首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ras-cyclic AMP (cAMP) pathway is a major determinant of intrinsic stress resistance of the yeast Saccharomyces cerevisiae. Here, we isolated IRA2, encoding the Ras GTPase activator, as a global stress response gene. Subsequently, we studied the other negative regulators on the separate branch of the Ras-cAMP pathway, the low- or high-affinity cAMP phosphodiesterase encoded by PDE1 or PDE2, respectively. Deletion of PDE2, similar to ira2 deletion, rendered cells sensitive to freeze-thawing, peroxides, paraquat, cycloheximide, heavy metals, NaCl, heat, or cold shock. However, deletion of PDE1 did not affect stress tolerance, although it exacerbated stress sensitivity caused by the pde2 deletion, indicating that PDE1 can partly compensate for PDE2. Deletion of IRA2 uniquely led to high sensitivity to cumene hydroperoxide, suggesting that IRA2 may have a distinct role for the response to this stress. Stress sensitivity of yeast cells in general correlated with the basal level of cAMP. Interestingly, yeast cells lacking PDE2 maintained higher cAMP levels in stationary phase than exponential growth phase, suggesting that Pde2p is the major regulator of cAMP levels in stationary phase. Depletion of Ras activity could not effectively suppress stress sensitivity caused by lack of cAMP phosphodiesterases although it could suppress stress sensitivity caused by lack of IRA2, indicating that cAMP accumulation in stationary phase can be mediated by other signaling proteins in addition to Ras. Our study shows that control of cAMP basal levels is important for determining intrinsic stress tolerance of yeast, and that the cAMP level during stationary phase is a result of a dynamic balance between its rates of synthesis and degradation.  相似文献   

2.
Dong J  Bai X 《FEBS letters》2011,585(8):1127-1134
The Saccharomyces cerevisiae Ras2p has been suggested to be a target in the feedback regulation of Ras-cAMP pathway. This work proves that the Ras2p localization is regulated by PKA activity, and that PKA down-regulates Ras2p activity and the protein association between Cdc25p and Ras2-GTP, which is due to a reduced Ras2-GEF Cdc25p activity. These results suggest that Ras2p localization and Ras2-GEF activity of Cdc25p play roles in the feedback regulation of Ras2p in the Ras-cAMP pathway.  相似文献   

3.
4.
5.
6.
The Ras-cyclic AMP pathway is connected to other nutrient-regulated signaling pathways and mediates the global stress responses of Saccharomyces cerevisiae. Here, we show that Rom2p, the Rho1 GTP/GDP exchange factor, can mediate stress responses and cell growth via the Ras-cAMP pathways. ROM2 was isolated as a suppresser of heat and NaCl sensitivity caused by the lack of the Ras-GTPase activator Ira2p or of cAMP phosphodiesterases. Subsequent analysis of strains with a rom2 deletion showed that Rom2p is essential for resistance to a variety of stresses caused by freeze-thawing, oxidants, cycloheximide, NaCl, or cobalt ions. Stress sensitivity and the growth defect caused by the rom2 deletion could be suppressed by depleting Ras or protein kinase A (PKA) activity or by overexpressing the high affinity cAMP phosphodiesterase Pde2p. In addition, overexpression of ROM2 could not rescue cells lacking the regulatory subunit of PKA, indicating that the Ras-adenylate, cyclase-PKA cascade is essential for Rom2p-mediated stress responses and cell growth. Deletion of IRA2 exacerbated the freeze-thaw sensitivity and growth defect of the rom2 mutant, indicating that Rom2p signaling may control Ras independently of IRA2. Increases in cAMP levels were detected in the rom2 deletion mutants, and these were comparable with the effects of an ira2 mutation. The effects of the deletion of ROM2 on sensitivity to hydrogen peroxide, paraquat, and cobalt ions, but not to caffeine, were reduced when a constitutive allele of RHO1 was introduced on a single copy plasmid. However, the effects of the deletion of ROM2 on sensitivity to diamide and NaCl were exacerbated. Taken together, our data indicate that Rom2p can regulate PKA activity by controlling cAMP levels via the Ras-cAMP pathway and that for those stresses related to oxidative stress, this cross-talk is probably mediated via the Rho1p-activated MAPK pathway.  相似文献   

7.
8.
Mutations in the Ras family of proteins (predominantly in H-Ras) occur in approximately 40% of urothelial cell carcinoma (UCC). However, relatively little is known about subsequent mutations/pathway alterations that allow tumour progression. Indeed, expressing mutant H-Ras within the mouse bladder does not lead to tumour formation, unless this is expressed at high levels. The Wnt signalling pathway is deregulated in approximately 25% of UCC, so we examined if this correlated with the activation of MAPK signalling in human UCC and found a significant correlation. To test the functional significance of this association we examined the impact of combining Ras mutation (H-RasQ61L or K-RasG12D) with an activating β-catenin mutation within the mouse bladder using Cre-LoxP technology. Although alone, neither Ras mutation nor β-catenin activation led to UCC (within 12 months), mice carrying both mutations rapidly developed UCC. Mechanistically this was associated with reduced levels of p21 with dependence on the MAPK signalling pathway. Moreover, tumours from these mice were sensitive to MEK inhibition. Importantly, in human UCC there was a negative correlation between levels of p-ERK and p21 suggesting that p21 accumulation may block tumour progression following Ras mutation. Taken together these data definitively show Ras pathway activation strongly cooperates with Wnt signalling to drive UCC in vivo.  相似文献   

9.
Many kinds of misfolded secretory proteins are known to be degraded in the endoplasmic reticulum (ER). Dislocation of misfolded proteins from the ER to the cytosol and subsequent degradation by the proteasome have been demonstrated. Using the yeast Saccharomyces cerevisiae, we have been studying the secretion of a heterologous protein, Rhizopus niveus aspartic proteinase-I (RNAP-I). Previously, we found that the pro sequence of RNAP-I is important for the folding and secretion, and that Deltapro, a mutated derivative of RNAP-I in which the entire region of the pro sequence is deleted, forms gross aggregates in the yeast ER. In this study, we show that the degradation of Deltapro occurs independently of the proteasome. Its degradation was not inhibited either by a potent proteasome inhibitor or in a proteasome mutant. We also show that neither the export from the ER nor the vacuolar proteinase is required for the degradation of Deltapro. These results raise the possibility that the Deltapro aggregates are degraded in the ER lumen. We have isolated a yeast mutant in which the degradation of Deltapro is delayed. We show that the mutated gene is IRA2, which encodes a GTPase-activating protein for Ras. Because Ira2 protein is a negative regulator of the Ras-cAMP pathway, this result suggests that hyperactivation of the Ras-cAMP pathway inhibits the degradation of Deltapro. Consistently, down-regulation of the Ras-cAMP pathway in the ira2 mutant suppressed the defect of the degradation of Deltapro. Thus, the Ras-cAMP signal transduction pathway seems to control the proteasome-independent degradation of the ER misfolded protein aggregates.  相似文献   

10.
11.
Xenobiotics are widely used as pesticides. The detoxification of xenobiotics frequently involves conjugation to glutathione prior to compartmentalization and catabolism. In plants, degradation of glutathione-S-conjugates is initiated either by aminoterminal or carboxyterminal amino acid cleavage catalyzed by a γ-glutamyl transpeptidase and phytochelatin synthase, respectively. In order to establish yeast as a model system for the analysis of the plant pathway, we used monochlorobimane as a model xenobiotic in Saccharomyces cerevisiae and mutants thereof. The catabolism of monochlorobimane is initiated by conjugation to form glutathione-S-bimane, which is then turned over into a γ-GluCys-bimane conjugate by the vacuolar serine carboxypeptidases CPC and CPY. Alternatively, the glutathione-S-bimane conjugate is catabolized by the action of the γ-glutamyl transpeptidase Cis2p to a CysGly-conjugate. The turnover of glutathione-S-bimane was impaired in yeast cells deficient in Cis2p and completely abolished by the additional inactivation of CPC and CPY in the corresponding triple knockout. Inducible expression of the Arabidopsis phytochelatin synthase AtPCS1 in the triple knockout resulted in the turnover of glutathione-S-bimane to the γ-GluCys-bimane conjugate as observed in plants. Challenge of AtPCS1-expressing yeast cells with zinc, cadmium, and copper ions, which are known to activate AtPCS1, enhanced γ-GluCys-bimane accumulation. Thus, initial catabolism of glutathione-S-conjugates is similar in plants and yeast, and yeast is a suitable system for a study of enzymes of the plant pathway.  相似文献   

12.
A mutant allele of RAS1 that dominantly interferes with the wild-type Ras function in the yeast Saccharomyces cerevisiae was discovered during screening of mutants that suppress an ira2 disruption mutation. A single amino acid substitution, serine for glycine at position 22, was found to cause the mutant phenotype. The inhibitory effect of the RAS1 Ser22 gene could be overcome either by overexpression of CDC25 or by the ira2 disruption mutation. These results suggest that the RAS1Ser22 gene product interferes with the normal interaction of Ras with Cdc25 by forming a dead-end complex between Ras1Ser22 and Cdc25 proteins.  相似文献   

13.
The Saccharomyces cerevisiae DIS2S1/GLC7 gene encodes a type 1 protein phosphatase indispensable for cell proliferation. We found that introduction of a multicopy DIS2S1 plasmid impaired growth of cells with reduced activity of the cAMP-dependent protein kinase. In order to understand further the interaction between the two enzymes, a temperature-sensitive mutation in the DIS2S1 gene was isolated. The mutant accumulated less glycogen than wild type at the permissive temperature, indicating that activity of the Dis2s1 protein phosphatase is attenuated by the mutation. Furthermore, the dis2s1 ts mutation was shown to be suppressed by a multicopy plasmid harboring PDE2, a gene for cAMP phosphodiesterase. These results indicate that the Ras-cAMP pathway interacts genetically with the DIS2S1/GLC7 gene.  相似文献   

14.
Meiotic development (sporulation) in the yeast Saccharomyces cerevisiae is induced by nutritional deprivation. Smk1 is a meiosis-specific MAP kinase homolog that controls spore morphogenesis after the meiotic divisions have taken place. In this study, recessive mutants that suppress the sporulation defect of a smk1-2 temperature-sensitive hypomorph were isolated. The suppressors are partial function alleles of CDC25 and CYR1, which encode the Ras GDP/GTP exchange factor and adenyl cyclase, respectively, and MDS3, which encodes a kelch-domain protein previously implicated in Ras/cAMP signaling. Deletion of PMD1, which encodes a Mds3 paralog, also suppressed the smk1-2 phenotype, and a mds3-Δ pmd1-Δ double mutant was a more potent suppressor than either single mutant. The mds3-Δ, pmd1-Δ, and mds3-Δ pmd1-Δ mutants also exhibited mitotic Ras/cAMP phenotypes in the same rank order. The effect of Ras/cAMP pathway mutations on the smk1-2 phenotype required the presence of low levels of glucose. Ime2 is a meiosis-specific CDK-like kinase that is inhibited by low levels of glucose via its carboxy-terminal regulatory domain. IME2-ΔC241, which removes the carboxy-terminal domain of Ime2, exacerbated the smk1-2 spore formation phenotype and prevented cyr1 mutations from suppressing smk1-2. Inhibition of Ime2 in meiotic cells shortly after Smk1 is expressed revealed that Ime2 promotes phosphorylation of Smk1's activation loop. These findings demonstrate that nutrients can negatively regulate Smk1 through the Ras/cAMP pathway and that Ime2 is a key activator of Smk1 signaling.  相似文献   

15.
16.
《Cellular signalling》2014,26(5):1147-1154
Data in literature suggest that budding yeast adenylate cyclase forms a membrane-associated complex with the upstream components of the cAMP/PKA pathway. Here we provide evidences that adenylate cyclase (Cyr1p) acts as a scaffold protein keeping Ras2 available for its regulatory factors. We show that in a strain with deletion of the CYR1 gene (cyr1Δ pde2Δ msn2Δ msn4Δ) the basal Ras2-GTP level is very high and this is independent on the lack of feedback inhibition that could result from the absence of adenylate cyclase activity. Moreover, strains effected either in the intrinsic adenylate cyclase activity (fil1 strain) or in the stimulation of adenylate cyclase activity by active G-proteins (lcr1 strain) had a normal basal and glucose-induced Ras2-GTP level, indicating that adenylate cyclase activity does not influence the Ras2 activation state and suggesting that Cyr1 protein is required for the proper interaction between Ras2 and the Ira proteins. We also provide evidence that the two Ras-binding sites mapped on Cyr1p are required for the signalling complex assembly. In fact, we show that the cyr1Δ strain expressing CYR1 alleles lacking either the LRR region or the C-terminal domain still have a high basal and glucose-induced Ras2-GTP level. In contrast, a mutant expressing a Cyr1 protein only missing the N-terminal domain showed a normal Ras2 activation pattern. Likewise, the Ras2-GTP levels are comparable in the wild type strain and the srv2Δ strain, supporting the hypothesis that Cap is not essential for the Ras-adenylate cyclase interaction.  相似文献   

17.
Jian D  Aili Z  Xiaojia B  Huansheng Z  Yun H 《FEBS letters》2010,584(23):4745-3920
Ras-GEF Cdc25p has been found to be hyperphosphorylated upon glucose addition. This work provides evidence indicating that PKA activity positively regulates the degree of Cdc25p phosphorylation, and that the intracellular association of Cdc25p and Ras2p is independent of PKA activity. In vitro experiments revealed that the Ras2-GEF activity of Cdc25p is inhibited by Cdc25p phosphorylation. These data suggest a negative feedback mechanism by which intracellular cAMP synthesis is inhibited by PKA through Cdc25p phosphorylation.

Structured summary

MINT-8053016: CDC25p (uniprotkb:P04821) physically interacts (MI:0915) with ras2p (uniprotkb:P01120) by anti tag co-immunoprecipitation (MI:0007)MINT-8053030: ras2p (uniprotkb:P01120) physically interacts (MI:0915) with CDC25p (uniprotkb:P04821) by anti bait co-immunoprecipitation (MI:0006)  相似文献   

18.
The cyclic AMP (cAMP)-signaling pathway regulates cell morphology and plays a crucial role during pathogenic development of the plant-pathogenic fungus Ustilago maydis. Strains lacking components of this signaling pathway, such as the Gα-subunit Gpa3 or the adenylyl cyclase Uac1, are nonpathogenic and grow filamentously. On the other hand, strains exhibiting an activated cAMP pathway due to a dominant-active allele of gpa3 display a glossy colony phenotype and are unable to proliferate in plant tumors. Here we present the identification of sql2 as a suppressor of the glossy colony phenotype of a gpa3Q206L strain. sql2 encodes a protein with similarity to CDC25-like guanine nucleotide exchange factors, which are known to act on Ras proteins. Overexpression of sql2 leads to filamentous growth that cannot be suppressed by exogenous cAMP, suggesting that Sql2 does not act upstream of Uac1. To gain more insight in signaling processes regulated by Sql2, we isolated two genes encoding Ras proteins. Expression of dominant active alleles of ras1 and ras2 showed that Ras2 induces filamentous growth while Ras1 does not affect cell morphology but elevates pheromone gene expression. These results indicate that Ras1 and Ras2 fulfill different functions in U. maydis. Moreover, observed similarities between the filaments induced by sql2 and ras2 suggest that Sql2 is an activator of Ras2. Interestingly, sql2 deletion mutants are affected in pathogenic development but not in mating, indicating a specific function of sql2 during pathogenesis.  相似文献   

19.
Yeast cell surface display is a powerful tool for expression and immobilization of biocatalytically active proteins on a unicellular eukaryote. Here bacterial carboxylesterase EstA from Burkholderia gladioli was covalently anchored into the cell wall of Saccharomyces cerevisiae by in-frame fusion to the endogenous yeast proteins Kre1p, Cwp2p, and Flo1p. When p-nitrophenyl acetate was used as a substrate, the esterase specific activities of yeast expressing the protein fusions were 103 mU mg−1 protein for Kre1/EstA/Cwp2p and 72 mU mg−1 protein for Kre1/EstA/Flo1p. In vivo cell wall targeting was confirmed by esterase solubilization after laminarinase treatment and immunofluorescence microscopy. EstA expression resulted in cell wall-associated esterase activities of 2.72 U mg−1 protein for Kre1/EstA/Cwp2p and 1.27 U mg−1 protein for Kre1/EstA/Flo1p. Furthermore, esterase display on the yeast cell surface enabled the cells to effectively grow on the esterase-dependent carbon source glycerol triacetate (Triacetin). In the case of Kre1/EstA/Flo1p, in vivo maturation within the yeast secretory pathway and final incorporation into the wall were further enhanced when there was constitutive activation of the unfolded protein response pathway. Our results demonstrate that esterase cell surface display in yeast, which, as shown here, is remarkably more effective than EstA surface display in Escherichia coli, can be further optimized by activating the protein folding machinery in the eukaryotic secretion pathway.  相似文献   

20.
Several GTPases are required for ribosome biogenesis and assembly. We recently identified rice (Oryza sativa) nuclear/nucleolar GTPase 2 (OsNug2), a YlqF/YawG family GTPase, as having a role in pre-60S ribosomal subunit maturation. To investigate the potential factors involved in regulating OsNug2 function, yeast two-hybrid screens were performed using OsNug2 as bait. Rice serine/threonine kinase 1 (OsSTK1) was identified as a candidate interacting protein. OsSTK1 appeared to interact with OsNug2 both in vitro and in vivo. OsSTK1 was found to have no effect on the GTP-binding activity of OsNug2; however, the presence of recombinant OsSTK1 in OsNug2 assay reaction mixtures increased OsNug2 GTPase activity. A kinase assay showed that OsSTK1 had weak autophosphorylation activity and strongly phosphorylated serine 209 of OsNug2. Using yeast complementation testing, we identified a GAL::OsNug2(S209N) mutation-harboring yeast strain that exhibited a growth-defective phenotype on galactose medium at 39 °C, which was divergent from that of a yeast strain harboring GAL::OsNug2. The intrinsic GTPase activity of OsNug2(S209N), which was found to be similar to that of OsNug2, was not fully enhanced upon weak binding of OsSTK1. Our findings indicate that OsSTK1 functions as a positive regulator of OsNug2 by enhancing OsNug2 GTPase activity. In addition, phosphorylation of OsNug2 serine 209 is essential for its complete function in biological functional pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号