首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibitor of growth 2 (ING2) gene encodes a candidate tumor suppressor and is frequently reduced in many tumors. However, the mechanisms underlying the regulation of ING2, in particular its protein stability, are still unclear. Here we show that the homologous to E6AP carboxyl terminus (HECT)-type ubiquitin ligase Smad ubiquitination regulatory factor 1 (Smurf1) interacts with and targets ING2 for poly-ubiquitination and proteasomal degradation. Intriguingly, the ING2 binding domain in Smurf1 was mapped to the catalytic HECT domain. Furthermore, the C-terminal PHD domain of ING2 was required for Smurf1-mediated degradation. This study provided the first evidence that the stability of ING2 could be regulated by ubiquitin-mediated degradation.

Structured summary

MINT-7894271: ING2 (uniprotkb:Q9H160) binds (MI:0407) to Smurf1 (uniprotkb:Q9HCE7) by pull-down (MI:0096)MINT-7894319, MINT-7894339: ING2 (uniprotkb:Q9H160) physically interacts (MI:0915) with Smurf1 (uniprotkb:Q9HCE7) by anti tag co-immunoprecipitation (MI:0007)MINT-7894301: Smurf1 (uniprotkb:Q9HCE7) physically interacts (MI:0915) with ING2 (uniprotkb:Q9H160) by anti bait co-immunoprecipitation (MI:0006)MINT-7894358: ING1b (uniprotkb:Q9UK53-2) physically interacts (MI:0915) with Smurf1 (uniprotkb:Q9HCE7) by anti tag co-immunoprecipitation (MI:0007)MINT-7894249: ING2 (uniprotkb:Q9H160) physically interacts (MI:0915) with ubiquitin (uniprotkb:P62988) by anti tag co-immunoprecipitation (MI:0007)  相似文献   

2.
Leptin mediates its metabolic effects through several leptin receptor (LEP-R) isoforms. In humans, long (LEPRb) and short (LEPRa,c,d) isoforms are generated by alternative splicing. Most of leptin’s effects are believed to be mediated by the OB-Rb isoform. However, the role of short LEPR isoforms and the possible existence of heteromers between different isoforms are poorly understood. Using BRET1 and optimized co-immunoprecipitation, we observed LEPRa/b and LEPRb/c heteromers located at the plasma membrane and stabilized by leptin. Given the widespread coexpression of LEPRa and LEPRb, our results suggest that LEPRa/b heteromers may represent a major receptor species in most tissues.

Structured summary

MINT-7714817: LEPRb (uniprotkb:P48357-1) physically interacts (MI:0915) with LEPRb (uniprotkb:P48357-1) by anti tag co-immunoprecipitation (MI:0007)MINT-7714785: LEPRc (uniprotkb:P48357-2) physically interacts (MI:0915) with LEPRc (uniprotkb:P48357-2) by bioluminescence resonance energy transfer (MI:0012)MINT-7714951, MINT-7714744: LEPRa (uniprotkb:P48357-3) physically interacts (MI:0915) with LEPRa (uniprotkb:P48357-3) by bioluminescence resonance energy transfer (MI:0012)MINT-7714859: LEPRb (uniprotkb:P48357-1) physically interacts (MI:0915) with LEPRa (uniprotkb:P48357-3) by anti tag co-immunoprecipitation (MI:0007)MINT-7714885, MINT-7714672: LEPRb (uniprotkb:P48357-1) physically interacts (MI:0915) with LEPRb (uniprotkb:P48357-1) by bioluminescence resonance energy transfer (MI:0012)MINT-7714835: LEPRa (uniprotkb:P48357-3) physically interacts (MI:0915) with LEPRa (uniprotkb:P48357-3) by anti tag co-immunoprecipitation (MI:0007)MINT-7714914, MINT-7714723, MINT-7714759: LeprB (uniprotkb:P48357-1) physically interacts (MI:0915) with LEPRa (uniprotkb:P48357-3) by bioluminescence resonance energy transfer (MI:0012)MINT-7714703, MINT-7714936, MINT-7714772: LEPRb (uniprotkb:P48357-1) physically interacts (MI:0915) with LEPRc (uniprotkb:P48357-2) by bioluminescence resonance energy transfer (MI:0012)MINT-7714872: LEPRb (uniprotkb:P48357-1) physically interacts (MI:0915) with LEPRc (uniprotkb:P48357-2) by anti tag co-immunoprecipitation (MI:0007)  相似文献   

3.
The small GTPase ADP-ribosylation factor 6 (ARF6) plays crucial roles in a wide variety of cell functions. To better understand the molecular mechanisms of ARF6-mediated signaling and cellular functions, we sought new ARF6-binding proteins in the mouse brain. We identified the signaling scaffold protein JNK-interacting protein 3 (JIP3), which is exclusively expressed in neurons, as a downstream effector of ARF6. Overexpression of a unique dominant negative mutant of ARF6, which was unable to interact with JIP3, and knockdown of JIP3 in mouse cortical neurons stimulated the elongation and branching of neurites. These results provide evidence that ARF6/JIP3 signaling regulates neurite morphogenesis.

Structured summary

MINT-7892698: PIP5K gamma 661 (uniprotkb:O70161) physically interacts (MI:0915) with Arf6 (uniprotkb:P62331) by anti tag coimmunoprecipitation (MI:0007)MINT-7892333, MINT-7892573, MINT-7892594, MINT-7892629, MINT-7892644, MINT-7892522, MINT-7892716: Arf6 (uniprotkb:P62331) physically interacts (MI:0915) with JLP (uniprotkb:Q58A65) by anti tag coimmunoprecipitation (MI:0007)MINT-7892509: Arf6 (uniprotkb:P62331) physically interacts (MI:0915) with JIP3 (uniprotkb:Q9ESN9) by pull down (MI:0096)MINT-7892770: Arf6 (uniprotkb:P62331) binds (MI:0407) to JIP3 (uniprotkb:Q9ESN9) by pull down (MI:0096)MINT-7892755: Arf6 (uniprotkb:P62331) binds (MI:0407) to JLP (uniprotkb:Q58A65) by pull down (MI:0096)MINT-7892289, MINT-7892314: Arf6 (uniprotkb:P62331) physically interacts (MI:0915) with JLP (uniprotkb:Q58A65) by pull down (MI:0096)MINT-7892353, MINT-7892615, MINT-7892657, MINT-7892672, MINT-7892549, MINT-7892738: Arf6 (uniprotkb:P62331) physically interacts (MI:0915) with JIP3 (uniprotkb:Q9ESN9) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

4.
5.
Epstein-Barr virus latent membrane protein 1 (LMP1) activates NF-κB signaling pathways through two C-terminal regions, CTAR1 and CTAR2. Previous studies have demonstrated that BS69, a multidomain cellular protein, regulates LMP1/CTAR2-mediated NF-κB activation by interfering with the complex formation between TRADD and LMP1/CTAR2. Here, we found that BS69 directly interacted with the LMP1/CTAR1 domain and regulated LMP1/CTAR1-mediated NF-κB activation and subsequent IL-6 production. Regarding the mechanisms involved, we found that BS69 directly interacted with TRAF3, a negative regulator of NF-κB activation. Furthermore, small-interfering RNA-mediated knockdown experiments revealed that TRAF3 was involved in the BS69-mediated suppression of LMP1/CTAR1-induced NF-κB activation.

Structured summary

MINT-7556591: lmp1 (uniprotkb:P03230) physically interacts (MI:0915) with BS69 (uniprotkb:Q15326) by anti tag coimmunoprecipitation (MI:0007)MINT-7556646: TRAF6 (uniprotkb:Q9Y4K3) physically interacts (MI:0915) with BS69 (uniprotkb:Q15326) by anti tag coimmunoprecipitation (MI:0007)MINT-7556658, MINT-7556670: TRAF3 (uniprotkb:Q13114) physically interacts (MI:0915) with BS69 (uniprotkb:Q15326) by anti tag coimmunoprecipitation (MI:0007)MINT-7556607: TRAF1 (uniprotkb:Q13077) physically interacts (MI:0915) with BS69 (uniprotkb:Q15326) by anti tag coimmunoprecipitation (MI:0007)MINT-7556634: TRAF5 (uniprotkb:O00463) physically interacts (MI:0915) with BS69 (uniprotkb:Q15326) by anti tag coimmunoprecipitation (MI:0007)MINT-7556622: TRAF2 (uniprotkb:Q12933) physically interacts (MI:0915) with BS69 (uniprotkb:Q15326) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

6.
Phototropin receptor kinases play an important role in optimising plant growth in response to blue light. Much is known regarding their photochemical reactivity, yet little progress has been made to identify downstream signalling components. Here, we isolated several interacting proteins for Arabidopsis phototropin 1 (phot1) by yeast two-hybrid screening. These include members of the NPH3/RPT2 (NRL) protein family, proteins associated with vesicle trafficking, and the 14-3-3 lambda (λ) isoform from Arabidopsis. 14-3-3λ and phot1 were found to colocalise and interact in vivo. Moreover, 14-3-3 binding to phot1 was limited to non-epsilon 14-3-3 isoforms and was dependent on key sites of receptor autophosphorylation. No 14-3-3 binding was detected for Arabidopsis phot2, suggesting that 14-3-3 proteins are specific to phot1 signalling.

Structured summary

MINT-7146953: PHOT1 (uniprotkb:O48963) physically interacts (MI:0915) with ARF7 (uniprotkb:Q9LFJ7) by two hybrid (MI:0018)MINT-7147335: PHOT1 (uniprotkb:O48963) physically interacts (MI:0914) with 14-3-3 phi (uniprotkb:P46077) by far Western blotting (MI:0047)MINT-7146854: PHOT1 (uniprotkb:O48963) physically interacts (MI:0915) with RPT2 (uniprotkb:Q682S0) by two hybrid (MI:0018)MINT-7147215: PHOT1 (uniprotkb:O48963) physically interacts (MI:0914) with 14-3-3 lambda (uniprotkb:P48349) by anti tag coimmunoprecipitation (MI:0007)MINT-7147044, MINT-7147185, MINT-7147200, MINT-7147413: PHOT1 (uniprotkb:O48963) physically interacts (MI:0914) with 14-3-3 lambda (uniprotkb:P48349) by far Western blotting (MI:0047)MINT-7146983: PHOT1 (uniprotkb:O48963) physically interacts (MI:0915) with 14-3-3 lambda (uniprotkb:P48349) by two hybrid (MI:0018)MINT-7146871: PHOT1 (uniprotkb:O48963) physically interacts (MI:0915) with NPH3-like (uniprotkb:Q9S9Q9) by two hybrid (MI:0018)MINT-7146905: PHOT1 (uniprotkb:O48963) physically interacts (MI:0915) with ARF2 (uniprotkb:Q9M1P5) by two hybrid (MI:0018)MINT-7147364: PHOT1 (uniprotkb:O48963) physically interacts (MI:0914) with 14-3-3 upsilon (uniprotkb:P42645) by far Western blotting (MI:0047)MINT-7147234: PHOT1 (uniprotkb:O48963) physically interacts (MI:0914) with 14-3-3 kappa (uniprotkb:P48348) by far Western blotting (MI:0047)  相似文献   

7.
Although the precise intracellular roles of S100 proteins are not fully understood, these proteins are thought to be involved in Ca2+-dependent diverse signal transduction pathways. In this report, we identified importin α as a novel target of S100A6. Importin α contains armadillo repeats, essential for binding to nuclear localization signals. Based on the results from GST pull-down assay, gel-shift assay, and co-immunoprecipitation, we demonstrated that S100A6 specifically interacts with the armadillo repeats of importin α in a Ca2+-dependent manner, resulting in inhibition of the nuclear localization signal (NLS)-importin α complex formation in vitro and in vivo. These results indicate S100A6 may regulate the nuclear transport of NLS-cargos in response to increasing concentrations of intracellular Ca2+.

Structured summary

MINT-8045244: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with S100A2 (uniprotkb:P29034) by pull down (MI:0096)MINT-8044928: Importin alpha (uniprotkb:P52292) binds (MI:0407) to S100A6 (uniprotkb:P06703) by pull down (MI:0096)MINT-8044941: Importin alpha (uniprotkb:P52292) and S100A6 (uniprotkb:P06703) bind (MI:0407) by electrophoretic mobility supershift assay (MI:0412)MINT-8044997: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with S100A6 (uniprotkb:P06703) by anti bait coimmunoprecipitation (MI:0006)MINT-8045031: Importin beta (uniprotkb:Q14974) physically interacts (MI:0915) with importin alpha (uniprotkb:P52293) and S100A6 (uniprotkb:P06703) by pull down (MI:0096)MINT-8044917: Importin alpha (uniprotkb:P52292) binds (MI:0407) to S100A2 (uniprotkb:P29034) by pull down (MI:0096)MINT-8045257: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with S100A6 (uniprotkb:P06703) by pull down (MI:0096)MINT-8045015: Importin beta (uniprotkb:Q14974) physically interacts (MI:0915) with importin alpha (uniprotkb:P52293) and S100A2 (uniprotkb:P29034) by pull down (MI:0096)MINT-8045267: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with S100A2 (uniprotkb:P29034) and npm2 (uniprotkb:Q6GQG6) by pull down (MI:0096)MINT-8045316: Importin beta (uniprotkb:Q14974) physically interacts (MI:0915) with importin alpha (uniprotkb:P52293) by pull down (MI:0096)MINT-8045302: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with NPM1 (uniprotkb:P06748) and S100A2 (uniprotkb:P29034) by pull down (MI:0096)MINT-8045290: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with npm2 (uniprotkb:Q6GQG6) by pull down (MI:0096)MINT-8044963, MINT-8044985: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with S100A2 (uniprotkb:P29034) by anti bait coimmunoprecipitation (MI:0006)MINT-8044951: Importin alpha (uniprotkb:P52292) and S100A2 (uniprotkb:P29034) bind (MI:0407) by electrophoretic mobility supershift assay (MI:0412)  相似文献   

8.
Chi-Ruei Huang 《FEBS letters》2010,584(15):3323-25107
The full-length pro-survival protein Mcl-1 predominantly resides on the outer membrane of mitochondria. Here, we identified a mitochondrial matrix-localized isoform of Mcl-1 that lacks 33 amino acid residues at the N-terminus which serve both as a mitochondrial targeting and processing signal. Ectopically-expressed Mcl-1 without the N-terminal 33 residues failed to enter the mitochondrial matrix but retained wt-like activities both for interaction with BH3-only proteins and anti-apoptosis. In contrast, the mitochondrial matrix-localized isoform failed to interact with BH3-only proteins and manifested an attenuated anti-apoptotic activity. This study reveals that import of Mcl-1 into the mitochondrial matrix results in the attenuation of Mcl-1’s anti-apoptotic function.

Structured summary

MINT-7965637: NOXA (uniprotkb:Q9JM54) physically interacts (MI:0915) with Mcl-1 (uniprotkb:P97287) by anti tag coimmunoprecipitation (MI:0007)MINT-7965699: Mcl-1 (uniprotkb:P97287) physically interacts (MI:0915) with Bim (uniprotkb:O43521) by anti bait coimmunoprecipitation (MI:0006)MINT-7965655: Mcl-1 (uniprotkb:P97287) physically interacts (MI:0915) with NOXA (uniprotkb:Q9JM54) by anti bait coimmunoprecipitation (MI:0006)MINT-7965711: Bim (uniprotkb:O43521) physically interacts (MI:0915) with Mcl-1 (uniprotkb:P97287) by anti tag coimmunoprecipitation (MI:0007)MINT-7965673: PUMA (uniprotkb:Q9BXH1) physically interacts (MI:0915) with Mcl-1 (uniprotkb:P97287) by anti tag coimmunoprecipitation (MI:0007)MINT-7965685: Mcl-1 (uniprotkb:P97287) physically interacts (MI:0915) with PUMA (uniprotkb:Q9BXH1) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

9.
ELL-associated protein 30 (EAP30) was initially characterized as a component of the Holo-ELL complex, which contains the elongation factor ELL. Both ELL and Holo-ELL stimulate RNA pol II elongation in vitro. However, ELL and not Holo-ELL inhibits RNA pol II initiation. It is not clear how these two discrete functions of ELL are regulated. Here we report that mini-chromosome maintenance 2 (MCM2) binds to EAP30 and show that MCM2 competes with ELL for binding to EAP30 thus potentially modulating the stability of Holo-ELL.

Structured summary

MINT-7277033: EAP30 (uniprotkb:Q96H20) physically interacts (MI:0915) with RPB1 (uniprotkb:P24928) by anti tag coimmunoprecipitation (MI:0007)MINT-7277085: EAP30 (uniprotkb:Q96H20) binds (MI:0407) to ELL (uniprotkb:P55199) by pull down (MI:0096)MINT-7277072: EAP30 (uniprotkb:Q96H20) physically interacts (MI:0915) with ELL (uniprotkb:P55199) by anti tag coimmunoprecipitation (MI:0007)MINT-7277100: EAP30 (uniprotkb:Q96H20) physically interacts (MI:0915) with ELL (uniprotkb:P55199) by competition binding (MI:0405)MINT-7277153: MCM2 (uniprotkb:P49736) binds (MI:0407) to ELL (uniprotkb:P55199) by pull down (MI:0096)MINT-7276989: EAP30 (uniprotkb:Q96H20) physically interacts (MI:0915) with MCM2 (uniprotkb:P49736) by pull down (MI:0096)MINT-7277005: EAP30 (uniprotkb:Q96H20) physically interacts (MI:0915) with RPB1 (uniprotkb:P24928) by pull down (MI:0096)MINT-7276960, MINT-7277168: MCM2 (uniprotkb:P49736) physically interacts (MI:0915) with EAP30 (uniprotkb:Q96H20) by two hybrid (MI:0018)MINT-7276971, MINT-7277121, MINT-7277137: MCM2 (uniprotkb:P49736) binds (MI:0407) to EAP30 (uniprotkb:Q96H20) by pull down (MI:0096)MINT-7277018, MINT-7277061: EAP30 (uniprotkb:Q96H20) physically interacts (MI:0915) with MCM2 (uniprotkb:P49736) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

10.
The KRAB-type zinc-finger protein Apak (ATM and p53 associated KZNF protein) specifically suppresses p53-mediated apoptosis. Upon DNA damage, Apak is phosphorylated and inhibited by ATM kinase, resulting in p53 activation. However, how Apak is regulated in response to oncogenic stress remains unknown. Here we show that upon oncogene activation, Apak is inhibited in the tumor suppressor ARF-dependent but ATM-independent manner. Oncogene-induced ARF protein directly interacts with Apak and competes with p53 to bind to Apak, resulting in Apak dissociation from p53. Thus, Apak is differentially regulated in the ARF and ATM-dependent manner in response to oncogenic stress and DNA damage, respectively.

Structured summary

MINT-7989670: p53 (uniprotkb:P04637) binds (MI:0407) to APAK (uniprotkb:Q8TAQ5) by pull down (MI:0096)MINT-7989812: HDM2 (uniprotkb:Q00987) physically interacts (MI:0915) with ARF (uniprotkb:Q8N726-1) by anti bait coimmunoprecipitation (MI:0006)MINT-7989603, MINT-7989626: APAK (uniprotkb:Q8TAQ5) physically interacts (MI:0915) with ARF (uniprotkb:Q8N726-1) by anti bait coimmunoprecipitation (MI:0006)MINT-7989653: ARF (uniprotkb:Q8N726-1) binds (MI:0407) to APAK (uniprotkb:Q8TAQ5) by pull down (MI:0096)MINT-7989686, MINT-7989705, MINT-7989747:APAK (uniprotkb:Q8TAQ5) physically interacts (MI:0915) with ARF (uniprotkb:Q8N726-1) by anti tag coimmunoprecipitation (MI:0007)MINT-7989724: APAK (uniprotkb:Q8TAQ5) physically interacts (MI:0914) with ARF (uniprotkb:Q8N726-1) and p53 (uniprotkb:P04637) by anti tag coimmunoprecipitation (MI:0007)MINT-7989635: ARF (uniprotkb:Q8N726-1) and APAK (uniprotkb:Q8TAQ5) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7989584, MINT-7989773: APAK (uniprotkb:Q8TAQ5) physically interacts (MI:0915) with p53 (uniprotkb:P04637) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

11.
S100 proteins are a subfamily of the EF-hand type calcium sensing proteins, the exact biological functions of which have not been clarified yet. In this work, we have identified Cyclophilin 40 (CyP40) and FKBP52 (called immunophilins) as novel targets of S100 proteins. These immunophilins contain a tetratricopeptide repeat (TPR) domain for Hsp90 binding. Using glutathione-S transferase pull-down assays and immunoprecipitation, we have demonstrated that S100A1 and S100A2 specifically interact with the TPR domains of FKBP52 and CyP40 in a Ca2+-dependent manner, and lead to inhibition of the CyP40-Hsp90 and FKBP52-Hsp90 interactions. These findings have suggested that the Ca2+/S100 proteins are TPR-targeting regulators of the immunophilins-Hsp90 complex formations.

Structured summary

MINT-7710442: FKBP52 (uniprotkb:Q02790) physically interacts (MI:0915) with S100A6 (uniprotkb:P06703) by competition binding (MI:0405)MINT-7710192: Cyp40 (uniprotkb:P26882) binds (MI:0407) to S100A1 (uniprotkb:P35467) by pull down (MI:0096)MINT-7710412: Cyp40 (uniprotkb:P26882) physically interacts (MI:0915) with S100A2 (uniprotkb:P29034) by competition binding (MI:0405)MINT-7710374: FKBP52 (uniprotkb:Q02790) binds (MI:0407) to S100A2 (uniprotkb:P29034) by pull down (MI:0096)MINT-7710452: Cyp40 (uniprotkb:P26882) physically interacts (MI:0914) with S100A2 (uniprotkb:P29034) and Hsp90 (uniprotkb:P07900) by anti tag coimmunoprecipitation (MI:0007)MINT-7710387: FKBP52 (uniprotkb:Q02790) binds (MI:0407) to S100A6 (uniprotkb:P06703) by pull down (MI:0096)MINT-7710279: FKBP52 (uniprotkb:Q02790) physically interacts (MI:0915) with S100A1 (uniprotkb:P35467) by competition binding (MI:0405)MINT-7710224: FKBP52 (uniprotkb:Q02790) binds (MI:0407) to Hsp90 (uniprotkb:P07900) by pull down (MI:0096)MINT-7710464: Cyp40 (uniprotkb:P26882) physically interacts (MI:0914) with S100A6 (uniprotkb:P06703) and Hsp90 (uniprotkb:P07900) by anti tag coimmunoprecipitation (MI:0007)MINT-7710249: Cyp40 (uniprotkb:P26882) binds (MI:0407) to Hsp90 (uniprotkb:P07900) by pull down (MI:0096)MINT-7710422: Cyp40 (uniprotkb:P26882) physically interacts (MI:0915) with S100A6 (uniprotkb:P06703) by competition binding (MI:0405)MINT-7710348: Cyp40 (uniprotkb:P26882) binds (MI:0407) to S100A2 (uniprotkb:P29034) by pull down (MI:0096)MINT-7710208: FKBP52 (uniprotkb:Q02790) binds (MI:0407) to S100A1 (uniprotkb:P35467) by pull down (MI:0096)MINT-7710265: Cyp40 (uniprotkb:P26882) physically interacts (MI:0915) with S100A1 (uniprotkb:P35467) by competition binding (MI:0405)MINT-7710361: Cyp40 (uniprotkb:P26882) binds (MI:0407) to S100A6 (uniprotkb:P06703) by pull down (MI:0096)MINT-7710476: FKBP52 (uniprotkb:Q02790) physically interacts (MI:0914) with S100A2 (uniprotkb:P29034) and Hsp90 (uniprotkb:P07900) by anti tag coimmunoprecipitation (MI:0007)MINT-7710316: FKBP52 (uniprotkb:Q02790) physically interacts (MI:0914) with S100A1 (uniprotkb:P35467) and Hsp90 (uniprotkb:P07900) by anti tag coimmunoprecipitation (MI:0007)MINT-7710432: FKBP52 (uniprotkb:Q02790) physically interacts (MI:0915) with S100A2 (uniprotkb:P29034) by competition binding (MI:0405)MINT-7710488: FKBP52 (uniprotkb:Q02790) physically interacts (MI:0914) with S100A6 (uniprotkb:P06703) and Hsp90 (uniprotkb:P07900) by anti tag coimmunoprecipitation (MI:0007)MINT-7710329: S100A6 (uniprotkb:P14069) physically interacts (MI:0914) with FKBP52 (uniprotkb:P30416) and Cyp40 (uniprotkb:Q08752) by anti bait coimmunoprecipitation (MI:0006)MINT-7710295: Cyp40 (uniprotkb:P26882) physically interacts (MI:0914) with Hsp90 (uniprotkb:P07900) and S100A1 (uniprotkb:P35467) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

12.
RanGTP mediates nuclear import and mitotic spindle assembly by dissociating import receptors from nuclear localization signal (NLS) bearing proteins. We investigated the interplay between import receptors and the transmembrane nucleoporin Pom121. We found that Pom121 interacts with importin α/β and a group of nucleoporins in an NLS-dependent manner. In vivo, replacement of Pom121 with an NLS mutant version resulted in defective nuclear transport, induction of aberrant cytoplasmic membrane stacks and decreased cell viability. We propose that the NLS sites of Pom121 affect its function in NPC assembly both by influencing nucleoporin interactions and pore membrane structure.

Structured summary

MINT-7951230: pom121 (uniprotkb:Q5EWX9) physically interacts (MI:0914) with nup155 (uniprotkb:O75694), Nup133 (uniprotkb:Q8WUM0) and Importin beta (uniprotkb:Q14974) by pull down (MI:0096)MINT-7951210: pom121 (uniprotkb:Q5EWX9) physically interacts (MI:0915) with Importin alpha (uniprotkb:P52170) and Importin beta (uniprotkb:P52297) by pull down (MI:0096)MINT-7951183: pom121 (uniprotkb:Q5EWX9) physically interacts (MI:0914) with nup155 (uniprotkb:Q7ZWL0), nup160 (uniprotkb:P83722), nup205 (uniprotkb:Q642R6), nup93 (uniprotkb:Q7ZX96), Importin beta (uniprotkb:P52297) and nup62 (uniprotkb:Q91349) by pull down (MI:0096)MINT-7951416: pom121 (uniprotkb:Q5EWX9) physically interacts (MI:0914) with nup155 (uniprotkb:Q7ZWL0), nup93 (uniprotkb:Q7ZX96) and Importin beta (uniprotkb:P52297) by pull down (MI:0096)MINT-7951276: pom121 (uniprotkb:Q5EWX9) physically interacts (MI:0914) with nup155 (uniprotkb:Q7ZWL0), nup205 (uniprotkb:Q642R6), nup93 (uniprotkb:Q7ZX96), Importin beta (uniprotkb:P52297) and nup62 (uniprotkb:Q91349) by pull down (MI:0096)MINT-7951306, MINT-7951362: pom121 (uniprotkb:Q5EWX9) physically interacts (MI:0914) with nup155 (uniprotkb:Q7ZWL0), nup160 (uniprotkb:P83722), nup93 (uniprotkb:Q7ZX96), Importin beta (uniprotkb:P52297) and nup62 (uniprotkb:Q91349) by pull down (MI:0096)  相似文献   

13.
To further characterize the molecular events supporting the tumor suppressor activity of Scrib in mammals, we aim to identify new binding partners. We isolated MCC, a recently identified binding partner for β-catenin, as a new interacting protein for Scrib. MCC interacts with both Scrib and the NHERF1/NHERF2/Ezrin complex in a PDZ-dependent manner. In T47D cells, MCC and Scrib proteins colocalize at the cell membrane and reduced expression of MCC results in impaired cell migration. By contrast to Scrib, MCC inhibits cell directed migration independently of Rac1, Cdc42 and PAK activation. Altogether, these results identify MCC as a potential scaffold protein regulating cell movement and able to bind Scrib, β-catenin and NHERF1/2.

Structured summary

MINT-7211022: SCRIB (uniprotkb:Q14160) and MCC (uniprotkb:P23508) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7210609: SCRIB (uniprotkb:Q14160) physically interacts (MI:0915) with MCC (uniprotkb:P23508) by two hybrid (MI:0018)MINT-7210759, MINT-7210792: SCRIB (uniprotkb:Q14160) physically interacts (MI:0914) with PIX beta (uniprotkb:Q14155) by pull down (MI:0096)MINT-7210883, MINT-7210820: SCRIB (uniprotkb:Q14160) physically interacts (MI:0914) with MCC (uniprotkb:P23508) by anti bait coimmunoprecipitation (MI:0006)MINT-7210634, MINT-7210690, MINT-7210731: SCRIB (uniprotkb:Q14160) physically interacts (MI:0914) with MCC (uniprotkb:P23508) by pull down (MI:0096)MINT-7211267: E6 (uniprotkb:P06463) physically interacts (MI:0915) with SCRIB (uniprotkb:Q14160), SNX27 (uniprotkb:Q96L92), UTRN (uniprotkb:P46939), CASK (uniprotkb:O14936), DMD (uniprotkb:P11532) and Dlg (uniprotkb:Q12959) by pull down (MI:0096)MINT-7211237: MCC (uniprotkb:P23508) physically interacts (MI:0915) with SCRIB (uniprotkb:Q14160), EZR (uniprotkb:P15311), SNX27 (uniprotkb:Q96L92), NHERF1 (uniprotkb:O14745) and NHERF2 (uniprotkb:Q15599) by pull down (MI:0096)  相似文献   

14.
Xiaomei Yang 《FEBS letters》2010,584(11):2207-2212
The beta-2 adrenergic receptor (β2AR) has a carboxyl terminus motif that can interact with PSD-95/discs-large/ZO1 homology (PDZ) domain-containing proteins. In this paper, we identified membrane-associated guanylate kinase inverted-3 (MAGI-3) as a novel binding partner of β2AR. The carboxyl terminus of β2AR binds with high affinity to the fifth PDZ domain of MAGI-3, with the last four amino acids (D-S-L-L) of the receptor being the key determinants of the interaction. In cells, the association of full-length β2AR with MAGI-3 occurs constitutively and is enhanced by agonist stimulation of the receptor. Our data also demonstrated that β2AR-stimulated extracellular signal-regulated kinase-1/2 (ERK1/2) activation was substantially retarded by MAGI-3 expression. These data suggest that MAGI-3 regulates β2AR-mediated ERK activation through the physical interaction between β2AR and MAGI-3.

Structured summary

MINT-7716556: beta2AR (uniprotkb:P07550) physically interacts (MI:0915) with MAGI-3 (uniprotkb:Q5TCQ9) by anti tag coimmunoprecipitation (MI:0007)MINT-7716593: beta2AR (uniprotkb:P18762) physically interacts (MI:0915) with MAGI-3 (uniprotkb:Q9EQJ9) by anti bait coimmunoprecipitation (MI:0006)MINT-7716630: MAGI-3 (uniprotkb:Q5TCQ9) and beta2AR (uniprotkb:P07550) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7716382, MINT-7716335: MAGI-3 (uniprotkb:Q5TCQ9) physically interacts (MI:0915) with beta2AR (uniprotkb:P07550) by pull down (MI:0096)MINT-7716320, MINT-7716422, MINT-7716502, MINT-7716450, MINT-7716470: beta2AR (uniprotkb:P07550) binds (MI:0407) to MAGI-3 (uniprotkb:Q5TCQ9) by pull down (MI:0096)  相似文献   

15.
Thomas Bals  Silke Funke 《FEBS letters》2010,584(19):4138-4144
The chloroplast signal recognition particle (cpSRP) and its receptor, cpFtsY, posttranslationally target the nuclear-encoded light-harvesting chlorophyll-binding proteins (LHCPs) to the translocase Alb3 in the thylakoid membrane. In this study, we analyzed the interplay between the cpSRP pathway components, the substrate protein LHCP and the translocase Alb3 by using in vivo and in vitro techniques. We propose that cpSRP43 is crucial for the binding of LHCP-loaded cpSRP and cpFtsY to Alb3. In addition, our data suggest that a direct interaction between Alb3 and LHCP contributes to the formation of this complex.

Structured summary

MINT-7992851: Alb3 (uniprotkb:Q8LBP4) physically interacts (MI:0915) with cpSRP43 (uniprotkb:O22265) by two hybrid (MI:0018)MINT-7992897: cpSRP43 (uniprotkb:O22265) and Alb3 (uniprotkb:Q8LBP4) physically interact (MI:0915) by bimolecular fluorescence complementation (MI:0809)MINT-7993251: SRP43 (uniprotkb:O22265) binds (MI:0407) to LHCP (uniprotkb:P27490) by pull down (MI:0096)MINT-7993207: cpSRP43 (uniprotkb:O22265) physically interacts (MI:0915) with ftsY (uniprotkb:O80842), LHCP (uniprotkb:P27490), SRP-54 (uniprotkb:P37106) and Alb3 (uniprotkb:Q8LBP4) by pull down (MI:0096)MINT-7993272: Alb3 (uniprotkb:Q8LBP4) and LHCB (uniprotkb:P27490) physically interact (MI:0915) by bimolecular fluorescence complementation (MI:0809)MINT-7992960: cpSRP43 (uniprotkb:O22265) binds (MI:0407) to Alb3 (uniprotkb:Q8LBP4) by pull down (MI:0096)MINT-7993236: Alb3 (uniprotkb:Q8LBP4) binds (MI:0407) to LHCP (uniprotkb:P27490) by pull down (MI:0096)MINT-7993166: cpSRP43 (uniprotkb:O22265) physically interacts (MI:0915) with LHCP (uniprotkb:P27490) and Alb3 (uniprotkb:Q8LBP4) by pull down (MI:0096)MINT-7993118: cpSRP43 (uniprotkb:O22265) physically interacts (MI:0915) with Alb3 (uniprotkb:Q8LBP4), SRP-54 (uniprotkb:P37106) and LHCP (uniprotkb:P27490) by pull down (MI:0096)MINT-7993046: cpSRP43 (uniprotkb:O22265) physically interacts (MI:0915) with ftsY (uniprotkb:O80842), SRP-54 (uniprotkb:P37106) and Alb3 (uniprotkb:Q8LBP4) by pull down (MI:0096)MINT-7993004: cpSRP43 (uniprotkb:O22265) physically interacts (MI:0915) with SRP54 (uniprotkb:P37106) and Alb3 (uniprotkb:Q8LBP4) by pull down (MI:0096)  相似文献   

16.
Kum-Loong Boon  Martin Koš 《FEBS letters》2010,584(15):3299-3304
The 5′ cap trimethylation of small nuclear (snRNAs) and several nucleolar RNAs (snoRNAs) by trimethylguanosine synthase 1 (Tgs1p) is required for efficient pre-mRNA splicing. The previously uncharacterised protein Swm2p interacted with Tgs1p in yeast two-hybrid screens. In the present study we show that Swm2p interacts with the N-terminus of Tgs1p and its deletion impairs pre-mRNA splicing and pre-rRNA processing. The trimethylation of spliceosomal snRNAs and the U3 snoRNA, but not other snoRNAs, was abolished in the absence of Swm2p, indicating that Swm2p is required for a substrate-specific activity of Tgs1p.

Structured summary

MINT-7949608: p53 (uniprotkb:P02340) physically interacts (MI:0915) with large T-antigen (uniprotkb:P03070) by two-hybrid (MI:0018)MINT-7949574: swm2 (uniprotkb:P40342) physically interacts (MI:0915) with swm2 (uniprotkb:P40342) by pull down (MI:0096)MINT-7949556: swm2 (uniprotkb:P40342) physically interacts (MI:0915) with TGS1 (uniprotkb:Q12052) by pull down (MI:0096)MINT-7949587: swm2 (uniprotkb:P40342) physically interacts (MI:0915) with tgs1 (uniprotkb:Q12052) by two-hybrid (MI:0018)MINT-7949641: nop1 (uniprotkb:P15646) colocalizes (MI:0403) with TGS1 (uniprotkb:Q12052) by fluorescence microscopy (MI:0416)MINT-7949627: swm2 (uniprotkb:P40342) and nop1 (uniprotkb:P15646) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7949540: swm2 (uniprotkb:P40342) physically interacts (MI:0915) with TGS1 (uniprotkb:Q12052) by tandem affinity purification (MI:0676)  相似文献   

17.
Retrovirus replication critically depends on a dynamic interplay between retroviral and host proteins. We report on the binding of the surface subunit (glycoprotein 120 (gp120)) of the human immunodeficiency virus type 1 (HIV-1) envelope protein (Env) to the cytoplasmic C-terminus of the voltage-gated potassium channel BEC1 (brain-specific ether-a-go-go-like channel 1), an interaction that can result in the repression of BEC’s activity and the inhibition of HIV-1 particle-release. BEC1 protein was found to be expressed in T cells and macrophages, the major target cells of HIV-1. Thus, gp120/BEC1 interaction may be involved in HIV-1 life cycle and/or pathogenesis.

Structured summary

MINT-7968695: BEC1 (uniprotkb:Q9ULD8) physically interacts (MI:0915) with gp160 (uniprotkb:P04578) by anti bait coimmunoprecipitation (MI:0006)MINT-7968714: BEC1 (uniprotkb:Q9ULD8) physically interacts (MI:0915) with gp160 (uniprotkb:P04578) by anti tag coimmunoprecipitation (MI:0007)MINT-7968675: BEC1 (uniprotkb:Q9ULD8) physically interacts (MI:0915) with gp160 (uniprotkb:P04578) by pull down (MI:0096)  相似文献   

18.
In naive T cells, Lck exerts a negative control on the ERK/MAPK pathway. We show that c-mip (c-maf inducing protein) interacts with the p85 subunit of PI3 kinase and inactivates Lck, which results in Erk1/2 and p38 MAPK activation. This effect is not enough to activate AP1 given the inability of ERK to migrate into the nucleus and to transactivate its target genes. We demonstrate that c-mip interacts with Dip1 and upregulates DAPK, which blocks the nuclear translocation of ERK1/2. This dual effect of c-mip is unique and might represent a potential mechanism to prevent the development of an immune response.

Structured summary

MINT-7383650: p85 (uniprotkb:P27986) physically interacts (MI:0915) with c-Mip (uniprotkb:Q8IY22) by anti bait coimmunoprecipitation (MI:0006)MINT-7383661: c-Mip (uniprotkb:Q8IY22) physically interacts (MI:0915) with p85 (uniprotkb:P27986) by anti tag coimmunoprecipitation (MI:0007)MINT-7383676: p85 (uniprotkb:P27986) physically interacts (MI:0915) with p110 (uniprotkb:P42336) by anti bait coimmunoprecipitation (MI:0006)MINT-7383689, MINT-7383711: Dip-1 (uniprotkb:Q80SY4) physically interacts (MI:0915) with c-Mip (uniprotkb:Q8IY22) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

19.
You Lee Son 《FEBS letters》2010,584(18):3862-3866
Liver X receptor (LXR)/retinoid X receptor (RXR) heterodimers have been shown to perform critical functions in cholesterol and lipid metabolism. Here, we have conducted a comparative analysis of the contributions of LXR and RXR binding to steroid receptor coactivator-1 (SRC-1), which contains three copies of the NR box. We demonstrated that the coactivator-binding surface of LXR, but not that of RXR, is critically important for physical and functional interactions with SRC-1, thereby confirming that RXR functions as an allosteric activator of SRC-1-LXR interaction. Notably, we identified NR box-2 and -3 as the essential binding targets for the SRC-1-induced stimulation of LXR transactivity, and observed the competitive in vitro binding of NR box-2 and -3 to LXR.

Structured summary

MINT-7986678, MINT-7986639, MINT-7986700, MINT-7986720, MINT-7986736, MINT-7986760, MINT-7986787: LXR (uniprotkb:Q13133) physically interacts (MI:0915) with SRC1 (uniprotkb:Q15788) and RXR (uniprotkb:P19793) by pull down (MI:0096)MINT-7986596, MINT-7986621: SRC1 (uniprotkb:Q15788) physically interacts (MI:0915) with LXR (uniprotkb:Q13133) by pull down (MI:0096)MINT-7986555, MINT-7986575: LXR (uniprotkb:Q13133) physically interacts (MI:0915) with SRC1 (uniprotkb:Q15788) by two hybrid (MI:0018)MINT-7986808, MINT-7986907, MINT-7986890: SRC1 (uniprotkb:Q15788) binds (MI:0407) to LXR (uniprotkb:Q13133) by pull down (MI:0096)MINT-7986822, MINT-7986848, MINT-7986865: SRC1 (uniprotkb:Q15788) binds (MI:0407) to RXR (uniprotkb:P19793) by pull down (MI:0096)  相似文献   

20.
Velma V  Carrero ZI  Cosman AM  Hebert MD 《FEBS letters》2010,584(23):4735-4739
Coilin is a nuclear protein that plays a role in Cajal body formation. The function of nucleoplasmic coilin is unknown. Here we report that coilin interacts with Ku70 and Ku80, which are major players in the DNA repair process. Ku proteins compete with SMN and SmB′ proteins for coilin interaction sites. The binding domain on coilin for Ku proteins cannot be localized to one discrete region, and only full-length coilin is capable of inhibiting in vitro non-homologous DNA end joining (NHEJ). Since Ku proteins do not accumulate in CBs, these findings suggest that nucleoplasmic coilin participates in the regulation of DNA repair.

Structured summary

MINT-8052983:coilin (uniprotkb:P38432) physically interacts (MI:0915) with SmB′ (uniprotkb:P14678) by pull down (MI:0096)MINT-8052941:coilin (uniprotkb:P38432) physically interacts (MI:0915) with Ku70 (uniprotkb:P12956) by competition binding (MI:0405)MINT-8052765:coilin (uniprotkb:P38432) physically interacts (MI:0915) with Ku80 (uniprotkb:P13010) by pull down (MI:0096)MINT-8052971:coilin (uniprotkb:P38432) physically interacts (MI:0915) with SMN (uniprotkb:Q16637) by pull down (MI:0096)MINT-8052957:coilin (uniprotkb:P38432) physically interacts (MI:0915) with Ku80 (uniprotkb:P13010) by competition binding (MI:0405)MINT-8052894, MINT-8052908:coilin (uniprotkb:P38432) binds (MI:0407) to Ku80 (uniprotkb:P13010) by pull down (MI:0096)MINT-8052804:coilin (uniprotkb:P38432) physically interacts (MI:0915) with Ku80 (uniprotkb:P13010) by anti bait coimmunoprecipitation (MI:0006)MINT-8052925:coilin (uniprotkb:P38432) binds (MI:0407) to Ku70 (uniprotkb:P12956) by pull down (MI:0096)MINT-8052786:Ku80 (uniprotkb:P13010) physically interacts (MI:0914) with coilin (uniprotkb:P38432) and Ku70 (uniprotkb:P12956) by anti bait coimmunoprecipitation (MI:0006)MINT-8052776:coilin (uniprotkb:P38432) physically interacts (MI:0915) with Ku70 (uniprotkb:P12956) by pull down (MI:0096)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号