首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sabine Krawczyk 《FEBS letters》2010,584(8):1463-1020
In Corynebacterium glutamicum, the unphosphorylated 15-kDa OdhI protein inhibits the activity of the 2-oxoglutarate dehydrogenase complex (ODHc) by binding to OdhA, which in corynebacteria and mycobacteria is a large fusion protein with two major domains exhibiting structural features of E1o and E2 proteins. Using copurification and surface plasmon resonance experiments with different OdhI and OdhA length variants it was shown that the entire forkhead-associated (FHA) domain of OdhI and the C-terminal dehydrogenase domain of OdhA are required for interaction. The FHA domain was also sufficient for inhibition of ODHc activity. Phosphorylated OdhI was binding-incompetent and did not inhibit ODHc activity.

Structured summary

MINT-7713362:OdhI (uniprotkb:Q8NQJ3) binds (MI:0407) to OdhA (uniprotkb:Q8NRC3) by surface plasmon resonance (MI:0107)MINT-7713261:OdhI (uniprotkb:Q8NQJ3) physically interacts (MI:0915) with OdhA (uniprotkb:Q8NRC3) by pull down (MI:0096)  相似文献   

2.
The Plenty of SH3 domains protein (POSH) is an E3 ligase and a scaffold in the JNK mediated apoptosis, linking Rac1 to downstream components.We here describe POSH2 which was identified from a p21-activated kinase 2 (PAK2) interactor screen. POSH2 is highly homologous with other members of the POSH family; it contains four Src homology 3 (SH3) domains and a RING finger domain which confers E3 ligase activity to the protein. In addition POSH2 contains an N-terminal extension which is conserved among its mammalian counterparts. POSH2 interacts with GTP-loaded Rac1. We have mapped this interaction to a previously unrecognized partial Cdc42/Rac1-interactive binding domain.

Structured summary

MINT-7987761: POSH1 (uniprotkb:Q9HAM2) physically interacts (MI:0915) with Ubiquitin (uniprotkb:P62988) by anti tag coimmunoprecipitation (MI:0007)MINT-7987932: PAK2 (uniprotkb:Q13177) binds (MI:0407) to CDC42 (uniprotkb:Q07912) by solid phase assay (MI:0892)MINT-7987908: POSH1 (uniprotkb:Q9HAM2) binds (MI:0407) to Rac1 (uniprotkb:P63000) by solid phase assay (MI:0892)MINT-7987880: POSH2 (uniprotkb:Q8TEJ3) binds (MI:0407) to Rac1 (uniprotkb:P63000) by solid phase assay (MI:0892)MINT-7987734: POSH2 (uniprotkb:Q8TEJ3) physically interacts (MI:0915) with Ubiquitin (uniprotkb:P62988) by anti tag coimmunoprecipitation (MI:0007)MINT-7987779, MINT-7987804, MINT-7987824, MINT-7987838, MINT-7987853: Rac1 (uniprotkb:P63000) physically interacts (MI:0915) with POSH2 (uniprotkb:Q8TEJ3) by anti tag coimmunoprecipitation (MI:0007)MINT-7987920: PAK2 (uniprotkb:Q13177) binds (MI:0407) to Rac1 (uniprotkb:P63000) by solid phase assay (MI:0892)  相似文献   

3.
It has not yet been reported how the secondary CESA (cellulose synthase) proteins are organized in the rosette structure. A membrane-based yeast two-hybrid (MbYTH) approach was used to analyze the interactions between the CESA proteins involved in secondary cell wall synthesis of Arabidopsis and the findings were confirmed in planta by bimolecular fluorescence complementation (BiFC) assay. Results indicated that although all CESA proteins can interact with each other, only CESA4 is able to form homodimers. A model is proposed for the secondary rosette structure. The RING-motif proved not to be essential for the interaction between the CESA proteins.

Structured summary

MINT-6951243: PIP2-1 (uniprotkb:P43286) physically interacts (MI:0218) with PIP2-1 (uniprotkb:P43286) by bimolecular fluorescence complementation (MI:0809)MINT-6950816: CESA4 (uniprotkb:Q84JA6) physically interacts (MI:0218) withCESA4 (uniprotkb:Q84JA6) by membrane bound complementation assay (MI:0230)MINT-6951056, MINT-6951071, MINT-6951088, MINT-6951103: CESA7 (uniprotkb:Q9SWW6) physically interacts (MI:0218) with CESA4 (uniprotkb:Q84JA6) by bimolecular fluorescence complementation (MI:0809)MINT-6950949, MINT-6950990: CESA4 (uniprotkb:Q84JA6) physically interacts (MI:0218) with CESA8 (uniprotkb:Q8LPK5) by membrane bound complementation assay (MI:0230)MINT-6950909, MINT-6951030: CESA4 (uniprotkb:Q8LPK5) physically interacts (MI:0218) with CESA7 (uniprotkb:Q9SWW6) by membrane bound complementation assay (MI:0230)MINT-6951042: CESA4 (uniprotkb:Q84JA6) physically interacts (MI:0218) with CESA4 (uniprotkb:Q84JA6) by bimolecular fluorescence complementation (MI:0809)MINT-6951004, MINT-6951016: CESA8 (uniprotkb:Q8LPK5) physically interacts (MI:0218) with CESA7 (uniprotkb:Q9SWW6) by membrane bound complementation assay (MI:0230)MINT-6951217, MINT-6951230: CESA4 (uniprotkb:Q84JA6) physically interacts (MI:0218) with CESA8 (uniprotkb:Q8LPK5) by bimolecular fluorescence complementation (MI:0809)MINT-6951120, MINT-6951140, MINT-6951156, MINT-6951170, MINT-6951185: CESA8 (uniprotkb:Q8LPK5) physically interacts (MI:0218) withCESA7 (uniprotkb:Q9SWW6) by bimolecular fluorescence complementation (MI:0809)MINT-6951199: CESA8 (uniprotkb:Q8LPK5) physically interacts (MI:0218) withCESA8 (uniprotkb:Q8LPK5) by bimolecular fluorescence complementation (MI:0809)  相似文献   

4.
Calmodulin-regulated protein phosphorylation plays a pivotal role in amplifying and diversifying the action of calcium ion. In this study, we identified a calmodulin-binding receptor-like protein kinase (CBRLK1) that was classified into an S-locus RLK family. The plasma membrane localization was determined by the localization of CBRLK1 tagged with a green fluorescence protein. Calmodulin bound specifically to a Ca2+-dependent calmodulin binding domain in the C-terminus of CBRLK1. The bacterially expressed CBRLK1 kinase domain could autophosphorylate and phosphorylates general kinase substrates, such as myelin basic proteins. The autophosphorylation sites of CBRLK1 were identified by mass spectrometric analysis of phosphopeptides.

Structured summary

MINT-6800947:CBRLK1 (uniprotkb:Q9ZT06) and AtCaM2 (uniprotkb:P25069) bind (MI:0407) by electrophoretic mobility shift assay (MI:0413)MINT-6800966:AtCaM2 (uniprotkb:P25069) and CBRLK1 (uniprotkb:Q9ZT06) bind (MI:0407) by competition binding (MI:0405)MINT-6800930:CBRLK1 (uniprotkb:Q9ZT06) binds (MI:0407) to AtCaM2 (uniprotkb:P25069) by far Western blotting (MI:0047)MINT-6800978:AtCaM2 (uniprotkb:P25069) physically interacts (MI:0218) with CBRLK1 (uniprotkb:Q9ZT06) by cytoplasmic complementation assay (MI:0228)  相似文献   

5.
Ephrins and Eph receptors have key roles in regulation of cell migration during development. We found that the RacGAP β2-chimaerin (chimerin) bound to EphA2 and EphA4 and inactivated Rac1 in response to ephrinA1 stimulation. EphA4 bound to β2-chimaerin through its kinase domain and promoted binding of Rac1 to β2-chimaerin. In addition, knockdown of endogenous β2-chimaerin blocked ephrinA1-induced suppression of cell migration. These results suggest that β2-chimaerin is activated by EphA receptors and mediates the EphA receptor-dependent regulation of cell migration.

Structured summary

MINT-7013428: EphA1 (uniprotkb:Q60750) physically interacts (MI:0218) with Chimaerin beta 2 (uniprotkb:Q80XD1-2) and EphA4 (uniprotkb:O08542) by anti tag coimmunoprecipitation (MI:0007)MINT-7013515: Chimaerin beta 2 (uniprotkb:Q80XD1-2) physically interacts (MI:0218) with Rac1 (uniprotkb:P63001) by anti tag coimmunoprecipitation (MI:0007)MINT-7013410: EphA1 (uniprotkb:Q60750) physically interacts (MI:0218) with Chimaerin beta 1 (uniprotkb:Q80XD1-1) and EphA4 (uniprotkb:O08542) by anti tag coimmunoprecipitation (MI:0007)MINT-7013503: Chimaerin beta 1 (uniprotkb:Q80XD1-1) physically interacts (MI:0218) with EphA4 (uniprotkb:O08542) by anti tag coimmunoprecipitation (MI:0007)MINT-7013472: Chimaerin beta 2 (uniprotkb:Q80XD1-2) physically interacts (MI:0218) with EphA2 (uniprotkb:O43921) by anti tag coimmunoprecipitation (MI:0007)MINT-7013450: EphA1 (uniprotkb:Q60750) physically interacts (MI:0218) with EphA2 (uniprotkb:O43921) and Chimaerin beta 2 (uniprotkb:P52757-1) by anti tag coimmunoprecipitation (MI:0007)MINT-7013491: Chimaerin beta 2 (uniprotkb:Q80XD1-2) physically interacts (MI:0218) with EphA4 (uniprotkb:O08542) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

6.
SGs are mRNA containing cytoplasmic structures that are assembled in response to stress. Tudor-SN protein is a ubiquitously expressed protein. Here, Tudor-SN protein was found to physiologically interact with G3BP, which is the marker and effector of SG. The kinetics of the assembly of SGs in the living cells demonstrated that Tudor-SN co-localizes with G3BP and is recruited to the same SGs in response to different stress stimuli. Knockdown of endogenous Tudor-SN did not inhibit the formation of SGs, but retarded the aggregation of small SGs into large SGs. Thus Tudor-SN may not be an initiator as essential as G3BP for the formation of SGs, but affects the aggregation of SGs. These findings identify Tudor-SN as a novel component of SGs.

Structured summary

MINT-7968768, MINT-7968779: Tudor-SN (uniprotkb:Q7KZF4) physically interacts (MI:0915) with G3BP (uniprotkb:Q13283) by anti bait coimmunoprecipitation (MI:0006) MINT-7968800: Tudor-SN (uniprotkb:Q7KZF4) and TIA-1 (uniprotkb:P31483) colocalize (MI:0403) by fluorescence microscopy (MI:0416) MINT-7968789: Tudor-SN (uniprotkb:Q7KZF4) and G3BP (uniprotkb:Q13283) colocalize (MI:0403) by fluorescence microscopy (MI:0416)  相似文献   

7.
Recent studies show LDL receptor-related protein 1B, LRP1B as a transducer of extracellular signals. Here, we identify six interacting partners of the LRP1B cytoplasmic region by yeast two-hybrid screen and confirmed their in vivo binding by immunoprecipitation. One of the partners, PICK1 recognizes the C-terminus of LRP1B and LRP1. The cytoplasmic domains of LRP1B are phosphorylated by PKCα about 100 times more efficiently than LRP1. Binding of PICK1 inhibits phosphorylation of LRP1B, but does not affect LRP1 phosphorylation.This study presents the possibility that LRP1B participates in signal transduction which PICK1 may regulate by inhibiting PKCα phosphorylation of LRP1B.

Structured summary

MINT-6801075: Lrp1b (uniprotkb:Q9JI18) physically interacts (MI:0218) with SNTG2 (uniprotkb:Q925E0) by two hybrid (MI:0018)MINT-6801030, MINT-6801468: Lrp1b (uniprotkb:Q9JI18) physically interacts (MI:0218) with Pick1 (uniprotkb:Q80VC8) by two hybrid (MI:0018)MINT-6801284: LRP1B4 (uniprotkb:Q9JI18) physically interacts (MI:0218) with RanBPM (uniprotkb:P69566) by anti tag coimmunoprecipitation (MI:0007)MINT-6801108: Lrp1b (uniprotkb:Q9JI18) physically interacts (MI:0218) with Grb7 (uniprotkb:Q03160) by two hybrid (MI:0018)MINT-6801090: Lrp1b (uniprotkb:Q9JI18) physically interacts (MI:0218) with RanBPM (uniprotkb:P69566) by two hybrid (MI:0018)MINT-6801008: Lrp1b (uniprotkb:Q9JI18) physically interacts (MI:0218) with Jip-1b (uniprotkb:Q9WVI9-1) by two hybrid (MI:0018)MINT-6801052: Lrp1b (uniprotkb:Q9JI18) physically interacts (MI:0218) with Jip-2 (uniprotkb:Q9ERE9) by two hybrid (MI:0018)MINT-6801258, MINT-6801271: LRP1B4 (uniprotkb:Q9JI18) physically interacts (MI:0218) with Pick1 (uniprotkb:Q80VC8) by anti tag coimmunoprecipitation (MI:0007)MINT-6801244: RanBPM (uniprotkb:P69566) physically interacts (MI:0218) with mLRP4 (uniprotkb:Q8VI56) by anti tag coimmunoprecipitation (MI:0007)MINT-6801131, MINT-6801158: LRP1B4 (uniprotkb:Q9JI18) physically interacts (MI:0218) with Jip-1b (uniprotkb:Q9WVI9-1) by anti tag coimmunoprecipitation (MI:0007)MINT-6801231: PICK1 (uniprotkb:Q80VC8) physically interacts (MI:0218) with mLRP4 (uniprotkb:Q8VI56) by anti tag coimmunoprecipitation (MI:0007)MINT-6801173: Jip-1b (uniprotkb:Q9WVI9-1) physically interacts (MI:0218) with mLRP4 (uniprotkb:Q8VI56) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

8.
Hee-Won Seo 《FEBS letters》2009,583(1):55-60
The interplay between hypoxia-inducible factor-1α (HIF-1α) and histone deacetylase (HDACs) have been well studied; however, the mechanism of cross-talk is unclear. Here, we investigated the roles of HDAC4 and HDAC5 in the regulation of HIF-1α function and its associated mechanisms. HDAC4 and HDAC5 enhanced transactivation by HIF-1α without stabilizing HIF-1α. HDAC4 and HDAC5 physically associated with HIF-1α through the inhibitory domain (ID) that is the binding site for factor inhibiting HIF-1 (FIH-1). In the presence of these HDACs, binding of HIF-1α to FIH-1 decreased, whereas binding to p300 increased. These results indicate that HDAC4 and HDAC5 increase the transactivation function of HIF-1α by promoting dissociation of HIF-1α from FIH-1 and association with p300.

Structured summary:

MINT-6802187:HIF1 alpha (uniprotkb:Q16665) physically interacts (MI:0218) with FIH1 (uniprotkb:Q9NWT6) by anti bait coimmunoprecipitation (MI:0006)MINT-6802058:HIF1 alpha (uniprotkb:Q16665) physically interacts (MI:0218) with HDAC4 (uniprotkb:P56524) by pull down (MI:0096)MINT-6802021:HIF1 alpha (uniprotkb:Q61221) physically interacts (MI:0218) with HDAC4 (uniprotkb:P56524) by anti bait coimmunoprecipitation (MI:0006)MINT-6802036:HIF1 alpha (uniprotkb:Q61221) physically interacts (MI:0218) with HDAC5 (uniprotkb:Q9UQL6) by anti bait coimmunoprecipitation (MI:0006)MINT-6802102:HIF1 alpha (uniprotkb:Q16665) physically interacts (MI:0218) with HDAC5 (uniprotkb:Q9UQL6) by pull down (MI:0096)MINT-6802121, MINT-6802156:P300 (uniprotkb:Q09472) physically interacts (MI:0218) with HIF1 alpha (uniprotkb:Q16665) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

9.
10.
11.
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) activates NF-κB signaling pathways through the two C-terminal regions, CTAR1 and CTAR2. BS69 has previously been shown to be involved in LMP1-induced c-Jun N-terminal kinase activation through CTAR2 by interacting with tumor necrosis factor (TNFR) receptor-associated factor 6. In the present study, our manipulation of BS69 expression clearly indicates that BS69 negatively regulates LMP1-mediated NF-κB activation and up-regulates IL-6 mRNA expression and IκB degradation. Our immunoprecipitation experiments suggest that BS69 decreases complex formation between LMP1 and TNFR-associated death domain protein (TRADD).

Structured summary

MINT-7032462: LMP1 (uniprotkb:P03230) physically interacts (MI:0218) with TRADD (uniprotkb:Q15628) by anti bait coimmunoprecipitation (MI:0006)MINT-7032451: BS69 (uniprotkb:Q15326) and LMP1 (uniprotkb:P03230) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7032478: LMP1 (uniprotkb:P03230) physically interacts (MI:0218) with BRAM1 (uniprotkb:Q15326) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

12.
S100 proteins interact with the transactivation domain and the C-terminus of p53. Further, S100B has been shown to interact with MDM2, a central negative regulator of p53. Here, we show that S100B bound directly to the folded N-terminal domain of MDM2 (residues 2-125) by size exclusion chromatography and surface plasmon resonance experiments. This interaction with MDM2 (2-125) is a general feature of S100 proteins; S100A1, S100A2, S100A4 and S100A6 also interact with MDM2 (2-125). These interactions with S100 proteins do not result in a ternary complex with MDM2 (2-125) and p53. Instead, we observe the ability of a subset of S100 proteins to disrupt the extent of MDM2-mediated p53 ubiquitylation in vitro.

Structured summary

MINT-7905256: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100A6 (uniprotkb:P06703) by surface plasmon resonance (MI:0107)MINT-7905063: MDM2 (uniprotkb:Q00987) and s100A1 (uniprotkb:P23297) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905376: s100A4 (uniprotkb:P26447) and MDM2 (uniprotkb:Q00987) physically interact (MI:0915) by competition binding (MI:0405)MINT-7905130: s100A6 (uniprotkb:P06703) and MDM2 (uniprotkb:Q00987) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905207: s100A6 (uniprotkb:P06703) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905043: s100B (uniprotkb:P04271) and MDM2 (uniprotkb:Q00987) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905196: p53 (uniprotkb:P04637) and s100A4 (uniprotkb:P26447) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905358: p53 (uniprotkb:P04637) and s100A4 (uniprotkb:P26447) physically interact (MI:0915) by fluorescence polarization spectroscopy (MI:0053)MINT-7905220: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100B (uniprotkb:P04271) by surface plasmon resonance (MI:0107)MINT-7905104: s100A4 (uniprotkb:P26447) and MDM2 (uniprotkb:Q00987) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905229: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100A1 (uniprotkb:P23297) by surface plasmon resonance (MI:0107)MINT-7905317, MINT-7905162: s100B (uniprotkb:P04271) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905238: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100A2 (uniprotkb:P29034) by surface plasmon resonance (MI:0107)MINT-7905174, MINT-7905308: s100A1 (uniprotkb:P23297) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905247: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100A4 (uniprotkb:P26447) by surface plasmon resonance (MI:0107)MINT-7905090: s100A2 (uniprotkb:P29034) and MDM2 (uniprotkb:Q00987) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905142, MINT-7905326: MDM2 (uniprotkb:Q00987) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905185, MINT-7905347: s100A2 (uniprotkb:P29034) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)  相似文献   

13.
14.
We show that the monomeric form of Shigella IpaH9.8 E3 ligase catalyses the ubiquitination of human U2AF35 in vitro, providing a molecular mechanism for the observed in vivo effect. We further discover that under non-reducing conditions IpaH9.8 undergoes a domain swap driven by the formation of a disulfide bridge involving the catalytic cysteine and that this dimer is unable to catalyse the ubiquitination of U2AF35. The crystal structure of the domain-swapped dimer is presented. The redox inactivation of IpaH9.8 could be a mechanism of regulating the activity of the IpaH9.8 E3 ligase in response to cell damage so that the host cell in which the bacteria resides is maintained in a benign state suitable for bacterial survival.

Structured summary

MINT-7993779: ipaH9.8 (uniprotkb:Q8VSC3) and ipaH9.8 (uniprotkb:Q8VSC3) bind (MI:0408) by X-ray crystallography (MI:0114) MINT-7993812: ipaH9.8 (uniprotkb:Q8VSC3) and ipaH9.8 (uniprotkb:Q8VSC3) bind (MI:0407) by affinity chromatography technology (MI:0004) MINT-7993790: ipaH9.8 (uniprotkb:Q8VSC3) and ipaH9.8 (uniprotkb:Q8VSC3) bind (MI:0407) by blue native page (MI:0276)  相似文献   

15.
Inhibitor of growth 2 (ING2) gene encodes a candidate tumor suppressor and is frequently reduced in many tumors. However, the mechanisms underlying the regulation of ING2, in particular its protein stability, are still unclear. Here we show that the homologous to E6AP carboxyl terminus (HECT)-type ubiquitin ligase Smad ubiquitination regulatory factor 1 (Smurf1) interacts with and targets ING2 for poly-ubiquitination and proteasomal degradation. Intriguingly, the ING2 binding domain in Smurf1 was mapped to the catalytic HECT domain. Furthermore, the C-terminal PHD domain of ING2 was required for Smurf1-mediated degradation. This study provided the first evidence that the stability of ING2 could be regulated by ubiquitin-mediated degradation.

Structured summary

MINT-7894271: ING2 (uniprotkb:Q9H160) binds (MI:0407) to Smurf1 (uniprotkb:Q9HCE7) by pull-down (MI:0096)MINT-7894319, MINT-7894339: ING2 (uniprotkb:Q9H160) physically interacts (MI:0915) with Smurf1 (uniprotkb:Q9HCE7) by anti tag co-immunoprecipitation (MI:0007)MINT-7894301: Smurf1 (uniprotkb:Q9HCE7) physically interacts (MI:0915) with ING2 (uniprotkb:Q9H160) by anti bait co-immunoprecipitation (MI:0006)MINT-7894358: ING1b (uniprotkb:Q9UK53-2) physically interacts (MI:0915) with Smurf1 (uniprotkb:Q9HCE7) by anti tag co-immunoprecipitation (MI:0007)MINT-7894249: ING2 (uniprotkb:Q9H160) physically interacts (MI:0915) with ubiquitin (uniprotkb:P62988) by anti tag co-immunoprecipitation (MI:0007)  相似文献   

16.
You Lee Son 《FEBS letters》2010,584(18):3862-3866
Liver X receptor (LXR)/retinoid X receptor (RXR) heterodimers have been shown to perform critical functions in cholesterol and lipid metabolism. Here, we have conducted a comparative analysis of the contributions of LXR and RXR binding to steroid receptor coactivator-1 (SRC-1), which contains three copies of the NR box. We demonstrated that the coactivator-binding surface of LXR, but not that of RXR, is critically important for physical and functional interactions with SRC-1, thereby confirming that RXR functions as an allosteric activator of SRC-1-LXR interaction. Notably, we identified NR box-2 and -3 as the essential binding targets for the SRC-1-induced stimulation of LXR transactivity, and observed the competitive in vitro binding of NR box-2 and -3 to LXR.

Structured summary

MINT-7986678, MINT-7986639, MINT-7986700, MINT-7986720, MINT-7986736, MINT-7986760, MINT-7986787: LXR (uniprotkb:Q13133) physically interacts (MI:0915) with SRC1 (uniprotkb:Q15788) and RXR (uniprotkb:P19793) by pull down (MI:0096)MINT-7986596, MINT-7986621: SRC1 (uniprotkb:Q15788) physically interacts (MI:0915) with LXR (uniprotkb:Q13133) by pull down (MI:0096)MINT-7986555, MINT-7986575: LXR (uniprotkb:Q13133) physically interacts (MI:0915) with SRC1 (uniprotkb:Q15788) by two hybrid (MI:0018)MINT-7986808, MINT-7986907, MINT-7986890: SRC1 (uniprotkb:Q15788) binds (MI:0407) to LXR (uniprotkb:Q13133) by pull down (MI:0096)MINT-7986822, MINT-7986848, MINT-7986865: SRC1 (uniprotkb:Q15788) binds (MI:0407) to RXR (uniprotkb:P19793) by pull down (MI:0096)  相似文献   

17.
The small G-protein Rheb regulates cell growth via the mTORC1 complex by incompletely understood mechanisms. Recent studies document that Rheb activates mTORC1 via direct, GTP-dependent interaction with the peptidyl-prolyl-cis/trans-isomerase FKBP38, which is proposed to act as an inhibitor of mTORC1. We have conducted a comprehensive biochemical characterization of the Rheb/FKBP38 interaction. Using three different in vitro assays we did not detect an interaction between Rheb and FKBP38. Cell biological experiments illustrate that FKBP38 plays only a very minor, if any, role in mTORC1 activation. Our data document that FKBP38 is not the long-sought Rheb effector linking Rheb to mTORC1 activation.

Structured summary

MINT-6946532: Ral (uniprotkb:P11233) binds (MI:0407) to Ha-Ras (uniprotkb:P01112) by pull down (MI:0096)MINT-6946500: RAF (uniprotkb:P04049) binds (MI:0407) to RHEB2 (uniprotkb:Q15382) by pull down (MI:0096)MINT-6946517: RAF (uniprotkb:P04049) binds (MI:0407) to Ha-Ras (uniprotkb:P01112) by pull down (MI:0096)  相似文献   

18.
The SNF1/AMPK/SnRK1 complex is an intracellular energy sensor composed of three types of subunits: the SnRK1 kinase and two regulatory, non-catalytic subunits (designated β and γ). We have previously described an atypical plant γ-subunit, AKINβγ, which contains an N-terminal tail similar to the so-called KIS domain normally present in β-subunits. However, it is not known whether AKINβγ normally associates with endogenous SnRK1 complexes in vivo, nor how its unique domain structure might contribute to SnRK1 function. Here, we present evidence that maize AKINβγ is an integral component of active SnRK1 complexes in plant cells. Using complementary methodological approaches, we also show that AKINβγ associates through homomeric interactions mediated by both, the γ- and, unexpectedly, the KIS/CBM domain.

Structured summary

MINT-7040005: AKIN (uniprotkb:B4FX20) and AKIN (uniprotkb:B4FX20) physically interact (MI:0914) by chromatography technologies (MI:0091)MINT-7039992: AKIN (uniprotkb:B4FX20) and AKIN (uniprotkb:B4FX20) physically interact (MI:0915) by bimolecular fluorescence complementation (MI:0809)MINT-7040024, MINT-7040044, MINT-7040067: AKIN (uniprotkb:B4FX20) and AKIN (uniprotkb:B4FX20) bind (MI:0407) by pull down (MI:0096)MINT-7039978: SnRK1 (uniprotkb:Q8H1L5) and AKIN (uniprotkb:B4FX20) physically interact (MI:0915) by bimolecular fluorescence complementation (MI:0809)  相似文献   

19.
Macropinocytosis is regulated by Abl kinase via an unknown mechanism. We previously demonstrated that Abl kinase activity is, itself, regulated by Abi1 subsequent to Abl kinase phosphorylation of Abi1 tyrosine 213 (pY213) [1]. Here we show that blocking phosphorylation of Y213 abrogated the ability of Abl to regulate macropinocytosis, implicating Abi1 pY213 as a key regulator of macropinocytosis. Results from screening the human SH2 domain library and mapping the interaction site between Abi1 and the p85 regulatory domain of PI-3 kinase, coupled with data from cells transfected with loss-of-function p85 mutants, support the hypothesis that macropinocytosis is regulated by interactions between Abi1 pY213 and the C-terminal SH2 domain of p85—thereby linking Abl kinase signaling to p85-dependent regulation of macropinocytosis.

Structured summary

MINT-7908602: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to SHIP2 (uniprotkb:O15357) by array technology (MI:0008)MINT-7908362: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Emt (uniprotkb:Q08881) by array technology (MI:0008)MINT-7908235: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Lyn (uniprotkb:P07948) by array technology (MI:0008)MINT-7908075: Abi1 (uniprotkb:Q8IZP0)binds (MI:0407) to Fgr (uniprotkb:P09769) by array technology (MI:0008)MINT-7908330, MINT-7908522: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Vav1 (uniprotkb:P15498) by array technology (MI:0008)MINT-7907962: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Fyn (uniprotkb:P06241) by array technology (MI:0008)MINT-7908203: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Src (uniprotkb:P12931) by array technology (MI:0008)MINT-7908570: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to SHP-2 (uniprotkb:P35235) by array technology (MI:0008)MINT-7908187, MINT-7908586: Abi1(uniprotkb:Q8IZP0) binds (MI:0407) to Gap (uniprotkb:P20936) by array technology (MI:0008)MINT-7907981, MINT-7907995: Abi1 (uniprotkb:Q8IZP0) physically interacts (MI:0915) with p85a (uniprotkb:P26450) by anti tag coimmunoprecipitation (MI:0007)MINT-7908251: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to PLCG1 (uniprotkb:P19174) by array technology (MI:0008)MINT-7908346: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Grb2 (uniprotkb:P62993) by array technology (MI:0008)MINT-7907945: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Abl (uniprotkb:P00519) by array technology (MI:0008)MINT-7908474: Abi1 (uniprotkb:Q8IZP0)binds (MI:0407) to p85b (uniprotkb:O00459) by array technology (MI:0008)MINT-7908107: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Hck (uniprotkb:P08631) by array technology (MI:0008)MINT-7908011: p85a (uniprotkb:P26450) physically interacts (MI:0915) with Abi1 (uniprotkb:Q8IZP0) by pull down (MI:0096)MINT-7908155: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to FynT (uniprotkb:P06241-2) by array technology (MI:0008)MINT-7908283, MINT-7908490: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to p55g (uniprotkb:Q92569) by array technology (MI:0008)MINT-7907929, MINT-7907815, MINT-7907832, MINT-7907865, MINT-7907897, MINT-7907913, MINT-7907881, MINT-7907848: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to p85a (uniprotkb:P27986) by array technology (MI:0008)MINT-7908059: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Frk (uniprotkb:P42685) by array technology (MI:0008)MINT-7908378: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to CblC (uniprotkb:Q9ULV8) by array technology (MI:0008)MINT-7908618: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to CblA (uniprotkb:B5MC15) by array technology (MI:0008)MINT-7908139, MINT-7908538: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Nap4 (uniprotkb:O14512) by array technology (MI:0008)MINT-7908426: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to CblB (uniprotkb:Q13191) by array technology (MI:0008)MINT-7908506: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Crk (uniprotkb:P46108) by array technology (MI:0008)MINT-7908554: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to mAbl (uniprotkb:P00520) by array technology (MI:0008)MINT-7908043, MINT-7908394: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Vav2 (uniprotkb:P52735) by array technology (MI:0008)MINT-7908458: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to mSck/ShcB (uniprotkb:Q8BMC3) by array technology (MI:0008)MINT-7908091: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Yes (uniprotkb:P07947) by array technology (MI:0008)MINT-7908219: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Src (uniprotkb:P00523) by array technology (MI:0008)MINT-7908123: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Fer (uniprotkb:P16591) by array technology (MI:0008)MINT-7908410: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to CrkL (uniprotkb:P46109) by array technology (MI:0008)MINT-7908314, MINT-7908442: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Arg (uniprotkb:P42684) by array technology (MI:0008)MINT-7908299: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to PLCG1 (uniprotkb:P10686) by array technology (MI:0008)MINT-7908171: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Fes (uniprotkb:P07332) by array technology (MI:0008)MINT-7908027: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Lck (uniprotkb:P06239) by array technology (MI:0008)  相似文献   

20.
Nbr1, a ubiquitous kinase scaffold protein, contains a PB1, and a ubiquitin-associated (UBA) domain. We show here that the nbr1 UBA domain binds to lysine-48 and -63 linked polyubiquitin-B chains. Nbr1 also binds to the autophagic effector protein LC3-A via a novel binding site. Ubiquitin-binding, but not PB1-mediated p62/SQSTM1 interaction, is required to target nbr1 to LC3 and polyubiquitin-positive bodies. Nbr1 binds additionally to proteins implicated in ubiquitin-mediated protein turnover and vesicle trafficking: ubiquitin-specific peptidases USP8, and the endosomal transport regulator p14/Robld3. Nbr1 thus contributes to specific steps in protein turnover regulation disrupted in several hereditary human diseases.

Structured summary

MINT-7034452: USP8 (uniprotkb:P40818) physically interacts (MI:0218) with NBR1 (uniprotkb:Q14596) by pull down (MI:0096)MINT-7034438: SQSTM1 (uniprotkb:Q13501) and LC3 (uniprotkb:Q9H492) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7034309: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with Ubiquitin (uniprotkb:P62988) by pull down (MI:0096)MINT-7034323: NBR1 (uniprotkb:P97432) physically interacts (MI:0218) with Ubiquitin (uniprotkb:P62988) by pull down (MI:0096)MINT-7034233: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with USP8 (uniprotkb:P40818) by two hybrid (MI:0018)MINT-7034207: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with Robld3 (uniprotkb:Q9JHS3) by two hybrid (MI:0018)MINT-7034400, MINT-7034418: NBR1 (uniprotkb:Q14596) and LC3 (uniprotkb:Q9H492) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7034167: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with Ubiquitin B (uniprotkb:Q78XY9) by two hybrid (MI:0018)MINT-7034470: NBR1 (uniprotkb:Q14596) and USP8 (uniprotkb:P40818) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7034194: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with LC3-A (uniprotkb:Q91VR7) by two hybrid (MI:0018)MINT-7034336: SQSTM1 (uniprotkb:Q13501) physically interacts (MI:0218) with Ubiquitin (uniprotkb:P62988) by pull down (MI:0096)MINT-7034375: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with LC3 (uniprotkb:Q9H492) by pull down (MI:0096)MINT-7034350: NBR1 (uniprotkb:Q14596) and Ubiquitin (uniprotkb:P62988) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7034181: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with Tmed10 (uniprotkb:Q9D1D4) by two hybrid (MI:0018)MINT-7034220: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with ube2o (uniprotkb:Q6ZPJ3) by two hybrid (MI:0018)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号