首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selenocysteine (Sec)-decoding archaea and eukaryotes employ a unique route of Sec-tRNASec synthesis in which O-phosphoseryl-tRNASec kinase (PSTK) phosphorylates Ser-tRNASec to produce the O-phosphoseryl-tRNASec (Sep-tRNASec) substrate that Sep-tRNA:Sec-tRNA synthase (SepSecS) converts to Sec-tRNASec. This study presents a biochemical characterization of Methanocaldococcus jannaschii PSTK, including kinetics of Sep-tRNASec formation (Km for Ser-tRNASec of 40 nM and ATP of 2.6 mM). PSTK binds both Ser-tRNASec and tRNASec with high affinity (Kd values of 53 nM and 39 nM, respectively). The ATPase activity of PSTK may be activated via an induced fit mechanism in which binding of tRNASec specifically stimulates hydrolysis. Albeit with lower activity than ATP, PSTK utilizes GTP, CTP, UTP and dATP as phosphate-donors. Homology with related kinases allowed prediction of the ATPase active site, comprised of phosphate-binding loop (P-loop), Walker B and RxxxR motifs. Gly14, Lys17, Ser18, Asp41, Arg116 and Arg120 mutations resulted in enzymes with decreased activity highlighting the importance of these conserved motifs in PSTK catalysis both in vivo and in vitro. Phylogenetic analysis of PSTK in the context of its ‘DxTN’ kinase family shows that PSTK co-evolved precisely with SepSecS and indicates the presence of a previously unidentified PSTK in Plasmodium species.  相似文献   

2.
Selenocysteine (Sec) biosynthesis in archaea and eukaryotes requires three steps: serylation of tRNASec by seryl-tRNA synthetase (SerRS), phosphorylation of Ser-tRNASec by O-phosphoseryl-tRNASec kinase (PSTK), and conversion of O-phosphoseryl-tRNASec (Sep-tRNASec) by Sep-tRNA:Sec-tRNA synthase (SepSecS) to Sec-tRNASec. Although SerRS recognizes both tRNASec and tRNASer species, PSTK must discriminate Ser-tRNASec from Ser-tRNASer. Based on a comparison of the sequences and secondary structures of archaeal tRNASec and tRNASer, we introduced mutations into Methanococcus maripaludis tRNASec to investigate how Methanocaldococcus jannaschii PSTK distinguishes tRNASec from tRNASer. Unlike eukaryotic PSTK, the archaeal enzyme was found to recognize the acceptor stem rather than the length and secondary structure of the D-stem. While the D-arm and T-loop provide minor identity elements, the acceptor stem base pairs G2-C71 and C3-G70 in tRNASec were crucial for discrimination from tRNASer. Furthermore, the A5-U68 base pair in tRNASer has some antideterminant properties for PSTK. Transplantation of these identity elements into the tRNASerUGA scaffold resulted in phosphorylation of the chimeric Ser-tRNA. The chimera was able to stimulate the ATPase activity of PSTK albeit at a lower level than tRNASec, whereas tRNASer did not. Additionally, the seryl moiety of Ser-tRNASec is not required for enzyme recognition, as PSTK efficiently phosphorylated Thr-tRNASec.  相似文献   

3.
O-Phosphoseryl-tRNA kinase (PSTK) is the key enzyme in recruiting selenocysteine (Sec) to the genetic code of archaea and eukaryotes. The enzyme phosphorylates Ser-tRNASec to produce O-phosphoseryl-tRNASec (Sep-tRNASec) that is then converted to Sec-tRNASec by Sep-tRNA:Sec-tRNA synthase. Earlier we reported the structure of the Methanocaldococcus jannaschii PSTK (MjPSTK) complexed with AMPPNP. This study presents the crystal structure (at 2.4-Å resolution) of MjPSTK complexed with an anticodon-stem/loop truncated tRNASec (Mj*tRNASec), a good enzyme substrate. Mj*tRNASec is bound between the enzyme’s C-terminal domain (CTD) and N-terminal kinase domain (NTD) that are connected by a flexible 11 amino acid linker. Upon Mj*tRNASec recognition the CTD undergoes a 62-Å movement to allow proper binding of the 7-bp D-stem. This large reorganization of the PSTK quaternary structure likely provides a means by which the unique tRNASec species can be accurately recognized with high affinity by the translation machinery. However, while the NTD recognizes the tRNA acceptor helix, shortened versions of MjPSTK (representing only 60% of the original size, in which the entire CTD, linker loop and an adjacent NTD helix are missing) are still active in vivo and in vitro, albeit with reduced activity compared to the full-length enzyme.  相似文献   

4.
We used comparative genomics and experimental analyses to show that (1) eukaryotes and archaea, which possess the selenocysteine (Sec) protein insertion machinery contain an enzyme, O-phosphoseryl-transfer RNA (tRNA)[Ser]Sec kinase (designated PSTK), which phosphorylates seryl-tRNA[Ser]Sec to form O-phosphoseryl-tRNA[Ser]Sec and (2) the Sec synthase (SecS) in mammals is a pyridoxal phosphate-containing protein previously described as the soluble liver antigen (SLA). SecS uses the product of PSTK, O-phosphoseryl-tRNA[Ser]Sec, and selenophosphate as substrates to generate selenocysteyl-tRNA[Ser]Sec. Sec could be synthesized on tRNA[Ser]Sec from selenide, adenosine triphosphate (ATP), and serine using tRNA[Ser]Sec, seryl-tRNA synthetase, PSTK, selenophosphate synthetase, and SecS. The enzyme that synthesizes monoselenophosphate is a previously identified selenoprotein, selenophosphate synthetase 2 (SPS2), whereas the previously identified mammalian selenophosphate synthetase 1 did not serve this function. Monoselenophosphate also served directly in the reaction replacing ATP, selenide, and SPS2, demonstrating that this compound was the active selenium donor. Conservation of the overall pathway of Sec biosynthesis suggests that this pathway is also active in other eukaryotes and archaea that contain selenoproteins. X.-M. Xu and B. A. Carlson contributed equally to the studies described herein.  相似文献   

5.
In the ancient organisms, methanogenic archaea, lacking the canonical cysteinyl-tRNA synthetase, Cys-tRNA(Cys) is produced by an indirect pathway, in which O-phosphoseryl-tRNA synthetase ligates O-phosphoserine (Sep) to tRNA(Cys) and Sep-tRNA:Cys-tRNA synthase (SepCysS) converts Sep-tRNA(Cys) to Cys-tRNA(Cys). In this study, the crystal structure of SepCysS from Archaeoglobus fulgidus has been determined at 2.4 A resolution. SepCysS forms a dimer, composed of monomers bearing large and small domains. The large domain harbors the seven-stranded beta-sheet, which is typical of the pyridoxal 5'-phosphate (PLP)-dependent enzymes. In the active site, which is located near the dimer interface, PLP is covalently bound to the side-chain of the conserved Lys209. In the proximity of PLP, a sulfate ion is bound by the side-chains of the conserved Arg79, His103, and Tyr104 residues. The active site is located deep within the large, basic cleft to accommodate Sep-tRNA(Cys). On the basis of the surface electrostatic potential, the amino acid residue conservation mapping, the position of the bound sulfate ion, and the substrate amino acid binding manner in other PLP-dependent enzymes, a binding model of Sep-tRNA(Cys) to SepCysS was constructed. One of the three strictly conserved Cys residues (Cys39, Cys42, or Cys247), of one subunit may play a crucial role in the catalysis in the active site of the other subunit.  相似文献   

6.
Selenium is incorporated into proteins as selenocysteine (Sec), which is dependent on its specific tRNA, designated tRNA[Ser]Sec. Targeted removal of the tRNA[Ser]Sec gene (Trsp) in mouse hepatocytes previously demonstrated the importance of selenoproteins in liver function. Herein, analysis of plasma proteins in this Trsp knockout mouse revealed increases in apolipoprotein E (ApoE) that was accompanied by elevated plasma cholesterol levels. The expression of genes involved in cholesterol biosynthesis, metabolism and transport were also altered in knockout mice. Additionally, in two transgenic Trsp mutant mouse lines (wherein only housekeeping selenoprotein synthesis was restored), the expression of ApoE, as well as genes involved in cholesterol biosynthesis, metabolism and transport were similar to those observed in wild type mice. These data correlate with reports that selenium deficiency results in increased levels of ApoE, indicating for the first time that housekeeping selenoproteins have a role in regulating lipoprotein biosynthesis and metabolism.  相似文献   

7.
The 21st amino acid, selenocysteine (Sec), is incorporated translationally into proteins and is synthesized on its specific tRNA (tRNASec). In Bacteria, the selenocysteine synthase SelA converts Ser-tRNASec, formed by seryl-tRNA synthetase, to Sec-tRNASec. SelA, a member of the fold-type-I pyridoxal 5′-phosphate-dependent enzyme superfamily, has an exceptional homodecameric quaternary structure with a molecular mass of about 500 kDa. Our previously determined crystal structures of Aquifex aeolicus SelA complexed with tRNASec revealed that the ring-shaped decamer is composed of pentamerized SelA dimers, with two SelA dimers arranged to collaboratively interact with one Ser-tRNASec. The SelA catalytic site is close to the dimer–dimer interface, but the significance of the dimer pentamerization in the catalytic site formation remained elusive. In the present study, we examined the quaternary interactions and demonstrated their importance for SelA activity by systematic mutagenesis. Furthermore, we determined the crystal structures of “depentamerized” SelA variants with mutations at the dimer–dimer interface that prevent pentamerization. These dimeric SelA variants formed a distorted and inactivated catalytic site and confirmed that the pentamer interactions are essential for productive catalytic site formation. Intriguingly, the conformation of the non-functional active site of dimeric SelA shares structural features with other fold-type-I pyridoxal 5′-phosphate-dependent enzymes with native dimer or tetramer (dimer-of-dimers) quaternary structures.  相似文献   

8.
Selenocysteine (Sec), the 21st amino acid, is synthesized from a serine precursor in a series of reactions that require selenocysteine tRNA (tRNASec). In archaea and eukaryotes, O-phosphoseryl-tRNASec:selenocysteinyl-tRNASec synthase (SepSecS) catalyzes the terminal synthetic reaction during which the phosphoseryl intermediate is converted into the selenocysteinyl moiety while being attached to tRNASec. We have previously shown that only the SepSecS tetramer is capable of binding to and recognizing the distinct fold of tRNASec. Because only two of the four tRNA-binding sites were occupied in the crystal form, a question was raised regarding whether the observed arrangement and architecture faithfully recapitulated the physiologically relevant ribonucleoprotein complex important for selenoprotein formation. Herein, we determined the stoichiometry of the human terminal synthetic complex of selenocysteine by using small angle x-ray scattering, multi-angle light scattering, and analytical ultracentrifugation. In addition, we provided the first estimate of the ratio between SepSecS and tRNASec in vivo. We show that SepSecS preferentially binds one or two tRNASec molecules at a time and that the enzyme is present in large molar excess over the substrate tRNA in vivo. Moreover, we show that in a complex between SepSecS and two tRNAs, one enzyme homodimer plays a role of the noncatalytic unit that positions CCA ends of two tRNASec molecules into the active site grooves of the other, catalytic, homodimer. Finally, our results demonstrate that the previously determined crystal structure represents the physiologically and catalytically relevant complex and suggest that allosteric regulation of SepSecS might play an important role in regulation of selenocysteine and selenoprotein synthesis.  相似文献   

9.
Elongation factor Tu (EF-Tu) binds to all standard aminoacyl transfer RNAs (aa-tRNAs) and transports them to the ribosome while protecting the ester linkage between the tRNA and its cognate amino acid. We use molecular dynamics simulations to investigate the dynamics of the EF-Tu·guanosine 5′-triphosphate·aa-tRNACys complex and the roles played by Mg2+ ions and modified nucleosides on the free energy of protein·RNA binding. Individual modified nucleosides have pronounced effects on the structural dynamics of tRNA and the EF-Tu·Cys-tRNACys interface. Combined energetic and evolutionary analyses identify the coevolution of residues in EF-Tu and aa-tRNAs at the binding interface. Highly conserved EF-Tu residues are responsible for both attracting aa-tRNAs as well as providing nearby nonbonded repulsive energies that help fine-tune molecular attraction at the binding interface. In addition to the 3′ CCA end, highly conserved tRNA nucleotides G1, G52, G53, and U54 contribute significantly to EF-Tu binding energies. Modification of U54 to thymine affects the structure of the tRNA common loop resulting in a change in binding interface contacts. In addition, other nucleotides, conserved within certain tRNA specificities, may be responsible for tuning aa-tRNA binding to EF-Tu. The trend in EF-Tu·Cys-tRNACys binding energies observed as the result of mutating the tRNA agrees with experimental observation. We also predict variations in binding free energies upon misacylation of tRNACys with d-cysteine or O-phosphoserine and upon changing the protonation state of l-cysteine. Principal components analysis in each case reveals changes in the communication network across the protein·tRNA interface and is the basis for the entropy calculations.  相似文献   

10.
在原核生物中,硒蛋白合成需要tRNA~(Sec) (SelC)与硒代半胱氨酸合成(Sec synthase, SelA)、硒代半胱氨酸特异性延伸因子(Sec-specificelongationfactor,SelB)之间相互作用。【目的】基于大肠杆菌掺硒机器,寻找tRNA~(Sec)骨架上关键核苷酸位点,为解决硒蛋白目前面临的掺硒效率较低、产量低的问题提供新思路。【方法】以大鼠细胞质型硫氧还蛋白还原酶(thioredoxinreductase1,TrxR1)为掺硒模式蛋白为定点突变tRNA~(Sec),转化至BL21 (DE3) gor-获得阳性重组菌株(携带pET-TRSter/pSUABC’),用于表达大鼠硒蛋白TrxR1,然后使用2¢,5¢ADP-Sepharose亲和层析和凝胶过滤两步法分离纯化TrxR1,最后利用经典硒依赖型DTNB还原反应测定TrxR1的酶活,分析关键核苷酸位点,评价掺硒效率。【结果】在存在SECIS元件的前提下,当SelA、SelB、tRNA~(Sec)共表达时,与野生型相比,携带突变型tRNA~(Sec)所共表达的TrxR1酶活力呈现不同程度的降低,其中E.colitRNA~(Sec)的G18、G19这两个位点的所有的TrxR1酶活远低于野生型(10%);然而,a26和b7的酶活相对较高。【结论】E. coli tRNA~(Sec)骨架上G18和G19位点对于维持tRNA稳定性和灵活性发挥了关键作用,位点突变引起tRNA结构变化会影响tRNA~(Sec)与掺硒元件的互作,因此有望通过改造tRNA核苷酸位点来提高硒蛋白的掺硒效率。  相似文献   

11.
Sep-tRNA:Cys-tRNA synthase (SepCysS) catalyzes the sulfhydrylation of tRNA-bound O-phosphoserine (Sep) to form cysteinyl-tRNA(Cys) (Cys-tRNA(Cys)) in methanogens that lack the canonical cysteinyl-tRNA synthetase (CysRS). A crystal structure of the Archaeoglobus fulgidus SepCysS apoenzyme provides information on the binding of the pyridoxal phosphate cofactor as well as on amino acid residues that may be involved in substrate binding. However, the mechanism of sulfur transfer to form cysteine was not known. Using an in vivo Escherichia coli complementation assay, we showed that all three highly conserved Cys residues in SepCysS (Cys(64), Cys(67), and Cys(272) in the Methanocaldococcus jannaschii enzyme) are essential for the sulfhydrylation reaction in vivo. Biochemical and mass spectrometric analysis demonstrated that Cys(64) and Cys(67) form a disulfide linkage and carry a sulfane sulfur in a portion of the enzyme. These results suggest that a persulfide group (containing a sulfane sulfur) is the proximal sulfur donor for cysteine biosynthesis. The presence of Cys(272) increased the amount of sulfane sulfur in SepCysS by 3-fold, suggesting that this Cys residue facilitates the generation of the persulfide group. Based upon these findings, we propose for SepCysS a sulfur relay mechanism that recruits both disulfide and persulfide intermediates.  相似文献   

12.
Several molecular mechanisms are involved in the genetic code interpretation during translation, as codon degeneration for the incorporation of rare amino acids. One mechanism that stands out is selenocysteine (Sec), which requires a specific biosynthesis and incorporation pathway. In Bacteria, the Sec biosynthesis pathway has unique features compared with the eukaryote pathway as Ser to Sec conversion mechanism is accomplished by a homodecameric enzyme (selenocysteine synthase, SelA) followed by the action of an elongation factor (SelB) responsible for delivering the mature Sec-tRNASec into the ribosome by the interaction with the Selenocysteine Insertion Sequence (SECIS). Besides this mechanism being already described, the sequential events for Sec-tRNASec and SECIS specific recognition remain unclear. In this study, we determined the order of events of the interactions between the proteins and RNAs involved in Sec incorporation. Dissociation constants between SelB and the native as well as unacylated-tRNASec variants demonstrated that the acceptor stem and variable arm are essential for SelB recognition. Moreover, our data support the sequence of molecular events where GTP-activated SelB strongly interacts with SelA.tRNASec. Subsequently, SelB.GTP.tRNASec recognizes the mRNA SECIS to deliver the tRNASec to the ribosome. SelB in complex with its specific RNAs were examined using Hydrogen/Deuterium exchange mapping that allowed the determination of the molecular envelopes and its secondary structural variations during the complex assembly. Our results demonstrate the ordering of events in Sec incorporation and contribute to the full comprehension of the tRNASec role in the Sec amino acid biosynthesis, as well as extending the knowledge of synthetic biology and the expansion of the genetic code.  相似文献   

13.
Sequence Divergence of Seryl-tRNA Synthetases in Archaea   总被引:2,自引:1,他引:1       下载免费PDF全文
The genomic sequences of Methanococcus jannaschii and Methanobacterium thermoautotrophicum contain a structurally uncommon seryl-tRNA synthetase (SerRS) sequence and lack an open reading frame (ORF) for the canonical cysteinyl-tRNA synthetase (CysRS). Therefore, it is not clear if Cys-tRNACys is formed by direct aminoacylation or by a transformation of serine misacylated to tRNACys. To address this question, we prepared SerRS from two methanogenic archaea and measured the enzymatic properties of these proteins. SerRS was purified from M. thermoautotrophicum; its N-terminal peptide sequence matched the sequence deduced from the relevant ORF in the genomic data of M. thermoautotrophicum and M. jannaschii. In addition, SerRS was expressed from a cloned Methanococcus maripaludis serS gene. The two enzymes charged serine to their homologous tRNAs and also accepted Escherichia coli tRNA as substrate for aminoacylation. Gel shift experiments showed that M. thermoautotrophicum SerRS did not mischarge tRNACys with serine. This indicates that Cys-tRNACys is formed by direct acylation in these organisms.  相似文献   

14.
Selenocysteine and pyrrolysine, known as the 21st and 22nd amino acids, are directly inserted into growing polypeptides during translation. Selenocysteine is synthesized via a tRNA-dependent pathway and decodes UGA (opal) codons. The incorporation of selenocysteine requires the concerted action of specific RNA and protein elements. In contrast, pyrrolysine is ligated directly to tRNAPyl and inserted into proteins in response to UAG (amber) codons without the need for complex re-coding machinery. Here we review the latest updates on the structure and mechanisms of molecules involved in Sec-tRNASec and Pyl-tRNAPyl formation as well as the distribution of the Pyl-decoding trait.  相似文献   

15.
16.
The complete mitochondrial genome of Macrobrachium nipponense   总被引:1,自引:0,他引:1  
Ma K  Feng J  Lin J  Li J 《Gene》2011,487(2):160-165
The complete mitochondrial (mt) genome sequence plays an important role in the accurate determination of phylogenetic relationships among metazoans. Herein, we determined the complete mt genome sequence, structure and organization of Macrobrachium nipponense (M. nipponense) (GenBank ID: NC_015073.1) and compared it to that of Macrobrachium lanchesteri (M. lanchesteri) and Macrobrachium rosenbergii (M. rosenbergii). The 15,806 base pair (bp) M. nipponense mt genome, which is comprised of 37 genes, including 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs) and 2 ribosomal RNAs (rRNAs), is slightly larger than that of M. lanchesteri (15,694 bp, GenBank ID: NC_012217.1) and M. rosenbergii (15,772 bp, GenBank ID: NC_006880.1). The M. nipponense genome contains a high AT content (66.0%), which is a common feature among metazoan mt genomes. Compared with M. lanchesteri and M. rosenbergii, we found a peculiar non-coding region of 950 bp with a microsatellite-like (TA)6 element and many hairpin structures. The 13 PCGs are comprised of a total of 3707 codons, excluding incomplete termination codons, and the most frequently used amino acid is Leu (16.0%). The predicted start codons in the M. nipponense mt genome include ATG, ATC and ATA. Seven PCGs use TAA as a stop codon, whereas two use TAG, three use T and only one uses TA. Twenty-three of the genes are encoded on the L strand, and ND1, ND4, ND5, ND4L, 12S rRNA, 16S rRNA, tRNAHis, tRNAPro, tRNAPhe, tRNAVal, tRNAGln, tRNACys, tRNATyr and a tRNALeu are encoded on the H strand. The two rRNAs of M. nipponense and M. rosenbergii are encoded on the H strand, whereas the M. lanchesteri rRNAs are encoded on the L stand.  相似文献   

17.
Biosynthesis of selenocysteine on its tRNA in eukaryotes   总被引:2,自引:0,他引:2  
Selenocysteine (Sec) is cotranslationally inserted into protein in response to UGA codons and is the 21st amino acid in the genetic code. However, the means by which Sec is synthesized in eukaryotes is not known. Herein, comparative genomics and experimental analyses revealed that the mammalian Sec synthase (SecS) is the previously identified pyridoxal phosphate-containing protein known as the soluble liver antigen. SecS required selenophosphate and O-phosphoseryl-tRNA[Ser]Sec as substrates to generate selenocysteyl-tRNA[Ser]Sec. Moreover, it was found that Sec was synthesized on the tRNA scaffold from selenide, ATP, and serine using tRNA[Ser]Sec, seryl-tRNA synthetase, O-phosphoseryl-tRNA[Ser]Sec kinase, selenophosphate synthetase, and SecS. By identifying the pathway of Sec biosynthesis in mammals, this study not only functionally characterized SecS but also assigned the function of the O-phosphoseryl-tRNA[Ser]Sec kinase. In addition, we found that selenophosphate synthetase 2 could synthesize monoselenophosphate in vitro but selenophosphate synthetase 1 could not. Conservation of the overall pathway of Sec biosynthesis suggests that this pathway is also active in other eukaryotes and archaea that synthesize selenoproteins.  相似文献   

18.
Selenocysteine (Sec) is translationally incorporated into proteins in response to the UGA codon. The tRNA specific to Sec (tRNASec) is first ligated with serine by seryl-tRNA synthetase (SerRS). In the present study, we determined the 3.1 Å crystal structure of the tRNASec from the bacterium Aquifex aeolicus, in complex with the heterologous SerRS from the archaeon Methanopyrus kandleri. The bacterial tRNASec assumes the L-shaped structure, from which the long extra arm protrudes. Although the D-arm conformation and the extra-arm orientation are similar to those of eukaryal/archaeal tRNASecs, A. aeolicus tRNASec has unique base triples, G14:C21:U8 and C15:G20a:G48, which occupy the positions corresponding to the U8:A14 and R15:Y48 tertiary base pairs of canonical tRNAs. Methanopyrus kandleri SerRS exhibited serine ligation activity toward A. aeolicus tRNASec in vitro. The SerRS N-terminal domain interacts with the extra-arm stem and the outer corner of tRNASec. Similar interactions exist in the reported tRNASer and SerRS complex structure from the bacterium Thermus thermophilus. Although the catalytic C-terminal domain of M. kandleri SerRS lacks interactions with A. aeolicus tRNASec in the present complex structure, the conformational flexibility of SerRS is likely to allow the CCA terminal region of tRNASec to enter the SerRS catalytic site.  相似文献   

19.
吡咯赖氨酸在产甲烷菌的甲胺甲基转移酶中发现,是目前已知的第 22 种参与蛋白质生物合成的氨基酸,与标准氨基酸不同的是,它由终止密码子 UAG 的有义编码形成 . 与之对应的在产甲烷菌中也含有特异的吡咯赖氨酰 -tRNA 合成酶 (PylRS) 和吡咯赖氨酸 tRNA (tRNAPyl). tRNAPyl具有不同于经典 tRNA 的特殊结构 . 产甲烷菌通过直接途径和间接途径这两种途径生成吡咯赖氨酰 -tRNAPyl(Pyl-tRNAPyl) ,它还可能通过 mRNA 上的特殊结构以及其他还未发现的机制,控制 UAG 编码成为终止密码子或者吡咯赖氨酸 . 比较了吡咯赖氨酸与另一种非标准氨基酸,第 21 种氨基酸———硒代半胱氨酸的相似点与不同点 .  相似文献   

20.
Human TRIT1 is a tRNA isopentenyltransferase (IPTase) homologue of Escherichia coli MiaA, Saccharomyces cerevisiae Mod5, Schizosaccharomyces pombe Tit1, and Caenorhabditis elegans GRO-1 that adds isopentenyl groups to adenosine 37 (i6A37) of substrate tRNAs. Prior studies indicate that i6A37 increases translation fidelity and efficiency in codon-specific ways. TRIT1 is a tumor suppressor whose mutant alleles are associated with cancer progression. We report the systematic identification of i6A37-containing tRNAs in a higher eukaryote, performed using small interfering RNA knockdown and other methods to examine TRIT1 activity in HeLa cells. Although several potential substrates contained the IPTase recognition sequence A36A37A38 in the anticodon loop, only tRNASerAGA, tRNASerCGA, tRNASerUGA, and selenocysteine tRNA with UCA (tRNA[Ser]SecUCA) contained i6A37. This subset is a significantly more restricted than that for two distant yeasts (S. cerevisiae and S. pombe), the only other organisms comprehensively examined. Unlike the fully i6A37-modified tRNAs for Ser, tRNA[Ser]SecUCA is partially (∼40%) modified. Exogenous selenium and other treatments that decreased the i6A37 content of tRNA[Ser]SecUCA led to increased levels of the tRNA[Ser]SecUCA. Of the human mitochondrion (mt)-encoded tRNAs with A36A37A38, only mt tRNAs tRNASerUGA and tRNATrpUCA contained detectable i6A37. Moreover, while tRNASer levels were unaffected by TRIT1 knockdown, the tRNA[Ser]SecUCA level was increased and the mt tRNASerUGA level was decreased, suggesting that TRIT1 may control the levels of some tRNAs as well as their specific activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号