首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FE65, a neural adaptor protein, interacts with amyloid beta-protein precursor (APP) and is known to regulate amyloid beta generation from APP. FE65 also associates with nuclear proteins; however, its physiological function in the nucleus remains unclear. A fixed population of cytoplasmic FE65 is tethered to membranes by binding APP. This membrane-tethered FE65 is liberated from membranes by APP phosphorylation, which is facilitated by a stress-activated protein kinase in sorbitol-treated cells. Here we show that liberated FE65, which is distinct from "virgin" FE65 in the cytoplasm, translocates into the nucleus and accumulates in the nuclear matrix forming a patched structure. Targeting of FE65 into the nuclear matrix was suppressed by the APP intracellular domain fragment, which is generated by consecutive cleavages of APP. Thus, nuclear translocation of FE65 is under the regulation of APP. In the nucleus, FE65 induced gammaH2AX, which plays an important role in DNA repair as a cellular response by stress-damaged cells. These observations suggest that APP-regulated FE65 plays an important role in the early stress response of cells and that FE65 deregulated from APP induces apoptosis.  相似文献   

2.
X11-like (X11L) is neuronal adaptor protein that interacts with the amyloid β-protein precursor (APP) and regulates its metabolism. The phosphotyrosine interaction/binding (PI/PTB) domain of X11L interacts with the cytoplasmic region of APP695. We found that X11L–APP interaction is enhanced in osmotically stressed cells and X11L modification is required for the enhancement. Amino acids 221–250 (X11L221–250) are required for the enhanced association with APP in osmotically stressed cells; this motif is 118 amino acids closer to the amino-terminal end of the protein than the PI/PTB domain (amino acids 368–555). We identified two phosphorylatable seryl residues, Ser236 and Ser238, in X11L221–250 and alanyl substitution of either seryl residue diminished the enhanced association with APP. In brain Ser238 was found to be phosphorylated and phosphorylation of X11L was required for the interaction of X11L and APP. Both seryl residues in X11L221–250 are conserved in neuronal X11, but not in X11L2, a non-neuronal X11 family member that did not exhibit enhanced APP association in osmotically stressed cells. These findings indicate that the region of X11L that regulates association with APP is located outside of, and amino-terminal to, the PI/PTB domain. Modification of this regulatory region may alter the conformation of the PI/PTB domain to modulate APP binding.  相似文献   

3.
4.
The phosphotyrosine interaction (PI) domains (also known as the PTB, or phosphotyrosine binding, domains) of Shc and IRS-1 are recently described domains that bind peptides phosphorylated on tyrosine residues. The PI/PTB domains differ from Src homology 2 (SH2) domains in that their binding specificity is determined by residues that lie amino terminal and not carboxy terminal to the phosphotyrosine. Recently, it has been appreciated that other cytoplasmic proteins also contain PI domains. We now show that the PI domain of X11 and one of the PI domains of FE65, two neuronal proteins, bind to the cytoplasmic domain of the amyloid precursor protein ((beta)APP). (beta)APP is an integral transmembrane glycoprotein whose cellular function is unknown. One of the processing pathways of (beta)APP leads to the secretion of A(beta), the major constituent of the amyloid deposited in the brain parenchyma and vessel walls of Alzheimer's disease patients. We have found that the X11 PI domain binds a YENPTY motif in the intracellular domain of (beta)APP that is strikingly similar to the NPXY motifs that bind the Shc and IRS-1 PI/PTB domains. However, unlike the case for binding of the Shc PI/PTB domain, tyrosine phosphorylation of the YENPTY motif is not required for the binding of (beta)APP to X11 or FE65. The binding site of the FE65 PI domain appears to be different from that of X11, as mutations within the YENPTY motif differentially affect the binding of X11 and FE65. Using site-directed mutagenesis, we have identified a crucial residue within the PI domain involved in X11 and FE65 binding to (beta)APP. The binding of X11 or FE65 PI domains to residues of the YENPTY motif of (beta)APP identifies PI domains as general protein interaction domains and may have important implications for the processing of (beta)APP.  相似文献   

5.
The neuronal protein FE65 functions in brain development and amyloid precursor protein (APP) signaling through its interaction with the mammalian enabled (Mena) protein and APP, respectively. The recognition of short polyproline sequences in Mena by the FE65 WW domain has a central role in axon guidance and neuronal positioning in the developing brain. We have determined the crystal structures of the human FE65 WW domain (residues 253-289) in the apo form and bound to the peptides PPPPPPLPP and PPPPPPPPPL, which correspond to human Mena residues 313-321 and 347-356, respectively. The FE65 WW domain contains two parallel ligand-binding grooves, XP (formed by residues Y269 and W280) and XP2 (formed by Y269 and W271). Both Mena peptides adopt a polyproline helical II conformation and bind to the WW domain in a forward (N-C) orientation through selection of the PPPPP motif by the XP and XP2 grooves. This mode of ligand recognition is strikingly similar to polyproline interaction with SH3 domains. Importantly, comparison of the FE65 WW structures in the apo and liganded forms shows that the XP2 groove is formed by an induced-fit mechanism that involves movements of the W271 and Y269 side-chains upon ligand binding. These structures elucidate the molecular determinants underlying polyproline ligand selection by the FE65 WW domain and provide a framework for the design of small molecules that would interfere with FE65 WW-ligand interaction and modulate neuronal development and APP signaling.  相似文献   

6.
TR2(L) is a 56-amino-acid polypeptide that has been shown to block TNF cytotoxicity. FE65-like (FE65L) proteins possess this conserved TR2(L) sequence at their C-termini, whereas variations in the sequences are found in the FE65 proteins. To further analyze the antiapoptotic function of TR2(L), here we utilized an isolated murine partial FE65L cDNA that encodes an N-terminal phosphotyrosine-binding domain (PTB) and the conserved C-terminal TR2(L) sequence. When L929 cells were stably transfected with the FE65L cDNA or its 3' end TR2(L) DNA sequence, these cells became resistant to TNF killing. Replacement of the N-terminal PTB domain with GFP failed to abolish the FE65L-mediated TNF resistance. Ablation of the C-terminal TR2(L) sequence through frame-shift mutation resulted in a complete loss of the FE65L function against TNF. Various protein kinase inhibitors, including lavendustin A, tyrphostin, H7, and staurosporine, which may affect the PTB domain function, could not abolish the FE65L-mediated TNF resistance. A prolonged exposure of L929 cells to these inhibitors for 24 h resulted in cell death, whereas FE65L significantly blocked the cell death. Polyclonal antibodies were generated against a synthetic peptide and shown to interact with a 38-kDa FE65L in L929 cells. Hyaluronidase downregulates the expression of FE65L gene and protein in L929 cells, and this correlates with its enhancement of TNF killing of these cells. Together, our data indicate that the TR2(L) amino acid sequence is an apoptosis-inhibitory domain commonly present in the FE65 and FE65-like family proteins.  相似文献   

7.
The proposed anticancer drug LY294002, inhibits phosphoinositide-3 kinase (PI3K) that initiates a signalling pathway often activated in colorectal cancer (CRC). The effects of LY294002 (10 μM, 48 h) on the cytosolic, mitochondrial and nuclear proteomes of human HT-29 CRC cells have been determined using iTRAQ (isobaric tag for relative and absolute quantitation) and tandem mass spectrometry (MS/MS). Analysis of cells treated with LY294002 identified 26 differentially abundant proteins that indicate several mechanisms of action. The majority of protein changes were directly or indirectly associated with Myc and TNF-α, previously implicated in CRC progression. LY294002 decreased the levels of 6 aminoacyl-tRNA synthetases (average 0.39-fold) required for protein translation, 5 glycolytic enzymes (average 0.37-fold) required for ATP synthesis, and 3 chaperones required for protein folding. There was a 3.2-fold increase in lysozyme C involved in protein-glycoside hydrolysis. LY294002 increased cytosolic p53 with a concomitant decrease in nuclear p53, suggesting transfer of p53 to the cytosol where apoptosis might be initiated via the intrinsic mitochondrial pathway. Protein changes described here suggest that the anti-angiogenic effects of LY294002 may be related to p53; the mutational status of p53 in CRC may be an important determinant of the efficacy of PI3K inhibitors for treatment.  相似文献   

8.
Adaptor protein FE65 (APBB1) specifically binds to the intracellular tail of the type I transmembrane protein, beta-amyloid precursor protein (APP). The formation of this complex may be important for modulation of the processing and function of APP. APP is proteolytically cleaved at multiple sites. The cleavages and their regulation are of central importance in the pathogenesis of dementias of the Alzheimer type. In cell cultures and perhaps in vivo, secretion of the alpha-cleaved APP ectodomain (sAPPalpha) is the major pathway in the most cells. Regulation of the process may require extracellular/intracellular cues. Neither extracellular ligands nor intracellular mediators have been identified, however. Here, we show novel evidence that the major isoform of FE65 (97-kDa FE65, p97FE65) can be converted to a 65-kDa N-terminally truncated C-terminal fragment (p65FE65) via endoproteolysis. The cleavage region locates immediately after an acidic residue cluster but before the three major protein-protein binding domains. The cleavage activity is particularly high in human and non-human primate cells and low in rodent cells; the activity appears to be triggered/enhanced by high cell density, presumably via cell-cell/cell-substrate contact cues. As a result, p65FE65 exhibits extraordinarily high affinity for APP (up to 40-fold higher than p97FE65) and potent suppression (up to 90%) of secretion of sAPPalpha. Strong p65FE65-APP binding is required for the suppression. The results suggest that p65FE65 may be an intracellular mediator in a signaling cascade regulating alpha-secretion of APP, particularly in primates.  相似文献   

9.
10.
11.
12.
The work of Reddy et al. (S. A. Reddy, J. A. Huang, and W. S. Liao, J. Biol. Chem. 272:29167-29173, 1997) reveals that phosphatidylinositol 3-kinase (PI3K) plays a role in transducing a signal from the occupied interleukin-1 (IL-1) receptor to nuclear factor kappaB (NF-kappaB), but the underlying mechanism remains to be determined. We have found that IL-1 stimulates interaction of the IL-1 receptor accessory protein with the p85 regulatory subunit of PI3K, leading to the activation of the p110 catalytic subunit. Specific PI3K inhibitors strongly inhibit both PI3K activation and NF-kappaB-dependent gene expression but have no effect on the IL-1-stimulated degradation of IkappaBalpha, the nuclear translocation of NF-kappaB, or the ability of NF-kappaB to bind to DNA. In contrast, PI3K inhibitors block the IL-1-stimulated phosphorylation of NF-kappaB itself, especially the p65/RelA subunit. Furthermore, by using a fusion protein containing the p65/RelA transactivation domain, we found that overexpression of the p110 catalytic subunit of PI3K induces p65/RelA-mediated transactivation and that the specific PI3K inhibitor LY294,002 represses this process. Additionally, the expression of a constitutively activated form of either p110 or the PI3K-activated protein kinase Akt also induces p65/RelA-mediated transactivation. Therefore, IL-1 stimulates the PI3K-dependent phosphorylation and transactivation of NF-kappaB, a process quite distinct from the liberation of NF-kappaB from its cytoplasmic inhibitor IkappaB.  相似文献   

13.
14.
Osmotic stress causes actin cytoskeleton disassembly, a cell cycle arrest, and activation of the high osmolarity growth mitogen-activated protein kinase pathway. A previous study showed that Ssk2p, a mitogen-activated protein kinase kinase kinase of the high osmolarity growth pathway, promotes actin cytoskeleton recovery to the neck of late cell cycle, osmotically stressed yeast cells. Data presented herein examined the role of Ssk2p in actin recovery early in the cell cycle. We found that actin recovery at all stages of the cell cycle is not controlled by Ssk1p, the known activator of Ssk2p, but required a polarized distribution of Ssk2p as well as its actin-interacting and kinase activity. Stress-induced localization of Ssk2p to the neck required the septin Shs1p, whereas localization to the bud cortex depended on the polarity scaffold protein Spa2p. spa2delta cells, like ssk2delta cells, were defective for actin recovery from osmotic stress. These spa2delta defects could be suppressed by overexpression of catalytically active Ssk2p. Furthermore, Spa2p could be precipitated by GST-Ssk2p from extracts of osmotically stressed cells. The Ssk2p mediated actin recovery pathway seems to be conserved; MTK1, a human mitogen-activated protein kinase kinase kinase of the p38 stress response pathway and Ssk2p homolog, was also able to localize at polarized growth sites, form a complex with actin and Spa2p, and complement actin recovery defects in osmotically stressed ssk2delta and spa2delta yeast cells. We hypothesize that osmotic stress-induced actin disassembly leads to the formation of an Ssk2p-actin complex and the polarized localization of Ssk2p. Polarized Ssk2p associates with the scaffold protein Spa2p in the bud and Shs1p in the neck, allowing Ssk2p to regulate substrates involved in polarized actin assembly.  相似文献   

15.
The biological mechanisms for maintaining the basal level of p53 in normal cells require nuclear exclusion and cytoplasmic degradation. Here, we showed that Jab1 facilitates p53 nuclear exclusion and its subsequent degradation in coordination with Hdm2. p53 was excluded from the nucleus in the presence of Jab1; this exclusion was prevented by leptomycin B treatment. Nuclear export of p53 was accompanied by a decrease in the levels of p53, as well as of its target proteins, which include p21 and Bax. Domain analyses of Jab1 showed that the N-terminal domain, 1-110, was capable of inducing cytoplasmic translocation of p53. Furthermore, 110-191 was required to facilitate the degradation of p53. Neither of these mutants incorporated into the CSN complex, indicating that Jab1 could affect the levels of p53 independent of intact CSN complex. Conversely, Jab1 was incapable of translocating and degrading two p53 mutants, W23S and 6KR, neither of which could be modified by Hdm2. Moreover, Jab1 did not affect the cellular localization or protein levels of p53 in p53 and Hdm2 double-null mouse embryo fibroblasts. We further observed that the ablation of endogenous Jab1 by small interfering RNA prevented Hdm2-mediated p53 nuclear exclusion. Under stressed conditions, which could sequester Hdm2 in its inactive state, Jab1 did not affect p53. Our studies implicate that Jab1 is required to remove post-translationally modified p53 and provide a novel target for p53-related cancer therapies.  相似文献   

16.
Hay TJ  Meek DW 《FEBS letters》2000,478(1-2):183-186
The MDM2 oncoprotein is a negative regulatory partner of the p53 tumour suppressor. MDM2 mediates ubiquitination of p53 and targets the protein to the cytoplasm for 26S proteosome-dependent degradation. In this paper, we show that MDM2 is modified in cultured cells by multisite phosphorylation. Deletion analysis of MDM2 indicated that the sites of modification fall into two clusters which map respectively within the N-terminal region encompassing the p53 binding domain and nuclear export sequence, and the central acidic domain that mediates p14(ARF) binding, p53 ubiquitination and cytoplasmic shuttling. The data are consistent with potential regulation of MDM2 function by multisite phosphorylation.  相似文献   

17.
To investigate the effect of mutations in the p53 C-terminal domain on MDM2-mediated degradation, we introduced single and multiple point mutations into a human p53 cDNA at four putative acetylation sites (amino acid residues 372, 373, 381, and 382). Substitution of all four lysine residues by alanines (the A4 mutant) and single lysine-to-alanine substitutions were functional in sequence-specific DNA binding and transactivation; however, the A4 mutant protein was resistant to MDM2-mediated degradation, whereas the single lysine substitutions were not. Although the A4 mutant protein and the single lysine substitutions both bound MDM2 reasonably well, the single lysine substitutions underwent normal MDM2-dependent ubiquitination, whereas the A4 protein was inefficiently ubiquitinated. In addition, the A4 mutant protein was found in the cytoplasm as well as in the nucleus of a subpopulation of cells, unlike wild-type p53, which is mostly nuclear. The partially cytoplasmic distribution of A4 mutant protein was not due to a defect in nuclear import because inhibition of nuclear export by leptomycin B resulted in nuclear accumulation of the protein. Taken together, the data suggest that mutations in the putative acetylation sites of the p53 C-terminal domain interfere with ubiquitination, thereby regulating p53 degradation.  相似文献   

18.
To determine functional subcellular loci of p53, a cellular protein associated with cellular transformation, we analyzed the nucleoplasmic, chromatin, and nuclear matrix fractions from normal mouse 3T3 cells, from methylcholanthren-transformed mouse (MethA) cells, and from various simian virus 40 (SV40)-transformed cells for the presence of p53. In 3T3 and MethA cells, p53 was present in all nuclear subfractions, suggesting an association of p53 with different structural components of the nucleus. In 3T3 cells, p53 was rapidly turned over, whereas in MethA cells, p53 was metabolically stable. In SV40-transformed cells, p53 complexed to large tumor antigen (large T) was found in the nucleoplasmic and nuclear matrix fractions, as described previously (M. Staufenbiel and W. Deppert, Cell 33:173-181, 1983). In addition, however, metabolically stable p53 not complexed to large T (free p53) was also found in the chromatin and nuclear matrix fractions of these cells. This free p53 did not arise by dissociation of large T-p53 complexes, suggesting that stabilization of p53 in SV40-transformed cells can also occur by means other than formation of a complex with large T.  相似文献   

19.
MdmX protects p53 from Mdm2-mediated degradation   总被引:10,自引:0,他引:10       下载免费PDF全文
The p53 tumor suppressor protein is stabilized in response to cellular stress, resulting in activation of genes responsible for either cell cycle arrest or apoptosis. The cellular pathway for releasing normal cells from p53-dependent cell cycle arrest involves the Mdm2 protein. Recently, a p53-binding protein with homology to Mdm2 was identified and called MdmX. Like Mdm2, MdmX is able to bind p53 and inhibit p53 transactivation; however, the ability of MdmX to degrade p53 has yet to be examined. We report here that MdmX is capable of associating with p53 yet is unable to facilitate nuclear export or induce p53 degradation. In addition, expression of MdmX can reverse Mdm2-targeted degradation of p53 while maintaining suppression of p53 transactivation. Using a series of MdmX deletions, we have determined that there are two distinct domains of the MdmX protein that can stabilize p53 in the presence of Mdm2. One domain requires MdmX interaction with p53 and results in the retention of both proteins within the nucleus and repression of p53 transactivation. The second domain involves the MdmX ring finger and results in stabilization of p53 and an increase in p53 transactivation. The potential basis for stabilization and increased p53 transactivation by the MdmX ring finger domain is discussed. Based on these observations, we propose that the MdmX protein may function to maintain a nuclear pool of p53 protein in undamaged cells.  相似文献   

20.
It is known that p53 alterations are commonly found in tumour cells. Another marker of tumorigenesis is FAK (focal adhesion kinase), a non-receptor kinase that is overexpressed in many types of tumours. Previously we determined that the N-terminal domain of FAK physically interacted with the N-terminal domain of p53. In the present study, using phage display, sitedirected mutagenesis, pulldown and immunoprecipitation assays we localized the site of FAK binding to a 7-amino-acid region(amino acids 65-71) in the N-terminal proline-rich domain of human p53. Mutation of the binding site in p53 reversed the suppressive effect of FAK on p53-mediated transactivation ofp21, BAX (Bcl-2-associated X protein) and Mdm2 (murine double minute 2) promoters. In addition, to functionally test this p53 site, we conjugated p53 peptides [wild-type (containing the wild-type binding site) and mutant (with a mutated 7-aminoacid binding site)] to a TAT peptide sequence to penetrate the cells, and demonstrated that the wild-type p53 peptide disrupted binding of FAK and p53 proteins and significantly inhibited cell viability of HCT116 p53+/+ cells compared with the control mutant peptide and HCT116 p53-/- cells. Furthermore, the TAT-p53 peptide decreased the viability of MCF-7 cells, whereas the mutant peptide did not cause this effect. Normal fibroblast p53+/+ and p53-/- MEF (murine embryonic fibroblast) cells and breast MCF10A cells were not sensitive to p53 peptide. Thus, for the first time, we have identified the binding site of the p53 andFAK interaction and have demonstrated that mutating this site and targeting the site with peptides affects p53 functioning and viability in the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号