首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The antiviral protein viperin is a radical SAM enzyme   总被引:1,自引:0,他引:1  
Viperin, an interferon-inducible antiviral protein, is shown to bind an iron-sulfur cluster, based on iron analysis as well as UV-Vis and electron paramagnetic resonance spectroscopic data. The reduced protein contains a [4Fe-4S]1+ cluster whose g-values are altered upon addition of S-adenosylmethionine (SAM), consistent with SAM coordination to the cluster. Incubation of reduced viperin with SAM results in reductive cleavage of SAM to produce 5′-deoxyadenosine (5′-dAdo), a reaction characteristic of the radical SAM superfamily. The 5′-dAdo cleavage product was identified by a combination of HPLC and mass spectrometry analysis.  相似文献   

3.
A mechanism of the C―S bond activation of S-adenosylmethionine (SAM) in biotin synthase is discussed from quantum mechanical/molecular mechanical (QM/MM) computations. The active site of the enzyme involves a [4Fe-4S] cluster, which is coordinated to the COO and NH2 groups of the methionine moiety of SAM. The unpaired electrons on the iron atoms of the [4Fe-4S]2+ cluster are antiferromagnetically coupled, resulting in the S = 0 ground spin state. An electron is transferred from an electron donor to the [4Fe-4S]2+-SAM complex to produce the catalytically active [4Fe-4S]+ state. The SOMO of the [4Fe-4S]+-SAM complex is localized on the [4Fe-4S] moiety and the spin density of the [4Fe-4S] core is calculated to be 0.83. The C―S bond cleavage is associated with the electron transfer from the [4Fe-4S]+ cluster to the antibonding σ* C―S orbital. The electron donor and acceptor states are effectively coupled with each other at the transition state for the C―S bond cleavage. The activation barrier is calculated to be 16.0 kcal/mol at the QM (B3LYP/SV(P))/MM (CHARMm) level of theory and the C―S bond activation process is 17.4 kcal/mol exothermic, which is in good agreement with the experimental observation that the C―S bond is irreversibly cleaved in biotin synthase. The sulfur atom of the produced methionine molecule is unlikely to bind to an iron atom of the [4Fe-4S]2+ cluster after the C―S bond cleavage from the energetical and structural points of view.  相似文献   

4.
Viperin is an interferon-inducible protein inhibiting many DNA and RNA viruses. It contains an N-terminal transmembrane helix, a highly conserved C-terminus and a middle region carrying a CX3CX2C motif, characteristic of radical S-adenosyl-l-methionine (SAM) enzymes. So far no structural characterization has been reported and reconstitution of the [4Fe-4S] cluster in viperin all failed. Here, by dissecting the 361-residue human viperin into 12 fragments, followed by extensive CD and NMR characterization, Viperin (45-361) was identified to be soluble and structured in buffers. Most importantly, we have successfully reconstituted the [4Fe-4S] cluster in Viperin (45-361), thus providing the first experimental evidence confirming that viperin is indeed a radical SAM enzyme. Furthermore, the C-terminus Viperin (214-361) which is insoluble in buffers but again can be solubilized in salt-free water appears to be only partially folded. Our results thus imply that the radical SAM enzyme activity may play a key role in the broad antiviral actions of viperin.  相似文献   

5.
S-Adenosylmethionine (SAM, also known as AdoMet) radical enzymes use SAM and a [4Fe-4S] cluster to catalyze a diverse array of reactions. They adopt a partial triose-phosphate isomerase (TIM) barrel fold with N- and C-terminal extensions that tailor the structure of the enzyme to its specific function. One extension, termed a SPASM domain, binds two auxiliary [4Fe-4S] clusters and is present within peptide-modifying enzymes. The first structure of a SPASM-containing enzyme, anaerobic sulfatase-maturating enzyme (anSME), revealed unexpected similarities to two non-SPASM proteins, butirosin biosynthetic enzyme 2-deoxy-scyllo-inosamine dehydrogenase (BtrN) and molybdenum cofactor biosynthetic enzyme (MoaA). The latter two enzymes bind one auxiliary cluster and exhibit a partial SPASM motif, coined a Twitch domain. Here we review the structure and function of auxiliary cluster domains within the SAM radical enzyme superfamily.  相似文献   

6.
Karim A. Walters  John H. Golbeck 《BBA》2018,1859(10):1096-1107
Recently developed molecular wire technology takes advantage of [4Fe-4S] clusters that are ligated by at least one surface exposed Cys residue. Mutagenesis of this Cys residue to a Gly opens an exchangeable coordination site to a corner iron atom that can be chemically rescued by an external thiolate ligand. This ligand can be subsequently displaced by mass action using a dithiol molecular wire to tether two redox active proteins. We intend to apply this technique to tethering Photosystem I to ferredoxin sulfite reductase (FdSiR), an enzyme that catalyzes the six-electron reduction of sulfite to hydrogen sulfite and nitrite to ammonia. The enzyme contains a [4Fe-4S]2+/1+ cluster and a siroheme active site. FdSiRWT and an FdSiRC491G variant were cloned from Synechococcus elongatus PCC 7942 and expressed along with the cysG gene from Salmonella typhimurium using the pCDFDuet plasmid. UV/Vis absorbance spectra of both FdSiRWT and the FdSiRC491G variant displayed characteristic peaks at 278, 392 (Soret), 585 (α) and 714?nm (charge transfer band), and 278, 394 (Soret), 587 (α) and 714?nm (charge transfer band) respectively. Both enzymes in their as-isolated forms displayed an EPR spectrum characteristic of an S?=?5/2 high spin heme. When reduced, both enzymes exhibited the signal of a low spin S?=?1/2 [4Fe-4S]1+ cluster. The FdSiRWT and FdSiRC491G variant both showed activity using reduced methyl viologen and Synechococcus elongatus PCC 7942 ferredoxin 1 (Fd1) as electron donors. Based on these results, the FdSIRC491G variant should be a suitable candidate for wiring to Photosystem I.  相似文献   

7.
A ferredoxin has been purified from Streptomyces griseus grown in soybean flour-containing medium. The homogeneous protein has a molecular weight near 14000 as determined by both PAGE and size exclusion chromatography. The iron and labile sulfide content is 6–7 atoms/mole protein. EPR spectroscopy of native S. griseus ferredoxin shows an isotropic signal at g=2.01 which is typical of [3Fe-4S]1+ clusters and which quantitates to 0.9 spin/mole. Reduction of the ferredoxin by excess dithionite at pH 8.0 produces an EPR silent state with a small amount of a g=1.95 type signal. Photoreduction in the presence of deazaflavin generates a signal typical of [4Fe-4S]1+ clusters at much higher yields (0.4–0.5 spin/mole) with major features at g-values of 2.06, 1.94, 1.90 and 1.88. This latter EPR signal is most similar to that seen for reduced 7Fe ferredoxins, which contain both a [3Fe-4S] and [4Fe-4S] cluster. In vitro reconstitution experiments demonstrate the ability of the S. grisues ferredoxin to couple electron transfer between spinach ferredoxin reductase and S. griseus cytochrome P-450soy for NADPH-dependent substrate oxidation. This represents a possible physiological function for the S. griseus ferredoxin, which if true, would be the first functional role demonstrated for a 7Fe ferredoxin.  相似文献   

8.
Wybutosine and its derivatives are found in position 37 of tRNA encoding Phe in eukaryotes and archaea. They are believed to play a key role in the decoding function of the ribosome. The second step in the biosynthesis of wybutosine is catalyzed by TYW1 protein, which is a member of the well established class of metalloenzymes called “Radical-SAM.” These enzymes use a [4Fe-4S] cluster, chelated by three cysteines in a CX3CX2C motif, and S-adenosyl-l-methionine (SAM) to generate a 5′-deoxyadenosyl radical that initiates various chemically challenging reactions. Sequence analysis of TYW1 proteins revealed, in the N-terminal half of the enzyme beside the Radical-SAM cysteine triad, an additional highly conserved cysteine motif. In this study we show by combining analytical and spectroscopic methods including UV-visible absorption, Mössbauer, EPR, and HYSCORE spectroscopies that these additional cysteines are involved in the coordination of a second [4Fe-4S] cluster displaying a free coordination site that interacts with pyruvate, the second substrate of the reaction. The presence of two distinct iron-sulfur clusters on TYW1 is reminiscent of MiaB, another tRNA-modifying metalloenzyme whose active form was shown to bind two iron-sulfur clusters. A possible role for the second [4Fe-4S] cluster in the enzyme activity is discussed.  相似文献   

9.
The anaerobic ribonucleotide reductase from Escherichia coli contains an iron-sulfur cluster which, in the reduced [4Fe-4S]+ form, serves to reduce S-adenosylmethionine and to generate a catalytically essential glycyl radical. The reaction of the reduced cluster with oxygen was studied by UV-visible, EPR, NMR, and Mössbauer spectroscopies. The [4Fe-4S]+ form is shown to be extremely sensitive to oxygen and converted to [4Fe-4S]2+, [3Fe-4S]+/0, and to the stable [2Fe-2S]2+ form. It is remarkable that the oxidized protein retains full activity. This is probably due to the fact that during reduction, required for activity, the iron atoms, from 2Fe and 3Fe clusters, readily reassemble to generate an active [4Fe-4S] center. This property is discussed as a possible protective mechanism of the enzyme during transient exposure to air. Futhermore, the [2Fe-2S] form of the protein can be converted into a [3Fe-4S] form during chromatography on dATP-Sepharose, explaining why previous preparations of the enzyme were shown to contain large amounts of such a 3Fe cluster. This is the first report of a 2Fe to 3Fe cluster conversion.  相似文献   

10.
Isotope substitution of 57Fe (I = 12) for 56Fe has a pronounced effect on the two EPR signals of hydrogenase of Chromatium vinosum. It is proposed that signal 1, the intensity of which is increased several-fold by a deoxygenation-oxygenation cycle with a simultaneous increase of a signal from Fe3+, is due to a [3Fe-xS] cluster. It is further proposed that signal 2 is caused by a magnetic interaction of a [4Fe-4S]3+ cluster with an unidentified paramagnet. The addition of 10 μM Ni to the culture medium (already containing 1 μM Ni) increased the enzyme activity 3–6-fold, without effect on the growth of the bacterium. Addition of 61Ni (I = 32) to the medium did not change the EPR spectrum of hydrogenase. From a comparison of the EPR signal intensities and the enzyme activities it is concluded that, in the hydrogenase preparation as isolated, molecules containing a [3Fe-xS) cluster are not active, and that active molecules have a [4Fe-4S]3+(3+,2+) cluster plus an as yet unidentified paramagnetic redox component. The latter is thought to be the primary site of interaction of the enzyme with H2. Ni is considered as a possible candidate for this component.  相似文献   

11.
Yokoyama K  Ohmori D  Kudo F  Eguchi T 《Biochemistry》2008,47(34):8950-8960
BtrN is a radical SAM ( S-adenosyl- l-methionine) enzyme that catalyzes the oxidation of 2-deoxy- scyllo-inosamine (DOIA) into 3-amino-2,3-dideoxy- scyllo-inosose (amino-DOI) during the biosynthesis of 2-deoxystreptamine (DOS) in the butirosin producer Bacillus circulans. Recently, we have shown that BtrN catalyzes the transfer of a hydrogen atom at C-3 of DOIA to 5'-deoxyadenosine, and thus, the reaction was proposed to proceed through the hydrogen atom abstraction by the 5'-deoxyadenosyl radical. In this work, the BtrN reaction was analyzed by EPR spectroscopy. A sharp double triplet EPR signal was observed when the EPR spectrum of the enzyme reaction mixture was recorded at 50 K. The spin coupling with protons partially disappeared by reaction with [2,2- (2)H 2]DOIA, which unambiguously proved the observed signal to be a radical on C-3 of DOIA. On the other hand, the EPR spectrum of the [4Fe-4S] cluster of BtrN during the reaction showed a complex signal due to the presence of several species. Comparison of signals derived from a [4Fe-4S] center of BtrN incubated with various combinations of products (5'-deoxyadenosine, l-methionine, and amino-DOI) and substrates (SAM and DOIA) indicated that the EPR signals observed during the reaction were derived from free BtrN, a BtrN-SAM complex, and a BtrN-SAM-DOIA complex. Significant changes in the EPR signals upon binding of SAM and DOIA suggest the close interaction of both substrates with the [4Fe-4S] cluster.  相似文献   

12.
Chemical rescue of site-modified amino acids using externally supplied organic molecules represents a powerful method to investigate structure-function relationships in proteins. Here we provide definitive evidence that aryl and alkyl thiolates, reagents typically used for in vitro iron-sulfur cluster reconstitutions, serve as rescue ligands to a site-specifically modified [4Fe-4S]1+,2+ cluster in PsaC, a bacterial dicluster ferredoxin-like subunit of Photosystem I. PsaC binds two low-potential [4Fe-4S]1+,2+ clusters termed FA and FB. In the C13G/C33S variant of PsaC, glycine has replaced cysteine at position 13 creating a protein that is missing one of the ligating amino acids to iron-sulfur cluster FB. Using a variety of analytical techniques, including non-heme iron and acid-labile sulfur assays, and EPR, resonance Raman, and Mössbauer spectroscopies, we showed that the C13G/C33S variant of PsaC binds two [4Fe-4S]1+,2+ clusters, despite the absence of one of the biological ligands. 19F NMR spectroscopy indicated that the external thiolate replaces cysteine 13 as a substitute ligand to the FB cluster. The finding that site-modified [4Fe-4S]1+,2+ clusters can be chemically rescued with external thiolates opens new opportunities for modulating their properties in proteins. In particular, it provides a mechanism to attach an additional electron transfer cofactor to the protein via a bound, external ligand.  相似文献   

13.
Hiroyuki Mino  Shigeru Itoh 《BBA》2005,1708(1):42-49
We investigated a new EPR signal that gives a broad line shape around g=2 in Ca2+-depleted Photosystem (PS) II. The signal was trapped by illumination at 243 K in parallel with the formation of YZ. The ratio of the intensities between the g=2 broad signal and the YZ signal was 1:3, assuming a Gaussian line shape for the former. The g=2 broad signal and the YZ signal decayed together in parallel with the appearance of the S2 state multiline at 243 K. The g=2 broad signal was assigned to be an intermediate S1X state in the transition from the S1 to the S2 state, where X represents an amino acid radical nearby manganese cluster, such as D1-His337. The signal is in thermal equilibrium with YZ. Possible reactions in the S state transitions in Ca2+-depleted PS II were discussed.  相似文献   

14.
BlsE, a predicted radical S-adenosyl-L-methionine (SAM) protein, was anaerobically purified and reconstituted in vitro to study its function in the blasticidin S biosynthetic pathway. The putative role of BlsE was elucidated based on bioinformatics analysis, genetic inactivation and biochemical characterization. Biochemical results showed that BlsE is a SAM-dependent radical enzyme that utilizes cytosylglucuronic acid, the accumulated intermediate metabolite in blsE mutant, as substrate and catalyzes decarboxylation at the C5 position of the glucoside residue to yield cytosylarabinopyranose. Additionally, we report the purification and reconstitution of BlsE, characterization of its [4Fe–4S] cluster using UV-vis and electron paramagnetic resonance (EPR) spectroscopic analysis, and investigation of the ability of flavodoxin (Fld), flavodoxin reductase (Fpr) and NADPH to reduce the [4Fe–4S]2+ cluster. Mutagenesis studies demonstrated that Cys31, Cys35, Cys38 in the C×××C×MC motif and Gly73, Gly74, Glu75, Pro76 in the GGEP motif were crucial amino acids for BlsE activity while mutation of Met37 had little effect on its function. Our results indicate that BlsE represents a typical [4Fe–4S]-containing radical SAM enzyme and it catalyzes decarboxylation in blasticidin S biosynthesis.  相似文献   

15.
The methyltransferase FliB posttranslationally modifies surface-exposed ɛ-N-lysine residues of flagellin, the protomer of the flagellar filament in Salmonella enterica (S. enterica). Flagellin methylation, reported originally in 1959, was recently shown to enhance host cell adhesion and invasion by increasing the flagellar hydrophobicity. The role of FliB in this process, however, remained enigmatic. In this study, we investigated the properties and mechanisms of FliB from S. enterica in vivo and in vitro. We show that FliB is an S-adenosylmethionine (SAM) dependent methyltransferase, forming a membrane associated oligomer that modifies flagellin in the bacterial cytosol. Using X-band electron paramagnetic resonance (EPR) spectroscopy, zero-field 57Fe Mössbauer spectroscopy, methylation assays and chromatography coupled mass spectrometry (MS) analysis, we further found that FliB contains an oxygen sensitive [4Fe-4S] cluster that is essential for the methyl transfer reaction and might mediate a radical mechanism. Our data indicate that the [4Fe-4S] cluster is coordinated by a cysteine rich motif in FliB that is highly conserved among multiple genera of the Enterobacteriaceae family.  相似文献   

16.
Numerous iron-sulfur (Fe-S) proteins with diverse functions are present in the matrix and respiratory chain complexes of mitochondria. Although [4Fe-4S] clusters are the most common type of Fe-S cluster in mitochondria, the molecular mechanism of [4Fe-4S] cluster assembly and insertion into target proteins by the mitochondrial iron-sulfur cluster (ISC) maturation system is not well-understood. Here we report a detailed characterization of two late-acting Fe-S cluster-carrier proteins from Arabidopsis thaliana, NFU4 and NFU5. Yeast two-hybrid and bimolecular fluorescence complementation studies demonstrated interaction of both the NFU4 and NFU5 proteins with the ISCA class of Fe-S carrier proteins. Recombinant NFU4 and NFU5 were purified as apo-proteins after expression in Escherichia coli. In vitro Fe-S cluster reconstitution led to the insertion of one [4Fe-4S]2+ cluster per homodimer as determined by UV-visible absorption/CD, resonance Raman and EPR spectroscopy, and analytical studies. Cluster transfer reactions, monitored by UV-visible absorption and CD spectroscopy, showed that a [4Fe-4S]2+ cluster-bound ISCA1a/2 heterodimer is effective in transferring [4Fe-4S]2+ clusters to both NFU4 and NFU5 with negligible back reaction. In addition, [4Fe-4S]2+ cluster-bound ISCA1a/2, NFU4, and NFU5 were all found to be effective [4Fe-4S]2+ cluster donors for maturation of the mitochondrial apo-aconitase 2 as assessed by enzyme activity measurements. The results demonstrate rapid, unidirectional, and quantitative [4Fe-4S]2+ cluster transfer from ISCA1a/2 to NFU4 or NFU5 that further delineates their respective positions in the plant ISC machinery and their contributions to the maturation of client [4Fe-4S] cluster-containing proteins.  相似文献   

17.
《BBA》1987,891(1):94-98
Core extrusion of the bound iron-sulfur centers from spinach Photosystem I showed the presence of [2Fe-2S] clusters as well as [4Fe-4S] clusters among FA, FB and FX. Extrusion of the iron-sulfur ensemble was not quantitative; however, the presence of [2Fe-2S] clusters correlated with higher concentration of unfolding solvent. Since FX is highly resistant to denaturation, and since FA and FB are known to contain [4Fe-4S] clusters, the [2Fe-2S] clusters are assigned to FX. The presence of [2Fe-2S] clusters in Photosystem I has significance in the structure and organization of FX on the reaction center. Since four cysteinyl ligands are assumed to hold an iron-sulfur cluster, a Photosystem I subunit may consist of two approx. 64-kDa proteins bridged by a single [2Fe-2S] cluster. The complete reaction center would consist of two subunits positioned so that two [2Fe-2S] clusters are in magnetic interaction, thereby constituting FX.  相似文献   

18.
Hinckley GT  Frey PA 《Biochemistry》2006,45(10):3219-3225
Lysine 2,3-aminomutase (LAM) catalyzes the interconversion of l-lysine and l-beta-lysine by a free radical mechanism. The 5'-deoxyadenosyl radical derived from the reductive cleavage of S-adenosyl-l-methionine (SAM) initiates substrate-radical formation. The [4Fe-4S](1+) cluster in LAM is the one-electron source in the reductive cleavage of SAM, which is directly ligated to the unique iron site in the cluster. We here report the midpoint reduction potentials of the [4Fe-4S](2+/1+) couple in the presence of SAM, S-adenosyl-l-homocysteine (SAH), or 5'-{N-[(3S)-3-aminocarboxypropyl]-N-methylamino}-5'-deoxyadenosine (azaSAM) as measured by spectroelectrochemistry. The reduction potentials are -430 +/- 2 mV in the presence of SAM, -460 +/- 3 mV in the presence of SAH, and -497 +/- 10 mV in the presence of azaSAM. In the absence of SAM or an analogue and the presence of dithiothreitol, dihydrolipoate, or cysteine as ligands to the unique iron, the midpoint potentials are -479 +/- 5, -516 +/- 5, and -484 +/- 3 mV, respectively. LAM is a member of the radical SAM superfamily of enzymes, in which the CxxxCxxC motif donates three thiolate ligands to iron in the [4Fe-4S] cluster and SAM donates the alpha-amino and alpha-carboxylate groups of the methionyl moiety as ligands to the fourth iron. The results show the reduction potentials in the midrange for ferredoxin-like [4Fe-4S] clusters. They show that SAM elevates the reduction potential by 86 mV relative to that of dihydrolipoate as the cluster ligand. This difference accounts for the SAM-dependent reduction of the [4Fe-4S](2+) cluster by dithionite reported earlier. Analogues of SAM have a weakened capacity to raise the potential. We conclude that the midpoint reduction potential of the cluster ligated to SAM is 1.2 V less negative than the half-wave potential for the one-electron reductive cleavage of simple alkylsulfonium ions in aqueous solution. The energetic barrier in the reductive cleavage of SAM may be overcome through the use of binding energy.  相似文献   

19.
An alternative route for haem b biosynthesis is operative in sulfate-reducing bacteria of the Desulfovibrio genus and in methanogenic Archaea. This pathway diverges from the canonical one at the level of uroporphyrinogen III and progresses via a distinct branch, where sirohaem acts as an intermediate precursor being converted into haem b by a set of novel enzymes, named the alternative haem biosynthetic proteins (Ahb). In this work, we report the biochemical characterisation of the Desulfovibrio vulgaris AhbD enzyme that catalyses the last step of the pathway. Mass spectrometry analysis showed that AhbD promotes the cleavage of S-adenosylmethionine (SAM) and converts iron-coproporphyrin III via two oxidative decarboxylations to yield haem b, methionine and the 5′-deoxyadenosyl radical. Electron paramagnetic resonance spectroscopy studies demonstrated that AhbD contains two [4Fe–4S]2 +/1 + centres and that binding of the substrates S-adenosylmethionine and iron-coproporphyrin III induces conformational modifications in both centres. Amino acid sequence comparisons indicated that D. vulgaris AhbD belongs to the radical SAM protein superfamily, with a GGE-like motif and two cysteine-rich sequences typical for ligation of SAM molecules and iron-sulfur clusters, respectively. A structural model of D. vulgaris AhbD with putative binding pockets for the iron-sulfur centres and the substrates SAM and iron-coproporphyrin III is discussed.  相似文献   

20.
Despite its major importance in human health, the metabolic potential of the human gut microbiota is still poorly understood. We have recently shown that biosynthesis of Ruminococcin C (RumC), a novel ribosomally synthesized and posttranslationally modified peptide (RiPP) produced by the commensal bacterium Ruminococcus gnavus, requires two radical SAM enzymes (RumMC1 and RumMC2) catalyzing the formation of four Cα-thioether bridges. These bridges, which are essential for RumC''s antibiotic properties against human pathogens such as Clostridium perfringens, define two hairpin domains giving this sactipeptide (sulfur-to-α-carbon thioether–containing peptide) an unusual architecture among natural products. We report here the biochemical and spectroscopic characterizations of RumMC2. EPR spectroscopy and mutagenesis data support that RumMC2 is a member of the large family of SPASM domain radical SAM enzymes characterized by the presence of three [4Fe-4S] clusters. We also demonstrate that this enzyme initiates its reaction by Cα H-atom abstraction and is able to catalyze the formation of nonnatural thioether bonds in engineered peptide substrates. Unexpectedly, our data support the formation of a ketoimine rather than an α,β-dehydro-amino acid intermediate during Cα-thioether bridge LC–MS/MS fragmentation. Finally, we explored the roles of the leader peptide and of the RiPP precursor peptide recognition element, present in myriad RiPP-modifying enzymes. Collectively, our data support a more complex role for the peptide recognition element and the core peptide for the installation of posttranslational modifications in RiPPs than previously anticipated and suggest a possible reaction intermediate for thioether bond formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号