首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and structure-activity relationship (SAR) of a novel series of aryl piperazine napthyridinone D2 partial agonists is described. Our goal was to optimize the affinities for the D2, 5-HT2A and 5-HT1A receptors, such that the D2/5-HT2A ratio was greater than 5 to ensure maximal occupancy of these receptors when the D2 occupancy reached efficacious levels. This strategy led to identification of PF-00217830 (2) with robust inhibition of sLMA (MED = 0.3 mg/kg) and DOI-induced head twitches in rats (31% and 78% at 0.3 and 1 mg/kg) with no catalepsy observed at the highest dose tested (10 mg/kg).  相似文献   

2.
Sixteen known 5-HT3 receptor blockers, including clozapine, fully or partially reverse the inhibitory effect of 1 M GABA on [35S]TBPS binding, indicating that they are also GABAA antagonists, some of them selective for subsets of GABAA receptors. The 5-HT3 receptor blocker, ondansetron, has been reported to produce some antipsychotic and anxiolytic effects. However, no antipsychotic effects have been reported for a large number of highly potent 5-HT3 receptor blockers. Like clozapine, ondansetron partially reverses the inhibitory effect of GABA on [35S]TBPS binding. Additivity experiments suggest that ten 5-HT3 receptor blockers tested at low concentrations preferentially block subtypes of GABAA receptors that are among those blocked by clozapine. Wiley and Porter (29) reported that MDL-72222, the most potent GABAA antagonist decribed here, partially generalizes (71%) with clozapine in rats trained to discriminate an interoceptive clozapine stimulus, but only at a dose that severly decreases responding. Tropisetron (ICS-205,930) exhibits both GABA-positive and GABA-negative effects. R-(+)-zacopride is 6-fold more potent than S-(–)-zacopride as a GABAA antagonist. We conclude that the observed antipsychotic and, possibly, anxiolytic effects of some 5-HT3 receptor blockers are due to selective antagonism of certain GABAA receptors, and not to blockade of 5-HT3 receptors. We speculate that the anxiolytic and sedative effects of clozapine and several other antipsychotic drugs may be due to selective blockade of 122 GABAA receptors which are preferentially located on certain types of GABAergic interneurons (probably parvalbumin positive). Blockade of these receptors will increase the inhibitory output of these interneurons. So far, no highly potent GABAA antagonists with clozapine-like selectivity have been identified. Such compounds may exhibit improved clozapine-like antipsychotic activity.  相似文献   

3.
Total 5-HT binding sites and 5-HT1A receptor density was measured in brain regions of rats treated with imipramine (5 mg/kg body wt), desipramine (10 mg/kg body wt) and clomipramine (10 mg/kg body wt), for 40 days, using [3H]5-HT and [3H]8-OH-DPAT, respectively. It was observed that chronic exposure to tricyclic antidepressants (TCAs) results in significant downregulation of total [3H]5-HT binding sites in cortex (42–76%) and hippocampus (35–67%). The 5-HT1A receptor density was, however, decreased significantly (32–60%) only in cortex with all the three drugs. Interestingly, in hippocampus imipramine treatment increased the 5-HT1A receptor density (14%). The affinity of [3H]8-OH-DPAT was increased only with imipramine treatment both in cortex and hippocampus. The affinity of [3H]5-HT to 5-HT binding sites in cortex was increased with imipramine treatment and decreased with desipramine and clomipramine treatment. 5-HT sensitive adenylyl cyclase (AC) activity was significantly increased in cortex with imipramine (72%) and clomipramine (17%) treatment, whereas in hippocampus only imipramine treatment significantly increased AC activity (50%). In conclusion, chronic treatment with TCAs results in downregulation of cortical 5-HT1A receptors along with concomitant increase in 5-HT stimulated AC activity suggesting the involvement of cortical 5-HT1A receptors in the mechanism of action of TCAs.  相似文献   

4.
In this study, by homology modelling and molecular dynamics (MD) simulation, models of l-stepholidine (l-SPD) activating the 5-HT1A and D1 receptors were constructed. In 100-ns MD simulations, the D1 and 5-HT1A receptors were activated by the partial agonist l-SPD, conforming with the global toggle switch activation model and the sequential activation model. The residues Y7.53 and Y5.58 swing significantly between different transmembrane (TM) domains after activation. Similarities between D1 and 5-HT1A included (1) the outward motion of TM-5; (2) the ionic lock was independent of the tilt of TM-6 and (3) there was an apparent bending of TM-6, and the ring of l-SPD formed strong π–π interactions with residue W6.48. Differences between the two included the following: (1) in 5-HT1A, l-SPD formed a hydrogen bond with Ala1725.46 of TM-5, and the intracellular end of TM-5 moved outward slowly; that hydrogen bond did not form with the D1 receptor; (2) l-SPD formed stronger interactions with D3.32 and W6.48 in the D1 receptor than in the 5-HT1A receptor and (3) the hydrogen bonding network was somewhat different in SPD-5-HT1A and SPD-D1 receptors. We propose the interaction between l-SPD and D3.32 or/and W6.48 is the original driving force during the whole activation process.  相似文献   

5.
Yan Z 《Molecular neurobiology》2002,26(2-3):203-216
Serotonergic neurotransmission in prefrontal cortex (PFC) plays a key role in regulating emotion and cognition under normal and pathological conditios. Increasing evidence suggests that serotonin receptors are involved in the complex regulation of GABAergic inhibitory transmission in PFC. Activation of postsynaptic 5-HT2 receptors in PFC pyramidal neurons inhibits GABAA-receptor currents via phosphorylation of GABAA receptor γ2 subunits by RACK1-anchored PKC. In contrast, activation of postsynaptic 5-HT4 receptors produces an activity-dependent bi-directional regulation of GABA-evoked currents in PFC pyramidal neurons, which is mediated through phosphorylation of GABAA-receptor β subunits by anchored PKA. On the presynaptic side, GABAergic inhibition is regulated by 5-HT through the activation of 5-HT2, 5-HT1, and 5-HT3 receptors on GABAergic intereneurons. These data provide a molecular and cellular mechanism for serotonin to dynamically regulate synaptic transmission and neuronal excitability in the PFC network, which may underlie the actions of many antidepressant and antipsychotic drugs.  相似文献   

6.
The present work was undertaken to characterize kinetics, including activation, desensitization and deactivation, of responses mediated by GABAA and GABAC receptors on carp retinal bipolar cells, using the whole-cell patch-clamp technique. It was revealed that the GABAC response was generally slower in kinetics than the GABAA response. Activation kinetics of both the receptors could be well fit by monoexponential functions with time constants t, being 44.57 ms (GABAC) and 10.86 ms (GABAA) respectively. Desensitization of the GABAAresponse was characterized by a fast and a slow exponential component with time constants of τfast = 2.16 s and τslow = 19.78 s respectively, whereas desensitization of the GABAC response was fit by a monoexponential function of the time constant τ = 6.98 s. Deactivation at both the receptors was adequately described by biexponential functions with time constants being much higher for the GABAC response (τfast= 674.8 ms; τslow = 2 090 ms) than those for the GABAA response (τfast = 42.07 ms; τslow = 275.1 ms). These differences in kinetics suggest that GABAC and GABAA receptors may be involved in processing signals in different frequency domains.  相似文献   

7.
The aim of this study was to further characterize pharmacological properties of two phenylpiperazine derivatives: 1-{2-[2-(2,6-dimethlphenoxy)ethoxy]ethyl}-4-(2-methoxyphenyl)piperazynine hydrochloride (HBK-14) and 2-[2-(2-chloro-6-methylphenoxy)ethoxy]ethyl-4-(2- methoxyphenyl)piperazynine dihydrochloride (HBK-15) in radioligand binding and functional in vitro assays as well as in vivo models. Antidepressant-like properties were investigated in the forced swim test (FST) in mice and rats. Anxiolytic-like activity was evaluated in the four-plate test in mice and elevated plus maze test (EPM) in rats. Imipramine and escitalopram were used as reference drugs in the FST, and diazepam was used as a standard anxiolytic drug in animal models of anxiety. Our results indicate that HBK-14 and HBK-15 possess high or moderate affinity for serotonergic 5-HT2, adrenergic α1, and dopaminergic D2 receptors as well as being full 5-HT1A and 5-HT7 receptor antagonists. We also present their potent antidepressant-like activity (HBK-14—FST mice: 2.5 and 5 mg/kg; FST rats: 5 mg/kg) and (HBK-15—FST mice: 1.25, 2.5 and 5 mg/kg; FST rats: 1.25 and 2.5 mg/kg). We show that HBK-14 (four-plate test: 2.5 and 5 mg/kg; EPM: 2.5 mg/kg) and HBK-15 (four-plate test: 2.5 and 5 mg/kg; EPM: 5 mg/kg) possess anxiolytic-like properties. Among the two, HBK-15 has stronger antidepressant-like properties, and HBK-14 displays greater anxiolytic-like activity. Lastly, we demonstrate the involvement of serotonergic system, particularly 5-HT1A receptor, in the antidepressant- and anxiolytic-like actions of investigated compounds.  相似文献   

8.
Histamine H1 and serotonin 5-HT2A receptors present in the CNS have been implicated in various neuropsychiatric disorders. 9-Aminomethyl-9,10-dihydroanthracene (AMDA), a conformationally constrained diarylalkyl amine derivative, has affinity for both of these receptors. A structure–affinity relationship (SAFIR) study was carried out studying the effects of N-methylation, varying the linker chain length and constraint of the aromatic rings on the binding affinities of the compounds with the 5-HT2A and H1 receptors. Homology modeling of the 5-HT2A and H1 receptors suggests that AMDA and its analogs, the parent of which is a 5-HT2A antagonist, can bind in a fashion analogous to that of classical H1 antagonists whose ring systems are oriented toward the fifth and sixth transmembrane helices. The modeled orientation of the ligands are consistent with the reported site-directed mutagenesis data for 5-HT2A and H1 receptors and provide a potential explanation for the selectivity of ligands acting at both receptors.  相似文献   

9.
The effect of N-ethoxycarbonyl-2-ethoxy-1, 2-dihydroquinoline (EEDQ) on 5-HT1A receptors was studied in Sprague Dawley rats. A single dose of EEDQ (4 mg/kg body wt., i.p.) significantly inactivated 5-HT1A receptors, as measured by [3H]8-hydroxy-2-[di-n-propylamino]-tetralin ([3H]8-OH-DPAT), in cortex (64%, p < 0.0001) and hippocampus (48%, p < 0.0001). A significant (p < 0.01) increase in the affinity of 5-HT1A receptors for radioligand was observed in both regions. A dose dependent protection of cortical 5-HT1A receptors from EEDQ inactivation with pre-treatment of different doses of 8-OH-DPAT (4–20 mg/kg) was observed, along with recovery of affinity of [3H]8-OH-DPAT for 5-HT1A receptors in both regions. Although, a dose of 4 mg/kg of 8-OH-DPAT failed to attenuate the effect of EEDQ on hippocampal 5-HT1A receptors, a significant protection of these receptors was observed with 10 and 20 mg/kg of 8-OH-DPAT. Displacement studies revealed that EEDQ has more affinity for cortical (Ki = 101.3 ± 11.8 nM) than hippocampal (Ki = 133.5 ± 25.8 nM) 5-HT1A receptors. A time dependent natural recovery of 5-HT1A receptors from inactivation by a single dose of EEDQ (4 mg/kg) was observed more in cortex compared to hippocampus over a period from 1 day to 14 days. The results of this study suggest that 8-OH-DPAT inhibited EEDQ inactivation of cortical and hippocampal 5-HT1A receptors in a concentration dependent manner. The synthesis and turnover of 5-HT1A receptors differ in cortex and hippocampus, as evident by earlier recovery in the cortex.  相似文献   

10.
A hexane extract of leaves of Annona cherimolia produced anxiolytic-like actions when administered to mice and tested in two animal models of anxiety: the mouse avoidance exploratory behavior and the burying behavior tests. In order to discard unspecific drug-actions on general activity, all treatments studied in the anxiety paradigms were also analyzed in the open field test. Results showed that A. cherimolia induced anxiolytic-like actions at the doses of 6.25, 12.5, 25.0 and 50.0 mg/kg. Picrotoxin (0.25 mg/kg), a GABA-gated chloride ion channel blocker, antagonized the anxiolytic-like actions of A. cherimolia, while a sub-effective dose of muscimol (0.5 mg/kg), a selective GABAA receptor agonist, facilitated the effects of a sub-optimal dose of A. cherimolia (3.12 mg/kg). Thus, the involvement of the GABAA receptor complex in the anxiolytic-like actions of A. cherimolia hexane extract is suggested. In addition the extract was also able to enhance the duration of sodium pentobarbital induced sleeping time. Taken together, results indicate that the hexane extract of A. cherimolia has depressant activity on the Central Nervous System and could interact with the GABAA receptor complex. On the other hand, the chromatographic separation of this extract led to the isolation of palmitone, and β-sitosterol as major constituents. In addition a GC-MS study of some fractions revealed the presence of several compounds such β-cariophyllene, β-selinene, α-cubebene, and linalool that have been reported to show effects on behavior that could explain some of the extract effects.  相似文献   

11.
Although multiple roles of dopamine through D1-like (D1 and D5) and D2-like (D2, D3, and D4) receptors are initiated primarily through stimulation or inhibition of adenylyl cyclase via Gs/olf or Gi/o, respectively, there have been many reports indicating diverse signaling mechanisms that involve alternative G protein coupling. In this study, dopamine-induced Gαq activation in rat brain membranes was investigated. Agonist-induced Gαq activation was assessed by increase in guanosine-5′-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding to Gαq determined by [35S]GTPγS binding/immunoprecipitation assay in rat brain membranes. Dopamine-stimulated Gαq functionality was highest in cortex as compared to hippocampus or striatum. In cerebral cortical membranes, this effect was mimicked by benzazepine derivatives with agonist properties at dopamine D1-like receptors, that is, SKF83959, SKF83822, R(+)-SKF81297, R(+)-SKF38393, and SKF82958, but not by the compounds with dopamine D2-like receptor agonist properties except for aripiprazole. Against expectation, stimulatory effects were also induced by SKF83566, R(+)-SCH23390, and pergolide. The pharmacological profiling by using a series of antagonists indicated that dopamine-induced response was mediated through dopamine D1-like receptor, which was distinct from the receptor involved in 5-HT-induced response (5-HT2A receptor). Conversely, the responses induced by SKF83566, R(+)-SCH23390, and pergolide were most likely mediated by 5-HT2A receptor, but not by dopamine D1-like receptor. Caution should be paid when interpreting the experimental data, especially in behavioral pharmacological research, in which SKF83566 or R(+)-SCH23390 is used as a standard selective dopamine D1-like receptor antagonist. Also, possible clinical implications of the agonistic effects of pergolide on 5-HT2A receptor has been mentioned.  相似文献   

12.

Background

Magnolia bark preparations from Magnolia officinalis of Asian medicinal systems are known for their muscle relaxant effect and anticonvulsant activity. These CNS related effects are ascribed to the presence of the biphenyl-type neolignans honokiol and magnolol that exert a potentiating effect on GABAA receptors. 4-O-methylhonokiol isolated from seeds of the North-American M. grandiflora was compared to honokiol for its activity to potentiate GABAA receptors and its GABAA receptor subtype-specificity was established.

Methods

Different recombinant GABAA receptors were functionally expressed in Xenopus oocytes and electrophysiological techniques were used determine to their modulation by 4-O-methylhonokiol.

Results

3 μM 4-O-methylhonokiol is shown here to potentiate responses of the α1β2γ2 GABAA receptor about 20-fold stronger than the same concentration of honokiol. In the present study potentiation by 4-O-methylhonokiol is also detailed for 12 GABAA receptor subtypes to assess GABAA receptor subunits that are responsible for the potentiating effect.

Conclusion

The much higher potentiation of GABAA receptors at identical concentrations of 4-O-methylhonokiol as compared to honokiol parallels previous observations made in other systems of potentiated pharmacological activity of 4-O-methylhonokiol over honokiol.

General significance

The results point to the use of 4-O-methylhonokiol as a lead for GABAA receptor potentiation and corroborate the use of M. grandiflora seeds against convulsions in Mexican folk medicine.  相似文献   

13.
Following agonist action, G-protein-coupled receptors may exhibit differential coupling to G-proteins or second messenger pathways, supporting the notion of agonist-directed trafficking. To explore these mechanisms, we have designed and transfected synthetic siRNA duplexes to knockdown different Gα subunits in Chinese hamster ovary (CHO) cells expressing human (h)5-hydroxytryptamine 1A receptors (CHO-h5-HT1A). siRNAs against Gαi2 and Gαi3 transfected alone or in combination caused a large decrease in the corresponding mRNA level (64-80%) and also at the protein level for Gαi3 (60-70%), whereas a non-specific siRNA showed no effect. In membranes of CHO-h5-HT1A, 5-HT stimulated guanosine-5′-O-(3-[35S]thio)-triphosphate ([35S]GTPγS) binding was differentially affected by transfection of siRNAs against Gαi protein, siRNAs against Gαi2 inducing a more important decrease in the efficacy of 5-HT than transfection of siRNAs against Gαi3. The high potency component was abolished after transfection of siRNAs against Gαi3 and the lower potency component was suppressed after transfection of siRNAs against Gαi2. To directly investigate Gαi3 activation we used an antibody-capture/scintillation proximity assay. (+)8-OH-DPAT yielded bell-shaped curves for Gαi3 activation, a response that was abolished after transfection of siRNAs against Gαi3 protein. Interestingly, (+)8-OH-DPAT yielded a sigmoidal response when only Gαi3 protein was expressed. These data suggest that when efficacious agonists attain a high level of occupation of h5-HT1A receptors, a change occurs that induces coupling to Gαi2 protein and suppresses signalling through Gαi3 subunits.  相似文献   

14.
Using the guide of a competitive assay for the benzodiazepine binding site in the γ-aminobutyric acid type A receptor (GABAA), two active diterpenes were isolated from the aerial parts of Aloysia virgata (Ruíz & Pavón) A.L. Jussieu var. platyphylla (Briquet) Moldenke. These compounds, identified as (16R)-16,17,18-trihydroxyphyllocladan-3-one (1) and (16R)-16,17-dihydroxyphyllocladan-3-one (2) on the basis of spectral data, competitively inhibited the binding of [3H]-FNZ to the benzodiazepine binding site with Ki ± S.E.M. values of 56 ± 19 μM and 111 ± 13 μM, respectively. The behavioral actions of these diterpenes, intraperitoneally (i.p.) administered in mice, were examined in the plus-maze, holeboard, locomotor activity and light/dark tests. Compound 1 exhibited anxiolytic-like effects in mice evidenced by a significant increase of the parameters measured in the holeboard test (the number of head dips at 0.3 mg/kg and 3 mg/kg, the rears at 1 mg/kg and the time spent head-dipping at 3 mg/kg), in the plus-maze assay (the percentage of open arm entries at 1 mg/kg) and in the light/dark test (the time in light and the number of transitions at 1 mg/kg). Compound 2 augmented the number of rearings in the holeboard apparatus (at 0.3 mg/kg and 1 mg/kg) and the locomotor activity (at 1 mg/kg). These results reveal the presence of neuroactive compounds in Aloysia virgata.  相似文献   

15.
We found that prostaglandin (PG) D2, the most abundant PG produced in the central nervous system (CNS), exhibited anxiolytic-like activity at a dose of 10–100 pmol/mouse after intracerebroventricular (i.c.v.) administration in the elevated plus-maze test in mice. A DP1 receptor-selective agonist, BW245C, mimicked the anxiolytic-like activity of PGD2, while a DP2 receptor agonist 13,14-dihydro-15-keto-PGD2 was inactive. The anxiolytic-like activity of PGD2 was blocked by a DP1 antagonist, BWA868C, suggesting that PGD2-induced anxiolytic-like activity was mediated by the DP1 receptor. Adenosine A2A or GABAA receptor antagonists, SCH58261 or bicuculline, respectively, also blocked its anxiolytic-like activity. Taken together, centrally administered PGD2 may induce anxiolytic-like activity via the A2A and GABAA receptors, downstream of the DP1 receptor.  相似文献   

16.
5-Hydroxytryptamine1A (5-HT1A) receptors are expressed in the prefrontal cortical interneurons. Among these interneurons, calcium-binding protein parvalbumin (PV)-positive fast spiking (FS) interneurons play an important role in regulatory function of the prefrontal cortex. In the present study, the response of medial prefrontal cortex (mPFC) FS interneurons to the selective 5-HT1A receptor agonist 8-OH-DPAT and change in expression of 5-HT1A receptor on PV-positive neurons were examined in rats with 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta (SNc) by using extracellular recording and double-labeling immunofluorescence histochemistry. Systemic administration of 8-OH-DPAT (1-243 μg/kg, i.v.) dose-dependently inhibited the mean firing rate of the FS interneurons in sham-operated and the lesioned rats, respectively. The cumulative doses producing inhibition in the lesioned rats (243 μg/kg) was significantly higher than that of sham-operated rats (27 μg/kg). Furthermore, the local application of 8-OH-DPAT (0.01 μg) in the mPFC inhibited the FS interneurons in sham-operated rats, while having no effect on firing rate of the FS interneurons in the lesioned rats. In contrast to sham-operated rats, the lesion of the SNc in rats did not cause the change of PV-positive neurons in the prelimbic prefrontal cortex, a subregion of the mPFC, whereas the lesion of the SNc markedly reduced in percentage of PV-positive neurons expressing 5-HT1A receptors. Our results indicate that degeneration of the nigrostriatal pathway results in the decreased response of FS interneurons in the mPFC to 5-HT1A receptor stimulation, which attributes to down-regulation of 5-HT1A receptor expression in these interneurons.  相似文献   

17.
Aim of the study was evaluation of anxiolytic, antidepressant, anticonvulsant and analgesic activity in a series of a consistent group of compounds. A series of eleven new N-(phenoxyalkyl)- or N-{2-[2-(phenoxy)ethoxy]ethyl}piperazine derivatives has been obtained. Their affinity towards 5-HT1A, 5-HT2A, 5-HT6, 5-HT7, D2 and α1 receptors has been assessed, and then functional assays were performed. The compounds were evaluated in mice, i.p. for their antidepressant-like (forced swim test), locomotor, anxiolytic-like (four-plate test) activities as well as – at higher doses – for anticonvulsant potential (MES) and neurotoxicity (rotarod). Two compounds (3, 6) were also evaluated for their analgesic activity in neuropathic pain models (streptozocin test, oxaliplatin test) and they were found active against allodynia in diabetic neuropathic pain at 30?mg/kg. Among the compounds, anxiolytic-like, anticonvulsant or analgesic activity was observed but antidepressant-like activity was not. One of the two most interesting compounds is 1-{2-[2-(2,4,6-trimethylphenoxy)ethoxy]ethyl}-4-(2-methoxyphenyl)piperazine dihydrochloride (9), exhibiting anxiolytic and anticonvulsant activity in mice, i.p. 30 min after administration (at 2.5?mg/kg and ED50?=?26.33?mg/kg, respectively), which can be justified by the receptor profile: 5-HT1A Ki?=?5?nM (antagonist), 5-HT7 Ki?=?70?nM, α1 Ki?=?15?nM, D2 Ki?=?189?nM (antagonist). Another interesting compound is 1-[3-(2,4,6-trimethylphenoxy)propyl]-4-(4-methoxyphenyl)piperazine dihydrochloride (3), exhibiting anxiolytic, anticonvulsant and antiallodynic activity in mice, i.p., 30?min after administration (at 10?mg/kg, ED50?=?23.50?mg/kg, at 30?mg/kg, respectively), which can be related with 5-HT1A weak antagonism (Ki?=?146?nM), or other possible mechanism of action, not evaluated within presented study. Additionally, for the most active compound in the four-plate test (7), molecular modeling was performed (docking to receptors 5-HT1A, 5-HT2A, 5-HT7, D2 and α1A).  相似文献   

18.
Rubimetide (Met-Arg-Trp), which had been isolated as an antihypertensive peptide from an enzymatic digest of spinach ribulose-bisphosphate carboxylase/oxygenase (Rubisco), showed anxiolytic-like activity prostaglandin (PG) D2-dependent manner in the elevated plus-maze test after administration at a dose of 0.1 mg/kg (ip.) or 1 mg/kg (p.o.) in male mice of ddY strain. In this study, we found that rubimetide has weak affinities for the FPR1 and FPR2, subtypes of formyl peptide receptor (FPR). The anxiolytic-like activity of rubimetide (0.1 mg/kg, ip.) was blocked by WRW4, an antagonist of FPR2, but not by Boc-FLFLF, an antagonist of FPR1, suggesting that the anxiolytic-like activity was mediated by the FPR2. Humanin, an endogenous agonist peptide of the FPR2, exerted an anxiolytic-like activity after intracerebroventricular (icv) administration, which was also blocked by WRW4. MMK1, a synthetic agonist peptide of the FPR2, also exerted anxiolytic-like activity. Thus, FPR2 proved to mediate anxiolytic-like effect as the first example of central effect exerted by FPR agonists. As well as the anxiolytic-like activity of rubimetide, that of MMK1 was blocked by BW A868C, an antagonist of the DP1-receptor. Furthermore, anxiolytic-like activity of rubimetide was blocked by SCH58251 and bicuculline, antagonists for adenosine A2A and GABAA receptors, respectively. From these results, it is concluded that the anxiolytic-like activities of rubimetide and typical agonist peptides of the FPR2 were mediated successively by the PGD2-DP1 receptor, adenosine-A2A receptor, and GABA-GABAA receptor systems downstream of the FPR2.  相似文献   

19.
Subhash  M. N.  Srinivas  B. N.  Vinod  K. Y.  Jagadeesh  S. 《Neurochemical research》1998,23(10):1321-1326
Inactivation of 5-HT1A and [3H]5-HT binding sites by N-Ethoxycarbonyl-2-ethoxy-1, 2-dihydro-quinoline (EEDQ) was studied in regions of rat brain. After exposure to EEDQ (4 mg/kg body wt.) for 7 days, it is observed that the density of 5-HT1 receptor sites was decreased by nearly 20% in both cortex and hippocampus. The decrease, however, in 5-HT1A sites was more significant (70%) in both the regions. The affinity of [3H]5-HT to 5-HT1 sites was decreased significantly in both cortex and hippocampus after exposure to EEDQ, without affecting the Kd of 5-HT1A sites. Displacement studies suggested that EEDQ has high affinity to 5-HT1 sites with a Ki of 42.9 ± 2.4 nM. After exposure neither basal nor 5-HT stimulated adenylyl cyclase activity was changed in cortex. The results of this study suggest that EEDQ decreases the density of 5-HT1 and 5-HT1A receptor sites but does not cause functional downregulation of these sites in rat brain.  相似文献   

20.
A series of new 7-arylpiperazinylalkyl-1,3-dimethyl-purine-2,6-dione derivatives with diversified 8-amino substituent in 8 position was synthesized and their 5-HT1A, 5-HT2A, 5-HT6, 5-HT7, and D2 receptor affinities were determined. The binding study allowed identifying some potent 5-HT1A/5-HT2A/5-HT7/D2 ligands. The most interesting because of their multireceptor profile were 8-piperidine (3035) and 8-dipropylamine (4547) analogs with four and five carbon aliphatic linkers. The selected compounds 24, 31, 34, 39, 41, 43, 45, and 46 in the functional in vitro evaluation for all targeted receptors showed significant partial D2 agonist, partial 5-HT1A agonist, and 5-HT2A antagonist properties. The advantageous in vitro affinity of compound 34 for 5-HT1A and D2 receptors has been explained by means of molecular modeling, taking into consideration its partial agonist activity towards the latter one. In behavioral studies, compounds 32 and 34 revealed antipsychotic-like properties, significantly decreasing d-amphetamine-induced hyperactivity in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号