taxa are not immutable. The rapidly evolving taxonomic status of Cryptosporidium sp. reflects these considerations.  相似文献   

15.
A haplosporidian parasite was identified in rock oysters (Saccostrea cuccullata Born, 1778) from the Montebello Islands (latitude -20.4'S longitude 115.53'E) off the northern coast of Western Australia by histopathological examination, PCR amplification and DNA sequencing of a segment of the SSU region of the parasite's rRNA gene. An oligonucleotide probe was constructed from the parasite's SSU rRNA gene in order to confirm its presence by in situ hybridisation. The parasite was disseminated throughout the gonad follicles of the host and to a lesser extent in the gills. The only parasite life stages thus far observed in this study were a uninucleate naked cell assumed to be a precursor to multinucleate plasmodial stages and a binucleate plasmodial stage. Whilst no parasite spores were detected in affected rock oysters, a phylogenetic analysis of the SSU region of the parasite's rRNA gene indicates the parasite belongs to the genus Minchinia. A PCR and in situ hybridisation assay for the Minchinia sp. was used to identify haplosporidians described by Hine and Thorne [Hine, P.M.., Thorne, T., 2002. Haplosporidium sp. (Haplosporidia: Haplosporidiidae) associated with mortalities among rock oysters Saccostrea cuccullata in north Western Australia. Dis. Aquat. Organ. 51, 123-13], in archived rock oyster tissues from the same coastline.  相似文献   

16.
Water and food are major environmental transmission routes for Cryptosporidium, but our ability to identify the spectrum of oocyst contributions in current performance-based methods is limited. Determining risks in water and foodstuffs, and the importance of zoonotic transmission, requires the use of molecular methods, which add value to performance-based morphologic methods. Multi-locus approaches increase the accuracy of identification, as many signatures detected in water originate from species/genotypes that are not infectious to humans. Method optimisation is necessary for detecting small numbers of oocysts in environmental samples consistently, and further work is required to (i) optimise IMS recovery efficiency, (ii) quality assure performance-based methods, (iii) maximise DNA extraction and purification, (iv) adopt standardised and validated loci and primers, (v) determine the species and subspecies range in samples containing mixtures, and standardising storage and transport matrices for validating genetic loci, primer sets and DNA sequences.  相似文献   

17.
Giardia duodenalis is a widespread parasite of mammalian species, including humans. Fecal samples from sporadic human clinical cases of giardiasis in Western Australia were analysed at two loci; 18S rRNA and glutamate dehydrogenase (gdh), and G. duodenalis assemblage B isolates were identified in 75% of isolates. Sequence analyses of 124 isolates at the 18S rRNA locus identified 93 isolates as assemblage B and 31 as assemblage A. Analyses of 109 isolates at the gdh locus identified 44 as B3, 38 as B4 and 27 were A2. Infection with Giardia was highest amongst children <5 years of age, with >56% of infections in this age group. The majority of the isolates were from rural areas (91/124) compared with urban areas (33/124). The assemblage A isolates were completely homogenous genetically at the gdh locus, while assemblage B isolates showed variability at the nucleotide but not at the amino acid level at this locus. Some of the assemblage B3 and B4 subtypes identified in humans were previously identified in marsupials in Australia and in a fox, indicating potential zoonotic transmission.  相似文献   

18.
The last decade has witnessed the emergence of several new viral infectious agents, most notably avian influenza H5N1, SARS and West Nile Virus. The emergence of these agents is heavily associated with zonotic animal hosts, as well as migratory pathways of infected bird vectors. The environmental survival and persistence of nucleic acid associated with these viral agents may be important for both the detection as well as the occurrence of related diseases. Our hypothesis suggests that nucleic acid from such emerging viruses may enter into a virus-parasite surrogate relationship to aid in viral persistence. We suggest that Cryptosporidium and other gastrointestinal parasites, including Giardia, could be a) a reservoir of genetic material and a environment where assortment between that genetic variation can occur and, b) a source of zoonoses through infection of the ‘target’ animal (including humans). One example which illustrates this may be the uptake dsRNA from rotavirus into cryptosporidial oocysts, as this parasite has previously been shown to contain dsRNA viral-like particles. The importance of such a surrogate relationship is discussed and its implications for human and animal health highlighted.  相似文献   

19.
Little is known about the prevalence of Isospora in domestic pigs in Western Australia. A total of 289 pig faecal samples were collected from pre- and post-weaned pigs and sows from 1 indoor and 3 outdoor piggeries located in the south-west region of Western Australia. Faecal samples were screened using a PCR-RFLP assay based on the ITS-1 rDNA locus. An overall prevalence of 10.4% (30/289) was identified. Isospora was detected in 16.3% (20/123) of pre-weaned animals and 6.4% (10/156) of post-weaned animals. PCR-RFLP analysis confirmed the presence of Isospora suis in 86.7% of the positive Isospora isolates. Isospora was significantly associated with diarrhea and the findings of this study suggest that management factors such as cleaning practices, flooring types and stocking densities need to be investigated in the porcine host to find new and improved measures for control.  相似文献   

20.
Glycoproteins expressed by Cryptosporidium parvum are immunogenic in infected individuals but the nature of the epitopes recognised in C. parvum glycoproteins is poorly understood. Since a known immunodominant antigen of Cryptosporidium, the 17 kDa glycoprotein, has previously been shown to bind to lectins that recognise the Tn antigen (GalNAcα1-Ser/Thr-R), a large number of glycopeptides with different Tn valency and presentation were prepared. In addition, glycopeptides were synthesised based on a 40 kDa cryptosporidial antigen, a polymorphic surface glycoprotein with varying numbers of serine residues, to determine the reactivity with sera from C. parvum-infected humans. These glycopeptides and non-glycosylated peptides were used to generate a glycopeptide microarray to allow screening of sera from C. parvum-infected individuals for the presence of IgM and IgG antibodies. IgG but not IgM in sera from C. parvum-infected individuals bound to multivalent Tn antigen epitopes presented on glycopeptides, suggesting that glycoproteins from C. parvum that contain the Tn antigen induce immune responses upon infection. In addition, molecular differences in glycosylated peptides (e.g. substituting Ser for Thr) as well as the site of glycosylation had a pronounced effect on reactivity. Lastly, pooled sera from individuals infected with either Toxoplasma or Plasmodium were also tested against the modified Cryptosporidium peptides and some sera showed specific binding to glycopeptide epitopes. These studies reveal that specific anti-glycopeptide antibodies that recognise the Tn antigen may be useful diagnostically and in defining the roles of parasite glycoconjugates in infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号