首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Granule cells (GCs) are the major glutamatergic neurons in the cerebellum, and GC axon formation is an initial step in establishing functional cerebellar circuits. In the zebrafish cerebellum, GCs can be classified into rostromedial and caudolateral groups, according to the locations of their somata in the corresponding cerebellar lobes. The axons of the GCs in the caudolateral lobes terminate on crest cells in the dorsal hindbrain, as well as forming en passant synapses with Purkinje cells in the cerebellum. In the zebrafish mutant shiomaneki, the caudolateral GCs extend aberrant axons. Positional cloning revealed that the shiomaneki (sio) gene locus encodes Col4a6, a subunit of type IV collagen, which, in a complex with Col4a5, is a basement membrane (BM) component. Both col4a5 and col4a6 mutants displayed similar abnormalities in the axogenesis of GCs and retinal ganglion cells (RGCs). Although type IV collagen is reported to control axon targeting by regulating the concentration gradient of an axonal guidance molecule Slit, Slit overexpression did not affect the GC axons. The structure of the BM surrounding the tectum and dorsal hindbrain was disorganized in the col4a5 and col4a6 mutants. Moreover, the abnormal axogenesis of the caudolateral GCs and the RGCs was coupled with aberrant BM structures in the type IV collagen mutants. The regrowth of GC axons after experimental ablation revealed that the original and newly formed axons displayed similar branching and extension abnormalities in the col4a6 mutants. These results collectively suggest that type IV collagen controls GC axon formation by regulating the integrity of the BM, which provides axons with the correct path to their targets.  相似文献   

2.
MicroRNA (miRNA), a small non-coding RNA that functions as a mediator in gene silencing, plays important roles in gene regulation in various vital functions and activities. Here we show that the miR-29 members are upregulated in klotho-deficient [klotho(−/−)] mice, a senescence-model animal, and also in normal elderly ICR mice relative to wild-type littermates and young ICR mice. In addition, levels of type IV collagen, a major component of basement membranes and a putative target of miR-29, were lower in klotho(−/−) and elderly ICR mice than in wild-type littermates and young ICR mice. RNA degradation mediated by miR-29 may participate in the suppression of type IV collagen, both in vivo and in vitro. Taken together, our current findings suggest that the miR-29 upregulated in aging may be involved in the downregulation of type IV collagen, leading to a possible weakening of the basal membrane in senescent tissues, and miR-29 may be a useful molecular marker of senescence.  相似文献   

3.
4.
5.

Background

Systemic sclerosis (SSc) is an autoimmune connective tissue disease characterised by skin and internal organs fibrosis due to accumulation of extra cellular matrix (ECM) proteins. Tissue inhibitor of metalloproteinases 1 (TIMP-1) plays a key role in ECM deposition.

Aim

To investigate the role of miR-29a in regulation of TAB1-mediated TIMP-1 production in dermal fibroblasts in systemic sclerosis.

Methods

Healthy control (HC) and SSc fibroblasts were cultured from skin biopsies. The expression of TIMP-1, MMP-1 and TGF-β activated kinase 1 binding protein 1 (TAB1) was measured following miR-29a transfection using ELISA, qRT-PCR, and Western Blotting. The functional effect of miR-29a on dermal fibroblasts was assessed in collagen gel assay. In addition, HeLa cells were transfected with 3′UTR of TAB1 plasmid cloned downstream of firefly luciferase gene to assess TAB1 activity. HC fibroblasts and HeLa cells were also transfected with Target protectors in order to block the endogenous miR-29a activity.

Results

We found that TAB1 is a novel target gene of miR-29a, also regulating downstream TIMP-1 production. TAB1 is involved in TGF-β signal transduction, a key cytokine triggering TIMP-1 production. To confirm that TAB1 is a bona fide target gene of miR-29a, we used a TAB1 3′UTR luciferase assay and Target protector system. We showed that miR-29a not only reduced TIMP-1 secretion via TAB1 repression, but also increased functional MMP-1 production resulting in collagen degradation. Blocking TAB1 activity by pharmacological inhibition or TAB1 knockdown resulted in TIMP-1 reduction, confirming TAB1-dependent TIMP-1 regulation. Enhanced expression of miR-29a was able to reverse the profibrotic phenotype of SSc fibroblasts via downregulation of collagen and TIMP-1.

Conclusions

miR-29a repressed TAB1-mediated TIMP-1 production in dermal fibroblasts, demonstrating that miR-29a may be a therapeutic target in SSc.  相似文献   

6.
Sodium/glucose cotransporter 2 (SGLT2) inhibitors are oral hypoglycemic agents used to treat patients with diabetes mellitus. SGLT2 inhibitors block reabsorption of filtered glucose by inhibiting SGLT2, the primary glucose transporter in the proximal tubular cell (PTC), leading to glycosuria and lowering of serum glucose. We examined the renoprotective effects of the SGLT2 inhibitor empagliflozin to determine whether blocking glucose entry into the kidney PTCs reduced the inflammatory and fibrotic responses of the cell to high glucose. We used an in vitro model of human PTCs. HK2 cells (human kidney PTC line) were exposed to control 5 mM, high glucose (HG) 30 mM or the profibrotic cytokine transforming growth factor beta (TGFβ1; 0.5 ng/ml) in the presence and absence of empagliflozin for up to 72 h. SGLT1 and 2 expression and various inflammatory/fibrotic markers were assessed. A chromatin immunoprecipitation assay was used to determine the binding of phosphorylated smad3 to the promoter region of the SGLT2 gene. Our data showed that TGFβ1 but not HG increased SGLT2 expression and this occurred via phosphorylated smad3. HG induced expression of Toll-like receptor-4, increased nuclear deoxyribonucleic acid binding for nuclear factor kappa B (NF-κB) and activator protein 1, induced collagen IV expression as well as interleukin-6 secretion all of which were attenuated with empagliflozin. Empagliflozin did not reduce high mobility group box protein 1 induced NF-κB suggesting that its effect is specifically related to a reduction in glycotoxicity. SGLT1 and GLUT2 expression was not significantly altered with HG or empagliflozin. In conclusion, empagliflozin reduces HG induced inflammatory and fibrotic markers by blocking glucose transport and did not induce a compensatory increase in SGLT1/GLUT2 expression. Although HG itself does not regulate SGLT2 expression in our model, TGFβ increases SGLT2 expression through phosphorylated smad3.  相似文献   

7.

Objective

The purpose of this study was to assess the effect of collagen composition on engraftment of progenitor cells within infarcted myocardium.

Background

We previously reported that intramyocardial penetration of stem/progenitor cells in epicardial patches was enhanced when collagen was reduced in hearts overexpressing adenylyl cyclase-6 (AC6). In this study we hypothesized an alternative strategy wherein overexpression of microRNA-29b (miR-29b), inhibiting mRNAs that encode cardiac fibroblast proteins involved in fibrosis, would similarly facilitate progenitor cell migration into infarcted rat myocardium.

Methods

In vitro: A tri-cell patch (Tri-P) consisting of cardiac sodium-calcium exchanger-1 (NCX1) positive iPSC (iPSCNCX1+), endothelial cells (EC), and mouse embryonic fibroblasts (MEF) was created, co-cultured, and seeded on isolated peritoneum. The expression of fibrosis-related genes was analyzed in cardiac fibroblasts (CFb) by qPCR and Western blot. In vivo: Nude rat hearts were administered mimic miRNA-29b (miR-29b), miRNA-29b inhibitor (Anti-29b), or negative mimic (Ctrl) before creation of an ischemically induced regional myocardial infarction (MI). The Tri-P was placed over the infarcted region 7 days later. Angiomyogenesis was analyzed by micro-CT imaging and immunofluorescent staining. Echocardiography was performed weekly.

Results

The number of green fluorescent protein positive (GFP+) cells, capillary density, and heart function were significantly increased in hearts overexpressing miR-29b as compared with Ctrl and Anti-29b groups. Conversely, down-regulation of miR-29b with anti-29b in vitro and in vivo induced interstitial fibrosis and cardiac remodeling.

Conclusion

Overexpression of miR-29b significantly reduced scar formation after MI and facilitated iPSCNCX1+ penetration from the cell patch into the infarcted area, resulting in restoration of heart function after MI.  相似文献   

8.
9.

Background

In chronic liver disease, hepatic stellate cells (HSC) transdifferentiate into myofibroblasts, promoting extracellular matrix (ECM) synthesis and deposition. Stimulation of HSC by transforming growth factor-β (TGF-β) is a crucial event in liver fibrogenesis due to its impact on myofibroblastic transition and ECM induction. In contrast, hepatocyte growth factor (HGF), exerts antifibrotic activities. Recently, miR-29 has been reported to be involved in ECM synthesis. We therefore studied the influence of HGF and TGF-β on the miR-29 collagen axis in HSC.

Methodology

HSC, isolated from rats, were characterized for HGF and Met receptor expression by Real-Time PCR and Western blotting during culture induced myofibroblastic transition. Then, the levels of TGF-β, HGF, collagen-I and -IV mRNA, in addition to miR-29a and miR-29b were determined after HGF and TGF-β stimulation of HSC or after experimental fibrosis induced by bile-duct obstruction in rats. The interaction of miR-29 with 3′-untranslated mRNA regions (UTR) was analyzed by reporter assays. The repressive effect of miR-29 on collagen synthesis was studied in HSC treated with miR-29-mimicks by Real-Time PCR and immunoblotting.

Principal Findings

The 3′-UTR of the collagen-1 and −4 subtypes were identified to bind miR-29. Hence, miR-29a/b overexpression in HSC resulted in a marked reduction of collagen-I and -IV synthesis. Conversely, a decrease in miR-29 levels is observed during collagen accumulation upon experimental fibrosis, in vivo, and after TGF-β stimulation of HSC, in vitro. Finally, we show that during myofibroblastic transition and TGF-β exposure the HGF-receptor, Met, is upregulated in HSC. Thus, whereas TGF-β stimulation leads to a reduction in miR-29 expression and de-repression of collagen synthesis, stimulation with HGF was definitely associated with highly elevated miR-29 levels and markedly repressed collagen-I and -IV synthesis.

Conclusions

Upregulation of miRNA-29 by HGF and downregulation by TGF-β take part in the anti- or profibrogenic response of HSC, respectively.  相似文献   

10.

Background

Fibrillar collagens are well known for their links to human diseases, with which all have been associated except for the two most recently identified fibrillar collagens, type XXIV collagen and type XXVII collagen. To assess functions and potential disease phenotypes of type XXVII collagen, we examined its roles in zebrafish embryonic and post-embryonic development.

Methodology/Principal Findings

We identified two type XXVII collagen genes in zebrafish, col27a1a and col27a1b. Both col27a1a and col27a1b were expressed in notochord and cartilage in the embryo and early larva. To determine sites of type XXVII collagen function, col27a1a and col27a1b were knocked down using morpholino antisense oligonucleotides. Knockdown of col27a1a singly or in conjunction with col27a1b resulted in curvature of the notochord at early stages and formation of scoliotic curves as well as dysmorphic vertebrae at later stages. These defects were accompanied by abnormal distributions of cells and protein localization in the notochord, as visualized by transmission electron microscopy, as well as delayed vertebral mineralization as detected histologically.

Conclusions/Significance

Together, our findings indicate a key role for type XXVII collagen in notochord morphogenesis and axial skeletogenesis and suggest a possible human disease phenotype.  相似文献   

11.
The basal lamina (BM) contains numerous components with a predominance of type IV collagens. Clinical manifestations associated with mutations of the human COL4A1 gene include perinatal cerebral hemorrhage and porencephaly, hereditary angiopathy, nephropathy, aneurysms and muscle cramps (HANAC), ocular dysgenesis, myopathy, Walker–Warburg syndrome and systemic tissue degeneration. In Drosophila, the phenotype associated with dominant temperature sensitive mutations of col4a1 include severe myopathy resulting from massive degradation of striated muscle fibers, and in the gut, degeneration of circular visceral muscle cells and epithelial cells following detachment from the BM. In order to determine the consequences of altered BM functions due to aberrant COL4A1 protein, we have carried out a series of tests using Drosophila DTS-L3 mutants from our allelic series of col4a1 mutations with confirmed degeneration of various cell types and lowest survival rate among the col4a1 mutant lines at restrictive temperature. Results demonstrated epithelial cell degeneration in the gut, shortened gut, enlarged midgut with multiple diverticulae, intestinal dysfunction and shortened life span. Midgut immunohistochemistry analyses confirmed altered expression and distribution of BM components integrin PSI and PSII alpha subunits, laminin gamma 1, and COL4A1 both in larvae and adults. Global gene expression analysis revealed activation of the effector AMP genes of the primary innate immune system including Metchnikowin, Diptericin, Diptericin B, and edin that preceded morphological changes. Attacin::GFP midgut expression pattern further supported these changes. An increase in ROS production and changes in gut bacterial flora were also noted and may have further enhanced an immune response. The phenotypic features of Drosophila col4a1 mutants confirmed an essential role for type IV collagen in maintaining epithelial integrity, gut morphology and intestinal function and suggest that aberrant structure and function of the COL4A1 protein may also be a significant factor in modulating immunity.  相似文献   

12.
Cell behavior is determined by intrinsic characteristics and complex interactions with microenvironments. This study demonstrated the performance of a murine pancreatic β-cell line, MIN-6, cultured on tissue-culture polystyrene (TCPS), gelatin, type I collagen, and type IV collagen dishes. MIN-6 cells aggregated as clusters on gelatin, type I collagen, and type IV collagen, which was different from the epithelial morphology of cells grown on TCPS. The diameter and survival rate of aggregated cells did not differ significantly regardless of whether the cells were grown on gelatin or type I collagen, while smaller clusters were observed on type IV collagen. Compared with the monolayers on TCPS, the clusters had a higher insulin stimulation index. The mRNA expression levels of Ins1, Pdx-1, NeuroD1 and connexin 36 were upregulated in clusters relative to monolayers. Conversely, E-cadherin and MafA were downregulated when cells were grown on type IV collagen. Monolayers or cell aggregates grown on type IV collagen were subsequently transplanted into diabetic C57BL/6 mice. Animals that received both monolayers and clusters had decreased blood glucose levels and regained body weight. However, the area under curve for the intraperitoneal glucose tolerance test showed that clusters exhibited superior in vivo performance. This study reveals that a type IV collagen substrate promotes β-cell clustering, regulates gene expression and enhances in vivo performance.  相似文献   

13.
Although macrophage migration inhibitory factor (MIF) is known to have antioxidant property, the role of MIF in cardiac fibrosis has not been well understood. We found that MIF was markedly increased in angiotension II (Ang-II)-infused mouse myocardium. Myocardial function was impaired and cardiac fibrosis was aggravated in Mif-knockout (Mif-KO) mice. Functionally, overexpression of MIF and MIF protein could inhibit the expression of fibrosis-associated collagen (Col) 1a1, COL3A1 and α-SMA, and Smad3 activation in mouse cardiac fibroblasts (CFs). Consistently, MIF deficiency could exacerbate the expression of COL1A1, COL3A1 and α-SMA, and Smad3 activation in Ang-II-treated CFs. Interestingly, microRNA-29b-3p (miR-29b-3p) and microRNA-29c-3p (miR-29c-3p) were down-regulated in the myocardium of Ang-II-infused Mif-KO mice but upregulated in CFs with MIF overexpression or by treatment with MIF protein. MiR-29b-3p and miR-29c-3p could suppress the expression of COL1A1, COL3A1 and α-SMA in CFs through targeting the pro-fibrosis genes of transforming growth factor beta-2 (Tgfb2) and matrix metallopeptidase 2 (Mmp2). We further demonstrated that Mif inhibited reactive oxygen species (ROS) generation and Smad3 activation, and rescued the decrease of miR-29b-3p and miR-29c-3p in Ang-II-treated CFs. Smad3 inhibitors, SIS3 and Naringenin, and Smad3 siRNA could reverse the decrease of miR-29b-3p and miR-29c-3p in Ang-II-treated CFs. Taken together, our data demonstrated that the Smad3-miR-29b/miR-29c axis mediates the inhibitory effect of macrophage migration inhibitory factor on cardiac fibrosis.  相似文献   

14.
Increased expression of transforming growth factor-β1 (TGF-β1) in glomerular mesangial cells (MC) augments extracellular matrix accumulation and hypertrophy during the progression of diabetic nephropathy (DN), a debilitating renal complication of diabetes. MicroRNAs (miRNAs) play key roles in the pathogenesis of DN by modulating the actions of TGF-β1 to enhance the expression of profibrotic genes like collagen. In this study, we found a significant decrease in the expression of miR-130b in mouse MC treated with TGF-β1. In parallel, there was a down-regulation in miR-130b host gene 2610318N02RIK (RIK), suggesting host gene-dependent expression of this miRNA. TGF-β receptor 1 (TGF-βR1) was identified as a target of miR-130b. Interestingly, the RIK promoter contains three NF-Y binding sites and was regulated by NF-YC. Furthermore, NF-YC expression was inhibited by TGF-β1, suggesting that a signaling cascade, involving TGF-β1-induced decreases in NF-YC, RIK, and miR-130b, may up-regulate TGF-βR1 to augment expression of TGF-β1 target fibrotic genes. miR-130b was down-regulated, whereas TGF-βR1, as well as the profibrotic genes collagen type IV α 1 (Col4a1), Col12a1, CTGF, and PAI-1 were up-regulated not only in mouse MC treated with TGF-β1 but also in the glomeruli of streptozotocin-injected diabetic mice, supporting in vivo relevance. Together, these results demonstrate a novel miRNA- and host gene-mediated amplifying cascade initiated by TGF-β1 that results in the up-regulation of profibrotic factors, such as TGF-βR1 and collagens associated with the progression of DN.  相似文献   

15.
Altered expression of miR-29b is implicated in the pathogenesis and progression of liver fibrosis. We and others previously demonstrated that miR-29b down-regulates the expression of several extracellular-matrix (ECM) genes including Col 1A1, Col 3A1 and Elastin via directly targeting their 3′-UTRs. However, whether or not miR-29b plays a role in the post-translational regulation of ECM biosynthesis has not been reported. Heat shock protein 47 (HSP47) and lysyl oxidase (LOX) are known to be essential for ECM maturation. In this study we have demonstrated that expression of HSP47 and LOX was significantly up-regulated in culture-activated primary rat hepatic stellate cells (HSCs), TGF-β stimulated LX-2 cells and liver tissue of CCl4-treated mice, which was accompanied by a decrease of miR-29b level. In addition, over-expression of miR-29b in LX-2 cells resulted in significant inhibition on HSP47 and LOX expression. Mechanistically, miR-29b inhibited the expression of a reporter gene that contains the respective full-length 3′-UTR from HSP47 and LOX gene, and this inhibitory effect was abolished by the deletion of a putative miR-29b targeting sequence from the 3′-UTRs. Transfection of LX-2 cells with miR-29b led to abnormal collagen structure as shown by electron-microscopy, presumably through down-regulation of the expression of molecules involved in ECM maturation including HSP47 and LOX. These results demonstrated that miR-29b is involved in regulating the post-translational processing of ECM and fibril formation.  相似文献   

16.
As a degenerative joint disease, osteoarthritis (OA) constitutes a major cause of disability that seriously affects the quality of life of a large population of people worldwide. However, effective treatment that can successfully reverse OA progression is lacking until now. The present study aimed to determine whether two small non-coding RNAs miR-29a and miR-140, which are significantly down-regulated in OA, can be applied together as potential therapeutic targets for OA treatment. MiRNA synergy score was used to screen the miRNA pairs that potentially synergistically regulate OA. An in vitro model of OA was established by treating murine chondrocytes with IL-1β. Transfection of miR-29a and miR-140 via plasmids was investigated on chondrocyte proliferation and expression of nine genes such as ADAMTS4, ADAMTS5, ACAN, COL2A1, COL10A1, MMP1, MMP3, MMP13 and TIMP metal-lopeptidase inhibitor 1 (TIMP1). Western blotting was used to determine the protein expression level of MMP13 and TIMP1, and ELISA was used to detect the content of type II collagen. Combined use of miR-29a and miR-140 successfully reversed the destructive effect of IL-1β on chondrocyte proliferation, and notably affected the MMP13 and TIMP1 gene expression that regulates extracellular matrix. Although co-transfection of miR-29a and miR-140 did not show a synergistic effect on MMP13 protein expression and type II collagen release, but both of them can significantly suppress the protein abundance of MMP13 and restore the type II collagen release in IL-1β treated chondrocytes. Compared with single miRNA transfection, cotransfection of both miRNAs exceedingly abrogated the suppressed the protein production of TIMP1 caused by IL-1β, thereby suggesting potent synergistic action. These results provided novel insights into the important function of miRNAs’ collaboration in OA pathological development. The reduced MMP13, and enhanced TIMP1 protein production and type II collagen release also implies that miR-29a and miR-140 combination treatment may be a possible treatment for OA.  相似文献   

17.
The role of miR-19a in colorectal cancer (CRC), a devastating disease with high mortality and morbidity, remains controversial. In the present study, we show that the level of miR-19a is significantly higher in clinical CRC tissue samples than in paracancerous tissue samples, and significantly higher in CRC cells lines HT29, SW480, and CaCO2 than in the normal human colon mucosal epithelial cell line NCM460. miR-19a mimics and inhibitors were synthesized and validated. Overexpression of miR-19a mimics significantly promoted, while miR-19a inhibitors inhibited, the proliferation, survival, migration, and invasion of SW480 and CaCO2 CRC cells. Furthermore, mRNA and protein levels of chloride channel accessory 4 (CLCA4) were lower in CRC cells and tissues. Bioinformatics and a luciferase reporter assay confirmed that CLCA4 was a miR-19a target. Further, miR-19a inhibition increased CLCA4 expression. The inhibitory effect of miR-19a on cell growth, survival, migration, and invasion was reversed by knockdown of CLCA4 expression. The data demonstrated that the miR-19a/CLCA4 axis modulates phospho-activation of the PI3K/AKT pathway in CRC cells. In conclusion, our results revealed that miR-19a overexpression decreases CLCA4 levels to promote CRC oncogenesis, suggesting that miR-19a inhibitors have potential applications for future therapeutic of CRC.Key words: Colorectal cancer, miR-19a, CLCA4, proliferation, migration, invasion  相似文献   

18.
We are interested in the collagen gene superfamily and its involvement in hereditary diseases of the human and domestic dog. Presented here is radiation hybrid mapping of the type I and type IV collagen gene subfamilies on the most recent version of the canine map. The col1A1 gene was mapped to chromosome 9, col1A2 was mapped to chromosome 14, col4A1 and col4A2 were mapped to chromosome 22 and col4A3 and col4A4 were mapped to chromosome 25. The col4A5 and col4A6 genes, while linked to one another, are not linked in the present version of the canine map but likely are present on the X chromosome. These data provide an insight into the molecular evolution of these subfamilies and increase the number of mapped genes in discrete regions of the canine genome. J.K. Lowe and R. Guyon contributed equally to this work Sequences determined during the course of this work have been deposited in GenBank. Accession numbers are AF291995 (col1A1) and AF291996 (col1A2)  相似文献   

19.
20.
Abnormal proliferation, apoptosis repression and differentiation blockage of hematopoietic stem/progenitor cells have been characterized to be the main reasons leading to acute myeloid leukemia (AML). Previous studies showed that miR-29a and miR-29b could function as tumor suppressors in leukemogenesis. However, a comprehensive investigation of the function and mechanism of miR-29 family in AML development and their potentiality in AML therapy still need to be elucidated. Herein, we reported that the family members, miR-29a, -29b and -29c, were commonly downregulated in peripheral blood mononuclear cells and bone marrow (BM) CD34+ cells derived from AML patients as compared with the healthy donors. Overexpression of each miR-29 member in THP1 and NB4 cells markedly inhibited cell proliferation and promoted cell apoptosis. AKT2 and CCND2 mRNAs were demonstrated to be targets of the miR-29 members, and the role of miR-29 family was attributed to the decrease of Akt2 and CCND2, two key signaling molecules. Significantly increased Akt2, CCND2 and c-Myc levels in the AML cases were detected, which were correlated with the decreased miR-29 expression in AML blasts. Furthermore, a feed-back loop comprising of c-Myc, miR-29 family and Akt2 were found in myeloid leukemogenesis. Reintroduction of each miR-29 member partially corrected abnormal cell proliferation and apoptosis repression and myeloid differentiation arrest in AML BM blasts. An intravenous injection of miR-29a, -29b and -29c in the AML model mice relieved leukemic symptoms significantly. Taken together, our finding revealed a pivotal role of miR-29 family in AML development and rescue of miR-29 family expression in AML patients could provide a new therapeutic strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号